Balázs Elek (joint with Joel Kamnitzer, Anne Dranowski and Calder Morton-Ferguson)

University of Toronto, Department of Mathematics

December 7, 2019

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Good bases

Let $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$ be the Lie algebra of trace 0 matrices and $V = \mathbb{C}^n$. The standard basis vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ form a basis for V that has several favorable properties:

- Each basis vector is an eigenvector for the action of the subalgebra \mathfrak{h} of diagonal matrices, i.e. $\operatorname{diag}(t_1, \ldots, t_n) \cdot \mathbf{v_k} = t_k \mathbf{v_k}$
- So The matrices $E_{i,j} = (e_{mn})$ s.t. $e_{mn} = \begin{cases} 1 & \text{if } (m, n) = (i, j) \\ 0 & \text{else} \end{cases}$ for $i \neq j$ "almost permute" these vectors, i.e. $E_{i,j} \cdot \mathbf{v_j} = \mathbf{v_i}$ and $E_{i,j} \cdot \mathbf{v_k} = \mathbf{0}$ for $k \neq j$.
- In fact we only need to use the matrices $F_i = E_{i+1,i}$ to reach any basis vector from **v**₁.

Good bases

Thus we can encode the representation as a colored directed graph, for example, \mathfrak{sl}_3 acting on \mathbb{C}^3 could be represented like this:

$$\mathbf{v_1} \xrightarrow{F_1} \mathbf{v_2} \xrightarrow{F_2} \mathbf{v_3}$$

Our aim is to generalize this idea and we'd hope that the nice basis we found is compatible with tensor product decompositions and branching.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Crystals

Good bases

This works only as long as each weight space is one-dimensional. We already run into trouble with the adjoint representation of \mathfrak{sl}_3 , as ker F_1 , ker F_2 , im F_1 , im F_2 are all different subspaces of \mathfrak{h} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 のへの

Good bases

Fortunately there is a way of fixing this problem, due to Kashiwara [Kas91], by going first to the quantized universal enveloping algebra $U_q(\mathfrak{g})$ and then taking a limit as $q \to 0$ in a suitable sense. It turns out that in this setting, choosing a good basis is always possible. This object, the directed with vertices the basis elements and the edges labeled by the action of the lowering operators is called a **crystal**. Since the representation theory of $U_q(\mathfrak{g})$ is very similar to that of $U(\mathfrak{g})$, we can use this combinatorial gadget to study representations.

Kashiwara crystals

What is the benefit of crystals? Combinatorics. For $\mathfrak{g} = \mathfrak{sl}_2$ -crystals, tensor product decompositions are given by:

Crystals

Crystals of tableaux

We know that for an irreducible \mathfrak{sl}_n -representation V_λ of highest weight λ , dim $(V_\lambda) = \#SSYT(\lambda)$ with entries up to *n*. The crystal of the adjoint representation of \mathfrak{sl}_3 is

Figure: The crystal $B(\omega_1 + \omega_2)$ for A_2

3

Reverse plane partitions

Let \mathfrak{g} be a simply laced Lie algebra and let ω_p be a minuscule fundamental weight. Consider the the poset Δ_+ of positive roots of \mathfrak{g} and the subposet Δ_+^p of roots that lie above α_p . For type A_3 , the poset Δ_+^2 is:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Reverse plane partitions

Let $B(k\omega_p)$ be the crystal of the g irrep with highest weight $k\omega_p$. Then the set of order-preserving maps

$$\{\phi: \Delta^p_+ \to \{0, 1, \ldots, k\}\}$$

(called **reverse plane partitions**) is a model for the crystal $B(k\omega_p)$. Rpps are a generalization of Gelfand-Tsetlin patterns. For type *A* they are in bijection with semistandard tableaux of shape $p \times k$, where column *i* of the rpp is the shape of the tableaux with entries $\leq i$.

Crystals

Crystal structure on rpps

The lowering operator f_i acts on rpps by decreasing an entry on the *i*-th column. For example, for $B(k\omega_2)$ in type A_3 , we have

$$f_{1}\begin{pmatrix}a\\b\\c\\d\end{pmatrix} = \begin{pmatrix}b-1\\c\\d\end{pmatrix}$$

$$f_{2}\begin{pmatrix}a\\c\\d\end{pmatrix} = \begin{pmatrix}\begin{pmatrix}a-1\\b\\c\\d\end{pmatrix} & if a+d \le b+c\\d\\d\end{pmatrix}$$

$$f_{2}\begin{pmatrix}b\\a\\c\\d\end{pmatrix} = \begin{pmatrix}a\\c\\d\\d\end{pmatrix} & if a+d > b+c\\d\\d-1\end{pmatrix}$$

$$f_{3}\begin{pmatrix}a\\c\\d\end{pmatrix} = \begin{pmatrix}a\\c\\d\end{pmatrix} = \begin{pmatrix}a\\c\\d\end{pmatrix}$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

(if the resulting array is an rpp)

The Preprojective algebra of a quiver

Let Q be an orientation of g's Dynkin diagram with vertex set I, and Q^* be the opposite orientation. Consider the doubled quiver $\overline{Q} = Q \cup Q^*$. Let $\mathbb{C}\overline{Q}$ be the path algebra of \overline{Q} . Consider the element

$$\rho = \sum_{\boldsymbol{e} \in \boldsymbol{E}(\overline{\boldsymbol{Q}})} \varepsilon(\boldsymbol{e}) \boldsymbol{e}^* \boldsymbol{e}$$

where $\varepsilon(e) = 1$ if $e \in E(Q)$ and -1 if $e \in E(Q^*)$. The algebra $P(Q) = \mathbb{C}(\overline{Q})/(\rho)$ is called the **preprojective algebra of** Q.

(日) (日) (日) (日) (日) (日) (日)

Preprojective algebra modules

There is a module P(p) of the preprojective algebra with basis indexed by Δ^p_+

We are interested in the space $L(k\omega_p) = \{M \subseteq P(p)^{\oplus k}\}$ of submodules.

Quiver variety components

 $L(k\omega_p)$ has connected components indexed by possible dimension vectors of *M*.

Conjecture 2

The irreducible components of $L(k\omega_p)$ are indexed by reverse plane partitions.

For example, consider $L(2\omega_2)$ in type A_3 . Let M be a submodule with dimension vector (1, 2, 1). Write M_i for the subspace corresponding to the *i*-th node of the Dynkin diagram. To choose M_2 , we have to choose a 2-dimensional subspace of $\mathbb{C}^2 \oplus \mathbb{C}^2$ stable under the linear map

$$T(x, y, z, w) = (0, 0, x, y).$$

(日) (日) (日) (日) (日) (日) (日)

Quiver variety components

• If $M_2 = \ker T$, and we can choose M_1 and M_3 arbitrarily, this corresponds to the rpp

$$\begin{pmatrix} 0 \\ 1 & 1 \\ 2 \end{pmatrix}$$

2 If $M_2 \neq \text{ker } T$, then M_1 and M_3 are determined, this corresponds to the rpp

$$\begin{pmatrix} & 1 \\ 1 & & 1 \\ & 1 & \end{pmatrix}$$

(日) (日) (日) (日) (日) (日) (日)

Quiver variety components

Conjecture 3

The lowering operator f_i on the rpps corresponds to taking a generic submodule with quotient the simple module S_i (the 1-dimensional module supported at vertex *i*).

Consider the case $L(k\omega_2)$ in type A_3 . Let $\phi = \left(b \frac{a}{d}c\right)$ be an rpp, and let M be a module in the component indexed by ϕ . For simplicity, we identify the subspaces $M_1 = B$ and $M_3 = C$ with their images in $M_2 = A + D$. Then M looks like this:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Quiver variety components

If we are looking for a submodule of *M* that fits into the SES

$$0 \to f_2(M) \to M \to S_2 \to 0$$

then we have to choose an a + d - 1-dimensional subspace of A + D. To be a submodule of M, this subspace needs to contain B and C. Generically, this subspace will not contain all of D, unless B + C = D, in which case we are forced to contain all of D.

B and *C* are two subspaces of *D* and both contain *T*(*A*). Therefore generically dim(B + C) = b + c - a, so we have $B + C = D \Leftrightarrow b + c - a \ge d$, or equivalently, if

$$a+d \leq b+c$$
.

and we see that this is the same rule as the lowering operator on the rpps (10).

References

[Kas91] M. Kashiwara.

On crystal bases of the *Q*-analogue of universal enveloping algebras.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Duke Math. J., 63(2):465-516, 1991.