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Learning Objectives

In this tutorial you will be finding and proving patterns in the parity of binomial
coefficients. The arrangement of binomial coefficients in a triangle was known long before
Blaise Pascal wrote about it, and is variously known as Yang Hui’s triangle, the Khayyam
triangle, Tartaglia’s triangle or the Staircase of Mount Meru.

These problems relate to the following course learning objectives: Describe solutions to it-
erated processes by relating recurrences to combinatorial identities, and prove combinatorial
identities by counting a set of objects in two ways.

1 Even and Oddness

Row n of the triangle contains the binomial coefficients
(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
. Using the identities(

n
0

)
=

(
n
n

)
= 1 and

(
n
k

)
+

(
n

k+1

)
=

(
n+1
k+1

)
, we can construct the terms of each line by adding

two terms from the previous line. This triangle contains many patterns when colouring all
coefficients divisible by a given prime or 4, 8 or 9, but other composites are unknown.

1. Write the first ten rows of the binomial triangle, from n = 0 to n = 9, and replace each(
n
i

)
with 0 if it is even or 1 if it is odd. Explain how to get the next line from a previous

line of 1s and 0s.

2. Which lines have only odd numbers? Which lines have only even numbers, aside from(
n
0

)
and

(
n
n

)
?

3. For each row, write the binary expansion of n, and the binary expansion of every i
where

(
n
i

)
is even. What do you notice?

4. Show that if n is akak−1 . . . a1a0 in binary and i is bkbk−1 . . . b1b0 (possibly with leading
zeros), then

(
n
i

)
is odd if and only if bm ≤ am for every binary digit. (Hint: show

(1 + x)2 and (1 + x2) have the same parity, then expand (1 + x)n in binary).

Base 3

Instead of considering even or oddness, we can ask about the remainder of
(
n
i

)
after dividing

by 3. This replacement will give a triangle with three types of entries: 0, 1, or 2. These relate
to ternary expansions, n = ak3k + · · · a030.

5. Replace the binomial coefficients with their remainders after dividing by 3 to construct
a triangle of 0s, 1s and 2s. Explain how to get the next line from a previous line of 0s,
1s and 2s.

6. Which lines have only 0s, aside from
(
n
0

)
and

(
n
n

)
? Prove the binomial coefficients (aside

from
(
n
0

)
and

(
n
n

)
) in these lines are all divisible by 3. (Harder: prove only these lines

have this property).

7. Make a statement similar to question 4 for this triangle.
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1. The usual triangle looks like

n = 0: 1

n = 1: 1 1

n = 2: 1 2 1

n = 3: 1 3 3 1

n = 4: 1 4 6 4 1

n = 5: 1 5 10 10 5 1

n = 6: 1 6 15 20 15 6 1

n = 7: 1 7 21 35 35 21 7 1

n = 8: 1 8 28 56 70 56 28 8 1

n = 9: 1 9 36 84 126 126 84 36 9 1

And the even/odd triangle looks like

n = 0: 1

n = 1: 1 1

n = 2: 1 0 1

n = 3: 1 1 1 1

n = 4: 1 0 0 0 1

n = 5: 1 1 0 0 1 1

n = 6: 1 0 1 0 1 0 1

n = 7: 1 1 1 1 1 1 1 1

n = 8: 1 0 0 0 0 0 0 0 1

n = 9: 1 1 0 0 0 0 0 0 1 1

The next line has a 0 between two numbers on the previous line if they are equal, and
a 1 if they are different.

2. Lines where n = 2k − 1 are all odd, and lines where n = 2k are all even. It is easier to

show that
(
2k

i

)
is always even, by considering the powers of 2 dividing 2k! and i!(2k − i)!.

Then the previous row must be all 1s, by using the rule for generating rows.

3. As an example, we have 5 = 1 · 22 + 0 · 21 + 1 · 20, so 5 is 101 as a binary string. The
digits where

(
5
i

)
is even are i = 2 and i = 3, which are 010 and 011. Notice that each

have a 1 in the position where 5 has a 0.

4. Write ≡ to mean same parity. Using (1 + x)2 ≡ (1 + x2), we have (1 + x)2
k ≡ (1 + x2k),

so if the binary expansion of n is ak . . . a1a0, then

(1 + x)n ≡ (1 + x2k)ak · · · (1 + x2)a1(1 + x)a0 .

We know the coefficient of xi is
(
n
i

)
, so it is ≡ 1 on the right side if every bm = 1 in the

binary expansion of i also has am = 1, so that it appears on the right side.
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5. The base 3 triangle looks like

n = 0: 1

n = 1: 1 1

n = 2: 1 2 1

n = 3: 1 0 0 1

n = 4: 1 1 0 1 1

n = 5: 1 2 1 1 2 1

n = 6: 1 0 0 2 0 0 1

n = 7: 1 1 0 2 2 0 1 1

n = 8: 1 2 1 2 1 2 1 2 1

n = 9: 1 0 0 0 0 0 0 0 0 1

6. The lines with all 0s are powers of 3: 1, 3, 9, 27, . . .. Again, this can be shown by

considering the largest power of 3 dividing the numerator and denominator in
(
3k

i

)
. To

show only these are all 0, show that 3 does not divide
(
n
3k

)
when 3k is the largest power

of 3 dividing n.

7. We can generalize the previous argument to Lucas’s theorem:(
n

i

)
≡

(
ak
bk

)
· · ·

(
a1
b1

)(
a0
b0

)
(mod p)

for any prime divisor. The situation for composites is more complicated, because we
don’t have (1 + x)c ≡ (1 + xc) if c is not a prime power.
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