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1 Introduction

Recall Ravi’s Oliver talk on elliptic curves and ⊗C. Interesting part: the curve C : y2 =
x3 + ax+ b has a group law given by (draw picture). This only works “because of Schubert
Calculus”, i.e. any line intersects C at 3 points.

A typical question of enumerative geometry : How many points are there in an intersec-
tion?

Hermann Schubert was interested in questions like: How many lines in 3-space intersect
4 given lines? He would “specialize” the lines so that L1 ∩ L2 = P and L3 ∩ L4 = Q for
P,Q ∈ C3. Then a line intersecting all of L1, . . . , L4 must either go through P and Q or
else it must be the intersection of the two planes determined by L1, L2 and L3, L4. Scubert
would appeal to the “principle of continuity” to argue that there must be two such lines in
the generic case as well (“principle of conservation of number”).

Problem: Hilbert’s 15th: put this on rigorous foundation. Plan:

1. Make the set of lines in 3-space into a manifold, so “specializing” is just picking a
representative of a continuous family.

2. Conveniently express the condition that a line intersects a given subspace in a certain
way.

3. Arrive at the precise notion of what exactly is “conserved” (H∗ class).

2 Gr(k, n)

Some issues:

1. With R: things which should intersect do not (draw parabola and line in R2). So do it
over C.

2. With tangency (draw circle with secant and tangent lines). So count multiplicities (not
as cool as the 27 lines on any smooth cubic surface in P3).

3. With affine space Cn: parallel lines don’t intersect in C2. So move to Pn.

Speaking of Pn, define

Pn = set of lines in Cn+1 = Cn+1 \ {(0, . . . , 0)}/ ∼,

where
(x0, . . . , xn) ∼ (λx0, . . . , λxn)

for λ ∈ C×.
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A line in Pn is a set of points of the form

{[x0 + ty0 : . . . : xn + tyn]|t ∈ C}.

It is the image of a 2-space (minus the origin) in Pn. And in general, when we mention a
k-space of Pn, we mean the image of a k+ 1-subspace of Cn+1 (minus the origin) in Pn. We
will, however, carry along linear algebra terminology.

Now we want to represent a line in P3 as a unique point (somewhere). So let’s secretly pick
a basis {x, y} for the 2-space it’s coming from, then try to forget it (L 7→ [x∧ y] ∈ P(∧2C4)).
Form the matrix (

xT

yT

)
(1)

(we are taking transposes so it won’t topple over) and let pij denote the 2×2 minor involving
columns i and j. Since x and y are LI, there is a nonzero minor, so we can map this to P5

(Plücker embedding).
P : L 7→ [p01 : p02 : p03 : p12 : p13 : p23].

To see it is well-defined, note that if {w, z} is another basis for the 2-space of L, then
∃C ∈ GL(2,C) s.t.

C

(
xT

yT

)
=
(
zT

wT

)
so

pij

(
zT

wT

)
= detC

(
xT

yT

)
,

so it was a good idea to go to projective space.
However, P is not surjective. Note that for any 2× 4 matrix,

p01p23 − p02p13 + p03p12 = 0.

Proof. Exercise.

Q.E.D.

Conversely, if a point in P5 satisfies the Plücker relation, then it is coming from a line in
P3. To see this, assume wlog that p01 6= 0. then

p23 =
p02p13 − p03p12

p01

Now let our matrix be (
1 0 −p12p01

−p13p01

0 1 p02
p01

p03
p01

)
and we have our line.

Theorem 2.1. There is a bijective correspondence between k-planes in Pn and points of
P(n+1

k+1)−1 satisfying the Plücker relations, which are, for any sequences 0 ≤ jl,ml ≤ n:

k+1∑
i=0

(−1)ipj0···jk−1mi
pm0···m̂i···mk+1 = 0.

And we will refer to both the k-planes in Pn and its image in PN as Gr(k, n). Also
note that we have equipped Gr(k, n) with an atlas (the open set pi0···ik 6= 0 is isomorphic to
C(k+1)(n−k)).
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3 Schubert Varieties

Goal: to express the condition that our line in P3 intersects some subspaces in a certain way
in the Plücker coordinates. By a (partial) flag, we mean a strictly increasing sequence of
linear subspaces of P3 (i.e. images of vector subspaces of C4 in P3).

A0 ⊂ A1

We will say that the line L is in the Schubert variety X(A0A1) if

dimA0 ∩ L ≥ 0 and dimA1 ∩ L ≥ 1.

For example, if we let A0 = L′ be a line and A1 = P3, then X(A0A1) is just the set of lines
which intersect a given line L′. Let

F =

F0 =


0
0
0
x

 ⊂ F1 =


0
0
y
x

 ⊂ F2 =


0
z
y
x

 ⊂ F3 = P3


be the standard flag.

Proposition 3.1. The line L is in the Schubert variety X(FiFj) if and only if pkl = 0
whenever l < 3− i or k < 3− j.

Proof. Pick a basis {x, y} for L, and wlog put the matrix to rref. Now this should be obvious.

Q.E.D.

It turns out that the Schubert varieties X(FiFj) associated to our base flag are sufficient
for everything we want to do, because

Proposition 3.2. Let A0 ⊂ A1 and B0 ⊂ B1 be two flags satisfying dim(Ai) = dim(Bi) for
i = 1, 2. Then there is an invertible linear transformation of P5 into itself which preserves
Gr(1, 3) and sends X(A0A1) to X(B0B1).

Proof. First note that there is certainly an invertible linear transformation T such that

T (A0) = B0, T (A1) = B1.

Also, T clearly sends lines to lines (it preserves Gr(1, 3)). Pick a basis x, y for L, and note
that if L is represented by the matrix (as in (1))(

xT

yT

)
then T (L) is represented by (

xT

yT

)
M =

(
xTM
yTM

)
where M is the matrix of T , and we see that the 2×2 minors of this matrix can be expressed

as linear combinations of that of the matrix
(
xT

yT

)
.

Q.E.D.
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Corollary 3.3. Let A0 ⊂ A1 be as above. Then X(A0A1) consists of those points of Gr(1, 3)
whose Plücker coordinates satisfy certain linear equations, i.e. the intersection of Gr(1, 3)
and a certain linear space in P5. Also, this space is a hyperplane if and only if dim(A0) = 1
and dim(A1) = 3.

Proof. Let T be an invertible linear transformation mapping A0 ⊂ A1 to Fi ⊂ Fj (the base
flag). A line L is in X(A0A1) if and only if T (L) satisfies the conditions in Proposition 3.1.
We see that the Plücker coordinates of L must satisfy certain linear equations. The last
statement is true for dimensional reasons.

Q.E.D.

4 The same problem again

We come to the first way to solve the enumerative problem mentioned in the beginning in a
more rigorous way. We know Gr(1, 3) is given (as a subset of P5) by the single equation

p01p23 − p02p13 + p03p12 = 0. (2)

Now, for a line L to intersect a fixed line L1, L must be contained in the Schubert vari-
ety X(L1P3), and this condition is represented by intersecting Gr(1, 3) ⊂ P5 with a certain
hyperplane H1. Then the set of lines intersecting L1, L2, L3, L4 is represented by the inter-
section

Gr(1, 3) ∩H1 ∩H2 ∩H3 ∩H4.

Now, if the Hi are linearly independent,
⋂4
i=1Hi is a line, which we can parametrize, and

then use the relation (2) to obtain a quadratic equation in one variable, we see that the
number of solutions (two) matches with Schubert’s prediction.

5 Schubert Calculus

Hilbert’s 15th problem was finding a rigorous foundation for Schubert Calculus, and mathe-
maticians of the 20th century have done this via cohomology. Recall that

H∗ (Gr(k, n),Z) =
⊕

Hi (Gr(k, n),Z)

is a graded ring (it is just a ring where multiplication describes how subvarieties intersect, so
there is nothing scary about it). There are a couple important properties of the cohomology
ring of Gr(1, 3) which we’ll take for granted:

1. HN (Gr(k, n),Z) ∼= Z, where N = dim(Gr(k, n)) =
(
n−k
k+1

)
.

2. Homotopic subvarieties are assigned the same cohomology class.

3. If a set of subvarieties Yα intersect as you’d expext (i.e. transversally) and
⋂
α Yα =

{n points}, then in cohomology,
∏
α

[Yα] = n (as an element of Htop).

Now there are a couple theorems that we’ll need to do Schubert calculus, but first, notice
that since varieties in a continuous system should be assigned the same class in cohomology,
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the standard Schubert varieties X(F0F1 . . .Fk) coming from the base flag are sufficient to
describe the classes of all the Schubert varieties X(A0A1 . . . Ak), since from t ∈ [0, 1]

tc11 + (1− t) tc12 tc13 . . . tc1n
tc21 tc22 + (1− t) tc23 . . . tc2n

...
...

...
. . .

...
tcn1 tcn2 tcn3 . . . tcnn + (1− t)


puts them in a continuous family with one of the standard ones. Since the standard ones are
uniquely determined by their dimension sequence, we will use the notation

X(i0i1 · · · ik) = X(Fi0Fi1 · · · Fik).

Theorem 5.1. (The basis theorem) Each odd dimensional cohomology group of Gr(k, n) is
zero, and H2p(Gr(k, n)) is free abelian, and generated by the classes of the Schubert varieties
X(i0i1 · · · ik) with (k+1)(n−k)−

∑k
i=0 ai−i = p. Moreover, the bases {· · · , X(i0i1 · · · ik), · · · }

and {· · · , X((n− ik)(n− ik−1) · · · (n− i0)), · · · } of HN (Gr(k, n),Z) and HN−2p(Gr(k, n),Z)
respectively are dual.

This means that the cohomology of Gr(1, 3) looks like (H0 on top, H8 on the bottom):

[X(23)]

[X(13)]

ttttttttt

KKKKKKKKK

[X(12)]

KKKKKKKKK
[X(03)]

ttttttttt

[X(02)]

[X(01)]

But it turns out we don’t even need all the standard Schubert varieties to generateH∗(Gr(1, 3))
as a Z-algebra. For i ≤ n− k, let x(i) = X((i)(n− k + 1)(n− k + 2) · · · (n)).

Theorem 5.2. (The determinental formula) In H∗(Gr(k, n)), we have the following formula

X(i0i1 · · · ik) = det

x(i0) x(i0 − 1) · · · x(a0 − k)
...

...
. . .

...
x(ik) x(ik − 1) · · · x(ak − k)


where x(i) = 0 for h /∈ [0, n− k].

So now we only need to know how to multiply the special Schubert varieties to Schubert
varieties to describe the whole ring structure.

Theorem 5.3. (Pieri’s formula) In H∗(Gr(k, n)), we have the following formula

x(l)X(i0 · · · ik) =
∑

X(j0 · · · jk),

where the sum ranges over all sequences 0 ≤ j0 < j1 < · · · < jk ≤ n satisfying 0 ≤ j0 ≤ i0 <
j1 ≤ i1 < · · · < jk ≤ ik and

∑k
i=0 bi =

(∑k
i=0 ai

)
− (n− k − l).
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6 And the same problem again

Now we are ready to solve the problem of counting the number of lines in P3 intersecting 4
given lines. We want to find

X(13)4

in H∗(Gr(1, 3)). First we compute, using Pieri’s formula,

X(13)2 = x(1)X(13) = X(03) +X(12).

Notice that this says that the set of lines intersecting 2 given lines has the same cohomology
class as the set of lines going through a fixed point (X(03)) or contained in a plane (X(12)).
One can see this using Schubert’s specialization by insisting that the two lines L1, L2 intersect
at a point P . Then clearly any line which intersects these two lines either contains P , or else
it is contained in the plane determined by L1 and L2. Now using the basis theorem, we see
that

X(13)4 = (X(03) +X(12))2 = X(03)2 + 2X(03)X(12) +X(12)2 = 2X(01)

and since X(01) is the class of a single point, we see that our answer is (again) 2.
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