
MAT344 Lecture 8

2019/May/30

1 Announcements

2 This week

This week, we are talking about

1. Pigeonhole principle

2. Algorithms

3. Introduction to complexity theory

3 Recap

Last time we talked about

1. Algorithms

2. Big Oh notation

4 Complexity classes

When thinking about asymptotic growth of functions, there are a few broad categories that are useful for keeping
in mind. If we are considering a computational problem (whose input is given by an integer n), then if h(n) is the
function describing the number of operations necessary to solve the problem,

1. Constant functions. These are h(n) = O(1). Meaning that h(n) ≤ C for all n. These are trivial problems.

2. Logarithmic functions. These are h(n) = O(log n). These are considered “easy” problems.

3. Polynomial functions. Examples of these include n, n2,
√
n, nc for some constant c. These are h(n) = O(nc)

for some constant c. Problems in this class are said to be “in P”, suggesting that they will take “polynomial
time” to compute.

4. Exponential functions. Examples of these include 2n, nn, etc. These are the problems that are considered
“very hard”.

These are the categories we usually want to compare our other functions to.

5 Binary search

Let us consider a real-life application.

Exercise 5.1. You are trying to look up a person’s phone number in a phone book. A phone book is an alphabetized
list of people’s names, with their phone numbers next to them. The operation we are considering is “reading an
entry in the phone book”. Determine the difficulty of the problem, i.e. if the phone book contains n names, how
many do we need to read to find the person we are looking for?
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Intuitively this seems like an “easy” problem. To prove it is actually easy, we have to come up with an algorithm,
and a function f(n) counting the number of operations required by the algorithm to find the solution. Then we
want to give a good upper bound for the values of f for large n.

Here is one way: we start in the beginning and read the names in order until we find the one we are looking
for. Let f(n) be the function counting the number of names read by the algorithm. Then f(n) = O(n), as in the
worst case we have to read all n names, and even on average we have to read n

2 of them (note that both of these
are in O(n)).

This would be considered an acceptable difficulty, but we can make it much better. The phone book is sorted,
so if we open it at a random page about halfway, read a name, check if the person’s name is before or after the
name we just read in the in the alphabet then we have cut our options down by half. Let g(n) denote the number
of operations required by this algorithm. We see that we’ll need to read approximately log2(n) many names to
find the phone number we are looking for, or, in Big Oh notation, g(n) = O(log(n)). This confirms our intuition
that we would much rather look up someone’s phone number in a 100 person phone book than compute the 100th
Fibonacci number.

This algorithm is called binary search. A more abstract version of this problem asks to find the position of
an entry in a sorted array. Figure 1 illustrates how it proceeds in the case when we are trying to find the position
of the entry 7 in an array with 16 entries.

Figure 1: Binary seach

Let’s modify the phone book example a little bit. What if you have a phone number and you want to find out
who it belongs to? Since the phone book isn’t sorted by phone numbers, we can’t use binary search and the only
thing you can do is to start reading the names and check if the number matches. This would be a f(n) = O(n)
difficulty. Making this a little more abstract, this is checking if a certain entry is in an unsorted array.

6 Sorting algorigthms

The O(log(n)) difficulty of binary seach is much better than the O(n) for reading all the entries in a list. So we
always want to search sorted lists. But how difficult is it to sort a list?

Suppose we have a sequence of integers a1, . . . an and we want to make a computer sort them. How are we
going to assess the speed of a sorting algorithm? One reasonable operation we may want to count it the number of
comparisons the algorithm has to make to sort the list.

7 Selection sort

Let’s start with a simple idea: We first run through the sequence, we find the smallest element. We can achieve this
by comparing a1 to the following elements, until we find a smaller one, then we proceed comparing that element to
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the remaining elements. Once we have performed n − 1 comparisons, we will have found the smallest element in
the list. We put this in the first place and repeat this for the remaining n − 1 element list. It is not hard to see
that altogether we have to perform

n∑
i=0

(n− i)

comparisons. We recognize this formula as (
n

2

)
=

n(n− 1)

2

and this has complexity O(n2). This is not too bad (it’s a polynomial time algorithm) but it will still take a while
on longer lists (see https://www.youtube.com/watch?v=Ns4TPTC8whw for a demonstration of selection sort).

We could do much worse, for example: https://xkcd.com/1185/. The question you should have is: Can we
do better?

8 Merge sort

One of the most important algorithms you learn in a computer science class is the Merge Sort algorithm. For a
demonstration, see https://www.youtube.com/watch?v=XaqR3G_NVoo. The idea is to repeatedly subdivide a list
into smaller lists (all the way until they just have one element) and then merge them back into longer lists. See
Figure 2 for an illustration.

Since it is a more involved algorithm we include the pseudocode.

1. MergeSort(a1, . . . , an):

(a) If n = 1, then return a1.

(b) If n = 2, then return min(a1, a2),max(a1, a2).

(c) Let k = dn/2e.
(d) Let L = MergeSort(a1, . . . , ak).

(e) Let R = MergeSort(ak+1, . . . , an).

(f) Return Merge(L,R)

2. Merge(L,R):

(a) Let G be an empty list.

(b) While both L and R are not empty:

i. Let L = `1 ≤ `2 ≤ · · · , and R = r1 ≤ r2 ≤ · · · .
ii. If `1 < r1, then add `1 to the end of G and remove `1 from L. Otherwise, add r1 to the end of G

and remove r1.

(c) Append L and R to the end of G

(d) Return G

Merge sort is a really good algorithm and is used by many programming languages as the built-in sorting
routine. Its main competitor is an algorithm called QuickSort which performs slightly better on average but
the worst-case performance of it is worse than MergeSort (its complexity is O(n2). For a demonstration, see
https://www.youtube.com/watch?v=es2T6KY45cA
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Figure 2: Merge sort

9 The complexity of MergeSort

What is the complexity of the algorithm? We’re measuring the number of comparisons made in this algorithm.
Let f(n) denote the maximum number of comparisons made by the MergeSort algorithm on a list of n integers.
We now that f(1) = 0, and f(2) = 1 just by inspecting the algorithm. For larger n, the number of comparisons
depends on the number of comparisons made for smaller length inputs. We can come up with a recursive definition
for f(n):

f(n) = f(dn/2e) + f(n− dn/2e) + Complexity of Merge

≤ 2f(dn/2e) + Complexity of Merge

The complexity of the Merge operation on two lists of length at most k is going to be at most 2k. Why? Let’s
think about the easy and hard cases for Merge. The easy case is if one list (say L) is bigger than all elements of
the other list (say R). In that case, then the number of comparisons will be one comparison per item of L, which
is at most k. In the hard case, let’s say we have a sequence like this:

1, 3, 5, 7, . . .

versus
2, 4, 6, 8, . . .
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In this case, we will have to make one comparison per element of both lists, which means at most 2k comparisons.
Therefore we have

f(n) ≤ 2f(dn/2e) + 2dn/2e.

This is a nice recursive bound on f(n), but it doesn’t tell us exactly how many comparisons the algorithm takes.
But the point is, we usually don’t care about the exact complexity of an algorithm – we’d rather like to understand
the qualitative behaviour: we’d like to find out whether the complexity of an algorithm is closer to n comparisons,
n2 comparisions, or 2n comparisons?

Let’s try to come up with an estimate from the formula

f(n) ≤ 2f(dn/2e) + n

and f(1) = 0 and f(2) = 1.
We are going to show that f(n) = O(n log n).
Fix an n. Let’s ignore the ceiling function to keep things simple. We are going to use the fact that we know

that f(1) = 0.

f(n) ≤ 2f
(n

2

)
+ n

≤ 2
(

2f(
n

4
) +

n

2

)
+ n

≤ 2
(

2
(

2f(
n

8
) +

n

4

)
+

n

2

)
+ n

= 23f(
n

8
) + n + n + n

...

≤ 2kf(
n

2k
) + n + n + · · ·+ n︸ ︷︷ ︸

k times

.

How large does k need to be in order for n
2k

to be 1? Well, it needs to be at least dlog2 ke. Therefore, we have that

f(n) ≤ 2dlog2 nef(1) + dlog2 ne · n ≤ n(1 + log2 n).

And this is O(n log n), since for n ≥ 2, n log2 n ≥ n.

10 P=NP? (Chapter 4.4.3 in [KT17])

One of the most famous unsolved problems in mathematics and one of the Millenium Prize Problems is the question:
Is P = NP? The P in this question is the one we saw before, algorithms that can be solved in polynomial time
(i.e. they are O(nk) complexity for some k). The class NP is a little harder to describe, one way of interpreting it
is that these are the problems that if someone gives you a claimed solution, you can verify that it is a solution in
polynomial time, i.e. the problems that have easy to verify certificates. One example that might illustrate this is a
Sudoku puzzle. It is easy to check that a filling of the Sudoku grid with numbers is a solution, and this difficulty
only grows slowly (polynomially) as we increase the size of the grid. Solving a puzzle, on the other hand, seems
much harder than that. The difficulty of all the known algorithms for solving Sudoku puzzles grow exponentially
with increasing the size of the board.

All this is saying, however that we do not know if there is an efficient (polynomial time) algorithm for Sudoku
puzzles. Maybe we just have not found it yet. It is in general extremely difficult to prove that there isn’t an easy
algorithm for doing something. We will not discuss this problem further, but feel free to read more about it in our
textbook.
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