Learning Objectives

In this tutorial you will be determining the growth rates of functions given by recurrences. A standard method for computing values of a function is to observe a pattern in low values, determine a recurrence, and prove it by induction. Once we know a recurrence, we can exactly compute f(n) by computing all previous values of f(k) for $k \leq n$, but we often only care about an estimate of f(n), which does not require us to do all of that computation.

These problems relate to the following course learning objectives: Describe solutions to iterated processes by relating recurrences to induction and combinatorial identities, and identify when an exact solution is intractable, and use estimates to describe its approximate size.

Matching recurrences to functions

Match each recurrence relation to the function that satisfies it.

a.	f(n) = 2f(n-1) - n, f(0) = 2	$\underline{\qquad} f(n) = \lfloor \log_2 n \rfloor + 1$
b.	f(n) = 2f(n-1) - n, f(0) = 3	$\underline{\qquad} f(n) = 2^{\lfloor \log_2 n \rfloor}$
с.	$f(n) = f(\lfloor n/2 \rfloor) + 1, \ f(1) = 1$	$\underline{\qquad} f(n) = n+2$
d.	$f(n) = f(\lfloor n/2 \rfloor), f(1) = 1$	$f(n) = 1$
e.	$f(n) = 2f(\lfloor n/2 \rfloor), f(1) = 1$	$\underline{\qquad} f(n) = 2^n + n + 2$

Asymptotic growth rates

For each function described below, give the asymptotic growth rate O(g(n)) in terms of a constant, logarithmic, polynomial, or exponential function g(n), and explain why. You can assume that the functions are all strictly increasing to avoid solutions like f(n) = c for all n.

- 1. f(n+1) = 3f(n) 2n + 3.
- 2. $f(n+1) = 2f\left(\lfloor \frac{n}{2} \rfloor\right) + 1.$
- 3. f(n+1) = 2f(n) f(n-1).
- 4. f(n+1) = 2f(n) + f(n-1).
- 5. $f(n) = \frac{\|A^n(\vec{v})\|}{\|\vec{v}\|}$, where A is a 3×3 matrix with real eigenvalues $0 < \lambda_3 < \lambda_2 < \lambda_1$ and \vec{v} is a randomly chosen vector in \mathbb{R}^3 . (Recall: a 3×3 matrix with 3 real eigenvalues is diagonalizable, and so \mathbb{R}^3 has a basis of eigenvectors).

6. s(n+1) = 3s(n) - 3s(n-1) + s(n-2)

Investigating homogeneous linear recurrences

- 7. Show that $f(n) = 2^n$ and $f(n) = 5^n$ are both solutions to the recurrence f(n) = 7f(n-1) 10f(n-2).
- 8. Show that $g(n) = A2^n + B5^n$ is also a solution for any A and B.
- 9. Show that if $f(n) = c^n$ is a solution for some c, then c = 2 or c = 5.
- 10. Determine all solutions of the form c^n for f(n) = -f(n-1) + 6f(n-2).

Matching solutions are (c), (e), (a), (d), (b), by checking values up to f(3).

- 1. The function is approximately tripling in value at each step, so $f(n) = O(3^n)$. When f(0) = 1, we have $f(n) = 3^n n$. Other initial values will give different functions, all of the form $A3^n n$.
- 2. This function grows linearly with n, since f(n) is approximately double f(n/2), so is O(n).
- 3. All functions satisfying this recurrence are linear, f(n) = An + B, so f(n) = O(n), since it cannot be constant.
- 4. This slight change makes the function grow exponentially. It is specifically $O((1+\sqrt{2})^n)$, but $O(3^n)$ also works and is easy to prove by strong induction.
- 5. By repeated applying the linear transformation, we get a vector close to an eigenvector for λ_1 . Hence, $f(n) = O(\lambda_1^n)$.
- 6. This recurrence is ambiguous, even with the restriction that s(n) is strictly increasing. s(n) can be any function of the form $An^2 + Bn + C$, with A and B not both zero, and with positive leading coefficient. The notation is meant to recall the sequence of squares from PS 3, where A = 1, B = C = 0. Any such equation can be shown to work for some initial values by strong induction, so we have $s(n) = O(n^2)$ if $A \neq 0$, or s(n) = O(n) if A = 0.
- 7. By induction, suppose $f(n-1) = 2^{n-1}$ and $f(n-2) = 2^{n-2}$. Then

$$7f(n-1) - 10f(n-2) = 7 \cdot 2^{n-1} - 10 \cdot 2^{n-2} = 7 \cdot 2^{n-1} - 5 \cdot 2^{n-1} = 2 \cdot 2^{n-1} = 2^n.$$

Similarly for 5^n .

- 8. Separate into two parts and factor out A and B for an inductive proof.
- 9. We use contradiction and inequalities. If c > 5 or c < 2, then $7c 10 < c^2$ (consider the graph of the quadratic $x^2 7x + 10$), hence 7f(n-1) 10f(n-2) < f(n). Similarly, if 2 < c < 5, then $7c 10 > c^2$.
- 10. Solutions are of the form 3^n or $(-2)^n$.