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Recursion to Complexity June 5-7

Learning Objectives

In this tutorial you will be determining the growth rates of functions given by recurrences.
A standard method for computing values of a function is to observe a pattern in low
values, determine a recurrence, and prove it by induction. Once we know a recurrence,
we can exactly compute f(n) by computing all previous values of f(k) for k£ < n, but we
often only care about an estimate of f(n), which does not require us to do all of that
computation.

These problems relate to the following course learning objectives: Describe solutions
to iterated processes by relating recurrences to induction and combinatorial identities,
and identify when an exact solution s intractable, and use estimates to describe its
approximate Size.

Matching recurrences to functions

Match each recurrence relation to the function that satisfies it.

a. f(n)=2f(n—1)—n, f(0) =2 ) =[logyn] +1
b, f(n)=2f(n—1)—n, f(0) =3 _ f(n) =2l

c. f(n)=1(n/2)+1, f(1) =1 _ fm)=n+2

d. f(n)=f(In/2)). F(1) =1 =1

e. f(n)=2f(In/2)). J(1) =1 _ fm=24n2

Asymptotic growth rates

For each function described below, give the asymptotic growth rate O(g(n)) in terms of a
constant, logarithmic, polynomial, or exponential function g(n), and explain why. You can
assume that the functions are all strictly increasing to avoid solutions like f(n) = ¢ for all n.

1. f(n+1)=3f(n) —2n+3.

2. f(n+1)=2f(l3]) +1

3. f(n+1)=2f(n) — f(n—1)

4 f(n+1)=2f(n) + fn—1).

5. f(n) =52k, where A'is a3 x 3 matrix with real cigenvalues 0 < A3 < Ay < A and &

is a randomly chosen vector in R3. (Recall: a 3 x 3 matrix with 3 real eigenvalues is
diagonalizable, and so R? has a basis of eigenvectors).

6. s(n+1)=3s(n) —3s(n—1)+ s(n—2)
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Investigating homogeneous linear recurrences

7. Show that f(n) = 2" and f(n) = 5" are both solutions to the recurrence f(n) =
7f(n—1) —10f(n — 2).

8. Show that g(n) = A2™ + B5" is also a solution for any A and B.
9. Show that if f(n) = ¢" is a solution for some ¢, then ¢ =2 or ¢ = 5.

10. Determine all solutions of the form ¢" for f(n) = —f(n — 1) + 6f(n — 2).
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Matching solutions are (c), (e), (a), (d), (b), by checking values up to f(3).

1. The function is approximately tripling in value at each step, so f(n) = O(3"). When
f(0) =1, we have f(n) = 3™ —n. Other initial values will give different functions, all
of the form A3"™ — n.

2. This function grows linearly with n, since f(n) is approximately double f(n/2), so is

O(n).

3. All functions satisfying this recurrence are linear, f(n) = An + B, so f(n) = O(n),
since it cannot be constant.

4. This slight change makes the function grow exponentially. It is specifically O((1++/2)"),
but O(3") also works and is easy to prove by strong induction.

5. By repeated applying the linear transformation, we get a vector close to an eigenvector
for A;. Hence, f(n) = O(\}).

6. This recurrence is ambiguous, even with the restriction that s(n) is strictly increasing.
s(n) can be any function of the form An? + Bn + C, with A and B not both zero, and
with positive leading coefficient. The notation is meant to recall the sequence of squares
from PS 3, where A =1, B = C = 0. Any such equation can be shown to work for some
initial values by strong induction, so we have s(n) = O(n?) if A # 0, or s(n) = O(n) if
A=0.

7. By induction, suppose f(n —1) =2""! and f(n — 2) = 2"72. Then
Tf(n—1)—10f(n —2)=7-2""1—10-2" 2 =7.2""1 —5.2""t =9.9on"1 —on
Similarly for 5.
8. Separate into two parts and factor out A and B for an inductive proof.

9. We use contradiction and inequalities. If ¢ > 5 or ¢ < 2, then 7¢ — 10 < ¢? (consider the
graph of the quadratic 22 — 7x + 10), hence 7f(n — 1) — 10f(n — 2) < f(n). Similarly,
if 2 < ¢ < 5, then 7c — 10 > 2.

10. Solutions are of the form 3" or (—2)".



