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Crystals

Good bases

Let g = sln(C) be the Lie algebra of trace 0 matrices and
V = Cn. The standard basis vectors v1, . . . ,vn form a basis for
V that has several favorable properties:

1 Each basis vector is an eigenvector for the action of the
subalgebra h of diagonal matrices, i.e.
diag(t1, . . . , tn) · vk = tkvk

2 The matrices Ei ,j = (emn) s.t. emn =

{
1 if (m,n) = (i , j)
0 else

for i 6= j “almost permute” these vectors, i.e. Ei ,j · vj = vi
and Ei ,j · vk = 0 for k 6= j .

3 In fact we only need to use the matrices Fi = Ei+1,i to
reach any basis vector from v1.
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Thus we can encode the representation as a colored directed
graph, for example, sl3 acting on C3 could be represented like
this:

v1
F1→ v2

F2→ v3

Our aim is to generalize this idea and we’d hope that the nice
basis we found is compatible with tensor product
decompositions and branching.
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This works only as long as each weight space is
one-dimensional. We already run into trouble with the adjoint
representation of sl3, as ker F1, ker F2, im F1, im F2 are all
different subspaces of h.
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Fortunately there is a way of fixing this problem, due to
Kashiwara [Kas91] , by going first to the quantized universal
enveloping algebra Uq(g) and then taking a limit as q → 0 in a
suitable sense. It turns out that in this setting, choosing a good
basis is always possible. This object, the directed with vertices
the basis elements and the edges labeled by the action of the
lowering operators is called a crystal. Since the representation
theory of Uq(g) is very similar to that of U(g), we can use this
combinatorial gadget to study representations.
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Crystals

Kashiwara crystals

What is the benefit of crystals? Combinatorics. For
g = sl2-crystals, tensor product decompositions are given by:
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Crystals

Crystals of tableaux

We know that for an irreducible sln-representation Vλ of highest
weight λ, dim(Vλ) = #SSYT (λ) with entries up to n. The crystal
of the adjoint representation of sl3 is

Figure: The crystal B(ω1 +ω2) for A2
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Crystals

Reverse plane partitions

Let g be a simply laced Lie algebra and let ωp be a minuscule
fundamental weight. Consider the the poset ∆+ of positive
roots of g and the subposet ∆p

+ of roots that lie above αp. For
type A3, the poset ∆2

+ is:

α1 + α2 + α3

α1 + α2 α2 + α3

α1 α2 α3
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Crystals

Reverse plane partitions

Let B(kωp) be the crystal of the g irrep with highest weight
kωp. Then the set of order-preserving maps

{φ : ∆p
+ → {0,1, . . . , k }}

(called reverse plane partitions) is a model for the crystal
B(kωp). Rpps are a generalization of Gelfand-Tsetlin patterns.
For type A they are in bijection with semistandard tableaux of
shape p × k , where column i of the rpp is the shape of the
tableaux with entries ≤ i .

Example 1

1 1 2
2 3 4

↔ ( 3 3 0 0
3 2 0

3 1
2

)
refl◦rot90◦→ ( 1

2 2
3

)
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Crystal structure on rpps

The lowering operator fi acts on rpps by decreasing an entry on
the i-th column. For example, for B(kω2) in type A3, we have

f1

 a
b c

d

 =

 a
b − 1 c

d



f2

 a
b c

d

 =



 a − 1
b c

d

 if a + d ≤ b + c

 a
b c

d − 1

 if a + d > b + c

f3

 a
b c

d

 =

 a
b c − 1

d



(if the resulting array is an rpp)
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Quiver varieties

The Preprojective algebra of a quiver

Let Q be an orientation of g’s Dynkin diagram with vertex set I,
and Q∗ be the opposite orientation. Consider the doubled
quiver Q = Q ∪Q∗. Let CQ be the path algebra of Q. Consider
the element

ρ =
∑

e∈E(Q)

ε(e)e∗e

where ε(e) = 1 if e ∈ E(Q) and −1 if e ∈ E(Q∗). The algebra
P(Q) = C(Q)/(ρ) is called the preprojective algebra of Q.
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Quiver varieties

Preprojective algebra modules

There is a module P(p) of the preprojective algebra with basis
indexed by ∆p

+

1 2 3

C

C C

C

C

C C

C

Figure: P(2) for A3

We are interested in the space L(kωp) = {M ⊆ P(p)⊕k } of
submodules.
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Quiver variety components

L(kωp) has connected components indexed by possible
dimension vectors of M.

Conjecture 2

The irreducible components of L(kωp) are indexed by reverse
plane partitions.

For example, consider L(2ω2) in type A3. Let M be a
submodule with dimension vector (1,2,1). Write Mi for the
subspace corresponding to the i-th node of the Dynkin
diagram. To choose M2, we have to choose a 2-dimensional
subspace of C2 ⊕ C2 stable under the linear map

T (x , y , z,w) = (0,0, x , y).
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1 If M2 = ker T , and we can choose M1 and M3 arbitrarily,
this corresponds to the rpp 0

1 1
2


2 If M2 6= ker T , then M1 and M3 are determined, this

corresponds to the rpp  1
1 1

1
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Conjecture 3
The lowering operator fi on the rpps corresponds to taking a
generic submodule with quotient the simple module Si (the
1-dimensional module supported at vertex i).

Consider the case L(kω2) in type A3. Let φ =
( a

b c
d

)
be an

rpp, and let M be a module in the component indexed by φ. For
simplicity, we identify the subspaces M1 = B and M3 = C with
their images in M2 = A + D. Then M looks like this:

A
T

��

T

��
B

id ��

C

id��
D
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Quiver variety components

If we are looking for a submodule of M that fits into the SES

0→ f2(M)→ M → S2 → 0

then we have to choose an a + d − 1-dimensional subspace of
A + D. To be a submodule of M, this subspace needs to
contain B and C. Generically, this subspace will not contain all
of D, unless B + C = D, in which case we are forced to contain
all of D.
B and C are two subspaces of D and both contain T (A).
Therefore generically dim(B + C) = b + c − a, so we have
B + C = D ⇔ b + c − a ≥ d , or equivalently, if

a + d ≤ b + c.

and we see that this is the same rule as the lowering operator
on the rpps (10).
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