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Consider the equation

02 + 12 + 22 + . . .+ n2 = m2.

How many solutions does it have?



Okay,
02 + 12 = 12.



Édouard Lucas in 1875, tried some more numbers and found
that

02 + 12 + 22 + . . .+ 242 = 4900 = 702.

Then conjectured that there are no other solutions. G.N.
Watson proved in 1919 that the conjecture was true.



If we remember that

02 + 12 + 22 + . . .+ n2 =
n(n + 1)(2n + 1)

6

then we are trying to find integer points on an elliptic curve,
which is still not easy, but there is a way to do it.



Let’s talk about Lorentzian n-space Rn+1,1. This is Rn+2 with
the inner product

x · y =

(
n∑

i=0

xiyi

)
− xn+1yn+1.



Let Λ be a lattice in Rn+1,1. We say Λ is
I integral if x · y ∈ Z for all x , y ∈ Λ,
I unimodular if there is a Z-basis v0, . . . v ,n+1 such that the

determinant of the matrix (v i · v j)n+1
i,j=0 is ±1,

I even if x · x ∈ 2Z for all x ∈ Λ, and odd otherwise.
It turns out that the classification of integral unimodular lattices
in Rn+1,1 is easy (this is a really difficult problem in Rn), there is
a unique odd one In+1,1 in any dimension and there is a unique
even one IIn+1,1 when n + 1 ≡ 1 mod 8. More explicitly,

In+1,1 =
{

x = (x0, . . . xn+1) ∈ Rn+1,1 : xi ∈ Z
}

IIn+1,1 =
{

x = (x0, . . . xn+1) ∈ Rn+1,1 : xi ∈ Z, x · x ∈ 2Z
}

⋃{
x = (x0, . . . xn+1) ∈ Rn+1,1 : xi ∈ Z +

1
2
, x · x ∈ 2Z

}



One of the cool things about the lattices In+1,1 and IIn+1,1 is that
they can have isotropic/lightlike vectors, like

u = (1,1,1,1,1,1,1,1,1,3) ∈ I9,1.

Since u · u = 0, u ∈ u⊥, so u⊥∩I9,1
u is an integral unimodular

lattice in R8 (called the E8 lattice).



What is really special about II25,1 in particular is that here the
vector

w = (0,1,2, . . . ,23,24,70)

is lightlike. The lattice

Λ24 =
w⊥ ∩ II25,1

w

is the Leech lattice.



Let’s talk about packing spheres.

This is the hexagonal close packing of 2-spheres.



We would like to know what is the most efficient way of packing
spheres (in arbitrary dimensions). This is a question people
probably asked when they started doing mathematics.



Here is how far we got:
1. In the beginning of mathematics, people discover the

1-dimensional statement.

2. In 1940, László Fejes Tóth proves that in 2 dimensions, the
density of the hexagonal packing π√

12
is the highest that

can be attained.
3. In 1998, Thomas Hales proved that in dimension 3, the

hexagonal close packing is the best.
4. In 2016, Maryna Viazovska and collaborators proved that

the E8 lattice packing is the densest possible in 8
dimensions, and Λ24 is the densest packing in 24
dimensions.



Here is how far we got:
1. In the beginning of mathematics, people discover the

1-dimensional statement.
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So this problems seems to be really hard, maybe we should
assume that we are packing our spheres so that their centers
are at the points of a lattice, this is somewhat easier, but it still
took

1. the first person to consider the problem to solve it in
dimension 1,

2. Lagrange to do dimension 2,
3. Gauss to do dimension 3,
4. Viazovska et al. to do dimensions 8 and 24.

To this day, we only know the optimal lattice packings in
dimensions ≤ 8, 16 and 24.
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Here is a picture summarizing how good sphere packings are in
different dimensions:

where δ is the “center density” (the actual density ∆ divided by
the volume of the unit sphere in dimension n).



Let’s say you want to send messages through a noisy channel.
That is, we want to send a binary string to someone, but there
is some probability p that a bit gets flipped. How can we make
sure to get our message across? For instance, we could agree
to send each bit three times in a row, so if we want to send ′0′,
we would send ′000′. Then receiving ′000′,′ 100′,′ 010′,′ 001′ is
interpreted as the correct result. This is summarized as using 3
bits to transmit 1 bit while being able to detect errors of at most
1 bit (not very impressive).



Mathematically, an error-correcting code is a set of
codewords (vectors in a vector V space over F2) that are easy
to distinguish, even if there were somerrors introduced. Let’s
define the Hamming distance between two vectors in V as the
number of coordinates where they differ. If we let d to be the
minimal distance between our codewords in our code, we can
stick spheres of radius ρ = 1

2(d − 1) at the points, and if we
land in any of the vectors in that sphere after signal
transmission, we have received the correct message. That is,
the code can correct ρ bits of errors.



A systematic way of doing this is to use a linear code, i.e. an
error-correcting code that is a subspace of V . A linear
error-correcting code that is a k -dimensional subspace of Fn

2
and has minimal distance d is an [n, k ,d ]-code. Note that we
want to minimize n, and maximize k and d . Now we know this
is equivalent to packing spheres efficiently.



Some pictures from Voyager 1 and 2:



Some pictures from Voyager 1 and 2:



And here are the basis elements for the code used to receive
them:

This is the binary Golay code. It uses 24 bits to transmit 12
bits of data, and has minimal distance 8 (so it can fix errors of
up to 3 bits, pretty impressive!). By the way, the matrix above is
(I,A), where A is the adjacency matrix of the icosahedron.



In 1964, John Leech was actually studying the Golay code
packing in 24 dimensions, and (after his initial article was
printed) noticed that there are holes in the packing large
enough to fit more spheres (of the same size!) in, which
doubles the density (and results in Λ24). To his credit, it is
easier to miss a 24-dimensional hole than a 3-dimensional one
(these are the vectors with half-integer coordinates).



Another remarkable fact about putting these extra spheres in is
that now if we look at the configuration around any given
sphere (i.e. itself and its 196560 neighbors) then the spheres
are locked in tightly, like the hexagonal packing of circles (but
not the hexagonal close packing of spheres). The only other
dimension where this tight locking happens is 8 (with the E8
lattice, of course).



This leads us to the topic of kissing numbers, the number of
spheres that can touch a central sphere in a given dimension.
There are apparently even harder than the packing numbers,
the statements are obvious for dimensions 1 and 2:



But already in dimension 3, this is very difficult, as the 12
spheres in the hexagonal close packing have a lot of wiggle
room. Newton and Gregory had a famous disagreement about
this, and the first correct proof that 12 was actually the correct
number was only proved in 1953. In four dimensions, 24
spheres can be easily fitted on a sphere, but there is even more
room than in 3D. 24 was proven to be the correct number in
2003.



The remaining dimensions only have bounds,

Dim ≥ ≤
5 40 44
6 72 78
7 126 134
8 240 240
9 306 364

10 500 554
11 582 870
12 840 1, 357
13 1, 154 2, 069
14 1, 606 3, 183
15 2, 564 4, 866
16 4, 320 7, 355
17 5, 346 11, 072
18 7, 398 16, 572
19 10, 688 24, 812
20 17, 400 36, 764
21 27, 720 54, 584
22 49, 896 82, 340
23 93, 150 124, 416
24 196, 560 196, 560
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Given the coincidences resulting in Λ24, you might be surprised
to hear that you cannot fail to make the Leech lattice if you do
the most naive thing you can if you are trying to build a dense
lattice packing. Let’s start with dimension 1 with Z ⊂ R. Then in
each dimension, take the lattice you got from the last
dimension, and stack it in the next dimension on top of itself in
a distance-minimizing way. The result is called a laminated
lattice.



Strangely, there are choices involved in higher dimensions, like
in this picture:



Let’s talk about bosonic string theory. It turns out that strings
like to have a very specific number of dimensions to wiggle in
(24, of course), and if we take the torus

T = R24/Λ24,

consider T/(Z/2), and let strings wiggle in this orbifold.
Borcherds showed in 1986 that this string theory has the
Monster M as its symmetry group. M is a finite simple group
with

808017424794512875886459904961710757005754368000000000

elements.



Why would you want to know what M looks like?

http://abstrusegoose.com/96

The prime factorization of |M| is

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71,

so the primes dividing |M| are the primes less than or equal to
31, and 41,47,59, and 71. Coincidentally, this is the same set
of primes for which a certain extension of a congruence
subgroup Γ0(p)+ has a so-called genus zero property.

http://abstrusegoose.com/96


Ogg noticed that these sets of primes are the same in this
paper:



And offered a reward



At some point after predicting the existence of M, Griess,
Conway and Norton noticed that the minimal faithful
representation of M (remember, M is a finite group) would be
196883. Of course, the minimal representation of M has
dimension 1.
The normalized J-invariant is an important modular function in
number theory, and has a series (in q = e2πiτ , where τ ∈ C)
expansion

J(τ) = q−1 + 0 + 196884q + 21493760q2.

McKay noticed that 196884 = 196883 + 1, and this led to the
Monstrous moonshine conjecture of Conway and Norton,
connecting M to modular functions. Borcherds won the Fields
medal in 1998 in part for his proof of the conjecture.
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