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1 The flag manifold

1.1 G/B

Let G = GLn(C), B,B− = upper/lower triangular matrices in G. Instead of matrix Schu-
bert varieties

B− ·Π ·B ⊆ Matn×n
(where Π is some partial permutation matrix), today we’ll think about (opposite) Schubert
varieties

BwB/B ⊆ G/B.
It might not seem like a big deal to change the perspective this way, but it should be pointed
out that G/B is much better for many purposes than Matn×n, e.g. it is projective, it knows
about all other projective homogeneous spaces of G, it can easily be generalized to other
G’s, studying its geometry is intimately connected to the representation theory of G, and so
on. The only real argument for working in Matn×n is that it is Cn2

, so we can write down
equations for stuff, and has an enormous torus acting on it, so we can Gröbner degenerate
matrix Schubert varieties.

1.2 (One) Motivation for studying G/B and its Schubert varieties

Let G→ GL(V ) be an irrep (since G is reductive, all reps are direct sums of these). Then G
acts on P(V ). So B acts on P(V ) via the G-action. Since P(V ) is projective, it is complete.
As B is solvable, by Borel’s fixed point theorem, there is a fixed point [v] ∈ P(V ). We may
pick a representative v ∈ V for [v], which is going to be a (highest) weight vector for B, i.e.
∀b ∈ B, b · v = λ(b)v, where λ : B → C× is a group homomorphism. That, and the fact that
C× is abelian, means that λ factors through the abelianization T = B/[B,B], so in fact,

λ ∈ T ∗ = HomZ(T,C×).

Now, if we have any weight µ ∈ T ∗, as B = T n [B,B], ∀b ∈ B, ∃!(t, n) ∈ T × [B,B] s.t.
b = tn. Now we can just define µ(b) = µ(t), and the 1-dimensional B-representation Cµ,
where ∀b ∈ B, z ∈ C, b · z = µ(b)z. Then the space

Lµ = G×B C−µ = (G× C−µ)/{(g, v) ∼ (gb, b−1 · v) ∀b ∈ B}

is the total space of a line bundle over G/B. I cannot stress enough how wonderful the
following theorem really is:

Theorem 1.1. (Borel-Weil) Let V be an irrep of G with highest weight λ. Then

V ∼= H0(G/B,Lw0·λ)

as representations of G.
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To motivate the study of Schubert varieties Xw ⊆ G/B, we remark that if Xw0si is a
Schubert divisor, and Li is the line bundle associated to it, then

Li = Lωi

where ωi is the i-th fundamental weight. This means that if λ is any weight, then λ =∑l
i=1〈λ, αi〉ωi, and

Lλ =
l⊗
i=1

L〈λ,αi〉
ωi

i.e. Schubert varieties are super-important.

1.3 Flags in Cn

So let’s try to find a more tangible interpretation for G/B when G = GLn. Note that an
invertible n × n matrix g is basically an ordered basis {v1 . . . , vn} (vi is the i-th column of
g) for Cn. When we have an ordered basis, we can consider the flag associated to it:

Fg = {0} ⊂ Span(v1) ⊂ Span(v1, v2) ⊂ . . . ⊂ Span(v1, . . . , vn) = Cn.

Now a question you might ask is what ordered bases give you the same flag? Since G acts
on itself transitively, this is the same as computing StabG(F) for any flag, so we can take

F = {0} ⊂ Span(e1) ⊂ Span(e1, e2) ⊂ . . . ⊂ Span(e1, . . . , en) = Cn

where e1, . . . , en are the standard basis vectors for Cn. It is not hard to see that StabG(F) =
B. Also, we can certainly pick a basis for any flag and use it as columns of an invertible
matrix so we have a bijection

Flags(Cn)↔ G/B.

2 Schubert varieties

2.1 In Flags(Cn)

Now we will look at the analogs of matrix Schubert varieties in G/B. We define (for a
permutation matrix w)

Xw = BwB/B ⊆ G/B.

Let’s try to see what this is in Flags(Cn). For any permutation w, we have a special flag,
namely

Fw = {0} ⊂ Span(ew(1)) ⊂ Span(ew(1), ew(2)) ⊂ . . . ⊂ Span(ew(1), . . . , ew(n)) = Cn.

By the same trick (upward row and rightward column operations) as with the matrix Schubert
varieties, we see that a general flag F = ({0} ⊂ V1 ⊂ . . . ⊂ Vn = Cn) lies in the B-orbit of
exactly one Fw, and the B-orbit of a Fw is the Bruhat cell Xw

o . Now how do we identify
which Bruhat cell our flag F lies in? Using the definition of Fw, we see that F ∈ Xw

o if and
only if

dim(Vi ∩ Ck) = |{w(1), w(2), . . . , w(i)} ∩ {1, 2, . . . k}|.

And just like with the matrix Schubert varieties, F ∈ Xw if and only if

dim(Vi ∩ Ck) ≤ |{w(1), w(2), . . . , w(i)} ∩ {1, 2, . . . k}|.
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2.2 Singularities

Schubert varieties are closures of affine spaces in a projective space, there is no reason why
they should be smooth, and:

Proposition 2.1. Let G = GLn(C). The Schubert variety Xw (for w 6= w0) is smooth if
and only if w avoids 3412 and 4231. i.e. 6 ∃(1 ≤ i < j < k < l ≤ n) s.t.

w(k) < w(l) < w(i) < w(j) or w(l) < w(j) < w(k) < w(i)

So they are all smooth for n ≤ 3, there are only a couple singular ones in GL4(C), but for
larger n, they are mostly singular. Their singularities have been subject to extensive study,
to the extent that there is a (very good) book titled “Singular Loci of Schubert Varieties”
by Billey and Lakshmibai.

3 The Bott-Samelson(-Demazure-Hansen) resolution

3.1 Definition

One thing that geometers like to do with singular varieties is to desingularize them. In general,
if we have a singular variety X, and a smooth variety X̃ with a birational map (roughly
speaking, an isomorphism of open sets) r : X̃ → X, then we say that X̃ → X is a resolution
of singularities of X.1 Bott-Samelson varieties provide natural resolutions of singularities to
Schubert varieties and also have other applications. They were introduced independently by
Demazure and Hansen, and Demazure called them Bott-Samelson varieties, hence the title of
the section. They are defined (for G = GLn(C)) for a word Q = (sα1 , . . . , sαn) in the simple
reflections generating W . If |Q| = k, then BSQ is a k-tuple of flags (V 0, . . . , V k) satisfying
certain incidence conditions. We define BSQ inductively as follows:

V 0 =
(
{0} ⊂ C ⊂ C2 ⊂ . . . ⊂ Cn

)
,

and if
V i =

(
{0} ⊂ V i1 ⊂ . . . ⊂ V in = Cn

)
,

then V i+1 is obtained from V i be replacing the αi-dimensional subspace V iαi
(note: 1 ≤ αi ≤

n− 1) of V i by a new one V i+1
αi

contained in V iαi+1 and containing V iαi−1 (sic). The picture
should clarify this.

3.2 The structure of BSQ

Notice that we have a forgetful map BSQ → BSQ\last that takes

π : (V 0, . . . , V k−1, V k) 7→ (V 0, . . . , V k−1).

Note that V k only differs from V k−1 by a choice of a point in(
V k−1
αk−1+1/V

k−1
αk−1−1

)
∼= CP1

So each fiber of π is a CP1, and by induction, BSQ is an iterated CP1-bundle. Therefore it
is connected, smooth, projective, and irreducible.

1The morphism should be proper, and the map should be an isomorphism away from the singular locus
of X, the map BSQ → Xw generally has a larger ramification locus than Sing(Xw).
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Remark 3.1. (Fun fact) This makes it really easy to compute the cohomology of BSQ, by
the Leray-Hirsch and binomial theorems:

dimR(H2i(BSQ,R)) =
(
k

i

)
.

3.3 Map to G/B

There is an easy map from BSQ to G/B, namely,

m :BSQ → G/B

(V 0, . . . , V k) 7→ V k.

We will see a little later why m is B-equivariant. If Q is an arbitrary word, then

m : BSQ � XDem(Q),

where Dem is the Demazure/nil Hecke product. For any word Q, Dem(Q) is the unique
maximum (in Bruhat order) of ∏

i∈S
sαi

for S ⊆ Q. It is probably of combinatorial interest that Dem exists, and makes W into a
monoid, so there is one more reason why BSQ’s are really awesome.

Also, the image of m in G/B must be something B-invariant, irreducible and closed, so
it must be some Xv, in particular, if Q is a reduced word for w ∈W , i.e.

∏k
i=1 sαi

= w and
k is minimal, then

m : BSQ � Xw,

since wB/B ∈ Im(m), and the dimensions match. In this case, m is also generically one-to-
one.

3.4 For G 6= GLn(C)

Bott-Samelson varieties exist for other groups as well, let Pi denote the minimal parabolic
associated to si, and let Q = (sα1 , . . . , sαk

). Then

BSQ = Pα1 × Pα2 × . . .×B Pαk
/Bk

where the action of Bn is defined as

(b1, . . . bk) · (p1, . . . , pk) = (p1b1, b
−1
1 p2b2, . . . , p

−1
k−1bkpk).

The map to the flag variety G/B is

m(p1, . . . , pk) = p1p2 · · · pk.

and now we see that m is obiviously B-equivariant. Essentially everything is true in the
general case that is true the GLn(C)-case, the Bott-Samelsons still desingularize Schubert
varieties, and they are still iterated CP1-bundles.
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