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Learning Objectives

In this tutorial you will be determining the growth rates of functions given by recurrences.
A standard method for computing values of a function is to observe a pattern in low
values, determine a recurrence, and prove it by induction. Once we know a recurrence,
we can exactly compute f(n) by computing all previous values of f(k) for k ≤ n, but we
often only care about an estimate of f(n), which does not require us to do all of that
computation.

These problems relate to the following course learning objectives: Describe solutions
to iterated processes by relating recurrences to induction and combinatorial identities,
and identify when an exact solution is intractable, and use estimates to describe its
approximate size.

Matching recurrences to functions

Match each recurrence relation to the function that satisfies it.

a. f(n) = 2f(n− 1)− n, f(0) = 2 f(n) = blog2 nc+ 1

b. f(n) = 2f(n− 1)− n, f(0) = 3 f(n) = 2blog2 nc

c. f(n) = f (bn/2c) + 1, f(1) = 1 f(n) = n+ 2

d. f(n) = f (bn/2c), f(1) = 1 f(n) = 1

e. f(n) = 2f (bn/2c), f(1) = 1 f(n) = 2n + n+ 2

Asymptotic growth rates

For each function described below, give the asymptotic growth rate O(g(n)) in terms of a
constant, logarithmic, polynomial, or exponential function g(n), and explain why. You can
assume that the functions are all strictly increasing to avoid solutions like f(n) = c for all n.

1. f(n+ 1) = 3f(n)− 2n+ 3.

2. f(n+ 1) = 2f
(
bn
2
c
)

+ 1.

3. f(n+ 1) = 2f(n)− f(n− 1).

4. f(n+ 1) = 2f(n) + f(n− 1).

5. f(n) = ‖An(~v)‖
‖~v‖ , where A is a 3× 3 matrix with real eigenvalues 0 < λ3 < λ2 < λ1 and ~v

is a randomly chosen vector in R3. (Recall: a 3× 3 matrix with 3 real eigenvalues is
diagonalizable, and so R3 has a basis of eigenvectors).

6. s(n+ 1) = 3s(n)− 3s(n− 1) + s(n− 2)
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Investigating homogeneous linear recurrences

7. Show that f(n) = 2n and f(n) = 5n are both solutions to the recurrence f(n) =
7f(n− 1)− 10f(n− 2).

8. Show that g(n) = A2n +B5n is also a solution for any A and B.

9. Show that if f(n) = cn is a solution for some c, then c = 2 or c = 5.

10. Determine all solutions of the form cn for f(n) = −f(n− 1) + 6f(n− 2).
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Matching solutions are (c), (e), (a), (d), (b), by checking values up to f(3).

1. The function is approximately tripling in value at each step, so f(n) = O(3n). When
f(0) = 1, we have f(n) = 3n − n. Other initial values will give different functions, all
of the form A3n − n.

2. This function grows linearly with n, since f(n) is approximately double f(n/2), so is
O(n).

3. All functions satisfying this recurrence are linear, f(n) = An + B, so f(n) = O(n),
since it cannot be constant.

4. This slight change makes the function grow exponentially. It is specifically O((1+
√

2)n),
but O(3n) also works and is easy to prove by strong induction.

5. By repeated applying the linear transformation, we get a vector close to an eigenvector
for λ1. Hence, f(n) = O(λn1 ).

6. This recurrence is ambiguous, even with the restriction that s(n) is strictly increasing.
s(n) can be any function of the form An2 +Bn+ C, with A and B not both zero, and
with positive leading coefficient. The notation is meant to recall the sequence of squares
from PS 3, where A = 1, B = C = 0. Any such equation can be shown to work for some
initial values by strong induction, so we have s(n) = O(n2) if A 6= 0, or s(n) = O(n) if
A = 0.

7. By induction, suppose f(n− 1) = 2n−1 and f(n− 2) = 2n−2. Then

7f(n− 1)− 10f(n− 2) = 7 · 2n−1 − 10 · 2n−2 = 7 · 2n−1 − 5 · 2n−1 = 2 · 2n−1 = 2n.

Similarly for 5n.

8. Separate into two parts and factor out A and B for an inductive proof.

9. We use contradiction and inequalities. If c > 5 or c < 2, then 7c− 10 < c2 (consider the
graph of the quadratic x2 − 7x+ 10), hence 7f(n− 1)− 10f(n− 2) < f(n). Similarly,
if 2 < c < 5, then 7c− 10 > c2.

10. Solutions are of the form 3n or (−2)n.


