Bott-Samelson varieties

March 3, 2015

1 The flag manifold

$1.1 \quad G / B$

Let $G=G L_{n}(\mathbb{C}), B, B^{-}=$upper/lower triangular matrices in G. Instead of matrix Schubert varieties

$$
\overline{B^{-} \cdot \Pi \cdot B} \subseteq \operatorname{Mat}_{n \times n}
$$

(where Π is some partial permutation matrix), today we'll think about (opposite) Schubert varieties

$$
\overline{B w B / B} \subseteq G / B
$$

It might not seem like a big deal to change the perspective this way, but it should be pointed out that G / B is much better for many purposes than $\mathrm{Mat}_{n \times n}$, e.g. it is projective, it knows about all other projective homogeneous spaces of G, it can easily be generalized to other G 's, studying its geometry is intimately connected to the representation theory of G, and so on. The only real argument for working in $\mathrm{Mat}_{n \times n}$ is that it is $\mathbb{C}^{n^{2}}$, so we can write down equations for stuff, and has an enormous torus acting on it, so we can Gröbner degenerate matrix Schubert varieties.

1.2 (One) Motivation for studying G / B and its Schubert varieties

Let $G \rightarrow G L(V)$ be an irrep (since G is reductive, all reps are direct sums of these). Then G acts on $\mathbb{P}(V)$. So B acts on $\mathbb{P}(V)$ via the G-action. Since $\mathbb{P}(V)$ is projective, it is complete. As B is solvable, by Borel's fixed point theorem, there is a fixed point $[v] \in \mathbb{P}(V)$. We may pick a representative $v \in V$ for $[v]$, which is going to be a (highest) weight vector for B, i.e. $\forall b \in B, b \cdot v=\lambda(b) v$, where $\lambda: B \rightarrow \mathbb{C}^{\times}$is a group homomorphism. That, and the fact that \mathbb{C}^{\times}is abelian, means that λ factors through the abelianization $T=B /[B, B]$, so in fact,

$$
\lambda \in T^{*}=\operatorname{Hom}_{\mathbb{Z}}\left(T, \mathbb{C}^{\times}\right) .
$$

Now, if we have any weight $\mu \in T^{*}$, as $B=T \ltimes[B, B], \forall b \in B, \exists!(t, n) \in T \times[B, B]$ s.t. $b=t n$. Now we can just define $\mu(b)=\mu(t)$, and the 1-dimensional B-representation \mathbb{C}_{μ}, where $\forall b \in B, z \in \mathbb{C}, b \cdot z=\mu(b) z$. Then the space

$$
L_{\mu}=G \times_{B} \mathbb{C}_{-\mu}=\left(G \times \mathbb{C}_{-\mu}\right) /\left\{(g, v) \sim\left(g b, b^{-1} \cdot v\right) \forall b \in B\right\}
$$

is the total space of a line bundle over G / B. I cannot stress enough how wonderful the following theorem really is:
Theorem 1.1. (Borel-Weil) Let V be an irrep of G with highest weight λ. Then

$$
V \cong H^{0}\left(G / B, L_{w_{0} \cdot \lambda}\right)
$$

as representations of G.

To motivate the study of Schubert varieties $X^{w} \subseteq G / B$, we remark that if $X^{w_{0} s_{i}}$ is a Schubert divisor, and L_{i} is the line bundle associated to it, then

$$
L_{i}=L_{\omega_{i}}
$$

where ω_{i} is the i-th fundamental weight. This means that if λ is any weight, then $\lambda=$ $\sum_{i=1}^{l}\left\langle\lambda, \alpha_{i}\right\rangle \omega_{i}$, and

$$
L_{\lambda}=\bigotimes_{i=1}^{l} L_{\omega_{i}}^{\left\langle\lambda, \alpha_{i}\right\rangle}
$$

i.e. Schubert varieties are super-important.

1.3 Flags in \mathbb{C}^{n}

So let's try to find a more tangible interpretation for G / B when $G=G L_{n}$. Note that an invertible $n \times n$ matrix g is basically an ordered basis $\left\{v_{1} \ldots, v_{n}\right\}$ (v_{i} is the i-th column of g) for \mathbb{C}^{n}. When we have an ordered basis, we can consider the flag associated to it:

$$
\mathcal{F}_{g}=\{0\} \subset \operatorname{Span}\left(v_{1}\right) \subset \operatorname{Span}\left(v_{1}, v_{2}\right) \subset \ldots \subset \operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)=\mathbb{C}^{n}
$$

Now a question you might ask is what ordered bases give you the same flag? Since G acts on itself transitively, this is the same as computing $\operatorname{Stab}_{G}(\mathcal{F})$ for any flag, so we can take

$$
\mathcal{F}=\{0\} \subset \operatorname{Span}\left(e_{1}\right) \subset \operatorname{Span}\left(e_{1}, e_{2}\right) \subset \ldots \subset \operatorname{Span}\left(e_{1}, \ldots, e_{n}\right)=\mathbb{C}^{n}
$$

where e_{1}, \ldots, e_{n} are the standard basis vectors for \mathbb{C}^{n}. It is not hard to see that $\operatorname{Stab}_{G}(\mathcal{F})=$ B. Also, we can certainly pick a basis for any flag and use it as columns of an invertible matrix so we have a bijection

$$
\operatorname{Flags}\left(\mathbb{C}^{n}\right) \leftrightarrow G / B
$$

2 Schubert varieties

2.1 In Flags $\left(\mathbb{C}^{n}\right)$

Now we will look at the analogs of matrix Schubert varieties in G / B. We define (for a permutation matrix w)

$$
X^{w}=\overline{B w B / B} \subseteq G / B
$$

Let's try to see what this is in Flags $\left(\mathbb{C}^{n}\right)$. For any permutation w, we have a special flag, namely

$$
\mathcal{F}_{w}=\{0\} \subset \operatorname{Span}\left(e_{w(1)}\right) \subset \operatorname{Span}\left(e_{w(1)}, e_{w(2)}\right) \subset \ldots \subset \operatorname{Span}\left(e_{w(1)}, \ldots, e_{w(n)}\right)=\mathbb{C}^{n}
$$

By the same trick (upward row and rightward column operations) as with the matrix Schubert varieties, we see that a general flag $\mathcal{F}=\left(\{0\} \subset V_{1} \subset \ldots \subset V_{n}=\mathbb{C}^{n}\right)$ lies in the B-orbit of exactly one \mathcal{F}_{w}, and the B-orbit of a \mathcal{F}_{w} is the Bruhat cell X_{o}^{w}. Now how do we identify which Bruhat cell our flag \mathcal{F} lies in? Using the definition of \mathcal{F}_{w}, we see that $\mathcal{F} \in X_{o}^{w}$ if and only if

$$
\operatorname{dim}\left(V_{i} \cap \mathbb{C}^{k}\right)=|\{w(1), w(2), \ldots, w(i)\} \cap\{1,2, \ldots k\}|
$$

And just like with the matrix Schubert varieties, $\mathcal{F} \in X^{w}$ if and only if

$$
\operatorname{dim}\left(V_{i} \cap \mathbb{C}^{k}\right) \leq|\{w(1), w(2), \ldots, w(i)\} \cap\{1,2, \ldots k\}|
$$

2.2 Singularities

Schubert varieties are closures of affine spaces in a projective space, there is no reason why they should be smooth, and:

Proposition 2.1. Let $G=G L_{n}(\mathbb{C})$. The Schubert variety X^{w} (for $w \neq w_{0}$) is smooth if and only if w avoids 3412 and 4231. i.e. $\nexists(1 \leq i<j<k<l \leq n)$ s.t.

$$
w(k)<w(l)<w(i)<w(j) \text { or } w(l)<w(j)<w(k)<w(i)
$$

So they are all smooth for $n \leq 3$, there are only a couple singular ones in $G L_{4}(\mathbb{C})$, but for larger n, they are mostly singular. Their singularities have been subject to extensive study, to the extent that there is a (very good) book titled "Singular Loci of Schubert Varieties" by Billey and Lakshmibai.

3 The Bott-Samelson(-Demazure-Hansen) resolution

3.1 Definition

One thing that geometers like to do with singular varieties is to desingularize them. In general, if we have a singular variety X, and a smooth variety \widetilde{X} with a birational map (roughly speaking, an isomorphism of open sets) $r: \widetilde{X} \rightarrow X$, then we say that $\widetilde{X} \rightarrow X$ is a resolution of singularities of $X .^{1}$ Bott-Samelson varieties provide natural resolutions of singularities to Schubert varieties and also have other applications. They were introduced independently by Demazure and Hansen, and Demazure called them Bott-Samelson varieties, hence the title of the section. They are defined (for $G=G L_{n}(\mathbb{C})$) for a word $Q=\left(s_{\alpha_{1}}, \ldots, s_{\alpha_{n}}\right)$ in the simple reflections generating W. If $|Q|=k$, then $B S^{Q}$ is a k-tuple of flags $\left(V^{0}, \ldots, V^{k}\right)$ satisfying certain incidence conditions. We define $B S^{Q}$ inductively as follows:

$$
V^{0}=\left(\{0\} \subset \mathbb{C} \subset \mathbb{C}^{2} \subset \ldots \subset \mathbb{C}^{n}\right)
$$

and if

$$
V^{i}=\left(\{0\} \subset V_{1}^{i} \subset \ldots \subset V_{n}^{i}=\mathbb{C}^{n}\right)
$$

then V^{i+1} is obtained from V^{i} be replacing the α_{i}-dimensional subspace $V_{\alpha_{i}}^{i}$ (note: $1 \leq \alpha_{i} \leq$ $n-1$) of V^{i} by a new one $V_{\alpha_{i}}^{i+1}$ contained in $V_{\alpha_{i}+1}^{i}$ and containing $V_{\alpha_{i}-1}^{i}$ (sic). The picture should clarify this.

3.2 The structure of $B S^{Q}$

Notice that we have a forgetful map $B S^{Q} \rightarrow B S^{Q \backslash \text { last }}$ that takes

$$
\pi:\left(V^{0}, \ldots, V^{k-1}, V^{k}\right) \mapsto\left(V^{0}, \ldots, V^{k-1}\right)
$$

Note that V^{k} only differs from V^{k-1} by a choice of a point in

$$
\left(V_{\alpha_{k-1}+1}^{k-1} / V_{\alpha_{k-1}-1}^{k-1}\right) \cong \mathbb{C P}^{1}
$$

So each fiber of π is a $\mathbb{C P}^{1}$, and by induction, $B S^{Q}$ is an iterated $\mathbb{C P}^{1}$-bundle. Therefore it is connected, smooth, projective, and irreducible.

[^0]Remark 3.1. (Fun fact) This makes it really easy to compute the cohomology of $B S^{Q}$, by the Leray-Hirsch and binomial theorems:

$$
\operatorname{dim}_{\mathbb{R}}\left(H^{2 i}\left(B S^{Q}, \mathbb{R}\right)\right)=\binom{k}{i}
$$

3.3 Map to G / B

There is an easy map from $B S^{Q}$ to G / B, namely,

$$
\begin{aligned}
m: & B S^{Q} \rightarrow G / B \\
& \left(V^{0}, \ldots, V^{k}\right) \mapsto V^{k}
\end{aligned}
$$

We will see a little later why m is B-equivariant. If Q is an arbitrary word, then

$$
m: B S^{Q} \rightarrow X^{\operatorname{Dem}(Q)}
$$

where Dem is the Demazure/nil Hecke product. For any word $Q, \operatorname{Dem}(Q)$ is the unique maximum (in Bruhat order) of

$$
\prod_{i \in S} s_{\alpha_{i}}
$$

for $S \subseteq Q$. It is probably of combinatorial interest that Dem exists, and makes W into a monoid, so there is one more reason why $B S^{Q}$'s are really awesome.

Also, the image of m in G / B must be something B-invariant, irreducible and closed, so it must be some X^{v}, in particular, if Q is a reduced word for $w \in W$, i.e. $\prod_{i=1}^{k} s_{\alpha_{i}}=w$ and k is minimal, then

$$
m: B S^{Q} \rightarrow X^{w}
$$

since $w B / B \in \operatorname{Im}(m)$, and the dimensions match. In this case, m is also generically one-toone.

3.4 For $G \neq G L_{n}(\mathbb{C})$

Bott-Samelson varieties exist for other groups as well, let P_{i} denote the minimal parabolic associated to s_{i}, and let $Q=\left(s_{\alpha_{1}}, \ldots, s_{\alpha_{k}}\right)$. Then

$$
B S^{Q}=P_{\alpha_{1}} \times P_{\alpha_{2}} \times \ldots \times_{B} P_{\alpha_{k}} / B^{k}
$$

where the action of B^{n} is defined as

$$
\left(b_{1}, \ldots b_{k}\right) \cdot\left(p_{1}, \ldots, p_{k}\right)=\left(p_{1} b_{1}, b_{1}^{-1} p_{2} b_{2}, \ldots, p_{k-1}^{-1} b_{k} p_{k}\right)
$$

The map to the flag variety G / B is

$$
m\left(p_{1}, \ldots, p_{k}\right)=p_{1} p_{2} \cdots p_{k}
$$

and now we see that m is obiviously B-equivariant. Essentially everything is true in the general case that is true the $G L_{n}(\mathbb{C})$-case, the Bott-Samelsons still desingularize Schubert varieties, and they are still iterated $\mathbb{C P}^{1}$-bundles.

[^0]: ${ }^{1}$ The morphism should be proper, and the map should be an isomorphism away from the singular locus of X, the map $B S^{Q} \rightarrow X^{w}$ generally has a larger ramification locus than $\operatorname{Sing}\left(X^{w}\right)$.

