
MAT344 Lecture 7

2019/May/28

1 Announcements

2 This week

This week, we are talking about

1. The Pigeonhole principle

2. Algorithms

3. Introduction to complexity theory

3 Recap

Last time we talked about

1. Recursion

2. Induction

4 The Pigeonhole principle (Chapter 4.1 in [KT17])

If we have n + 1 pigeons and n holes that we have to place all the pigeons in, there will be at least one hole with
at least two pigeons in it. The mathematical way of saying this common sense observation is the following:

Proposition 4.1 (Proposition 4.1. in [KT17]). If f : X → Y is a function and |X| > |Y |, then there exists an
element y ∈ Y and distinct elements x, x′ ∈ X such that f(x) = f(x′) = y.

While this seems like an obvious statement, it has many applications.

Exercise 4.2. Show that at any party there are two people who have the same number of friends at the party
assuming that all friendships are mutual.

Solution: Let n be the number of people at the party. Each person can have 0, 1, . . . , n − 1 friends present at
the party. But if one person has no friends at the party, then there can’t be a person who has n− 1 friends at the
party, since then they are friends with everyone at the party and friendships are mutual. So there are n people
with n− 1 possible numbers of friends at the party. By the pigeonhole principle, there are at least two people with
the same number of friends present.

Exercise 4.3. Show that if 101 integers are chosen from the set {1, 2, . . . , 200} then one of the chosen integers
divides another.

1



Solution: Let the chosen integers be a1, . . . , a101. For each k, write ak = 2pkbk for bk odd. All of the 101 odd
numbers bk have to be from the 100 odd integers in {1, 3, 5, . . . 199}, so by the pigeonhole principle there is m, l
such that bm = bl. Either pm < pl and therefore am divides al or pm > pl and al divides am.

The pigeonhole principle also appears in many proofs of theorems that are far from obvious, for example:

Theorem 4.4 (Erdős-Szekeres, Theorem 4.2 in [KT17]). If m and n are non-negative integers, then any sequence of
mn+1 distinct real numbers either has an increasing subsequence of m+1 terms or it has a decreasing subsequence
of n+ 1 terms.

Proof. Let σ = (x1, x2, . . . , xmn+1) be a sequence of mn + 1 distinct real numbers. For each i = 1, 2, . . .mn + 1,
let ai be the maximum number of terms in a increasing subsequence of σ with xi as the first term. Also, let bi be
the maximum number of terms in a decreasing subsequence of σ with xi as the last term. If some ai ≥ m + 1 or
bi ≥ n + 1, we are done, so it remains to consider the case where ai ≤ m and bi ≤ n for all i. Since there are mn
different ordered pairs of the form (a, b) with 1 ≤ a ≤ m, 1 ≤ b ≤ n, by the Pigeon Hole principle that there must
be integers i1 < i2 such that (ai1 , bi1) = (ai2 , bi2). Since all the numbers are distinct, either xi1 < xi2 or xi1 > xi2 .

1. If xi1 < xi2 , we can extend any increasing subsequence starting with xi2 by putting xi1 at the start, so
ai1 > ai2 , a contradiction.

2. If xi1 > xi2 , we can extend any decreasing subsequence ending with xi1 by appending xi2 at the end, so
bi2 > bi1 , a contradiction.

Q.E.D.

5 Computing Fibonacci numbers

What if we wanted to somehow study how hard a computational problem is? Maybe we want to know how long it
would take a computer to perform a certain computation. But what should an answer to a question like this look
like? Consider computing Fibonacci numbers using the recurrence

Fn = Fn−1 + Fn−2

with the initial conditions F0 = 0, F1 = 1.
You can sit down and after maybe a minute or so, (or if you make a computer do it, in less than a second) find

that the 12th Fibonacci number is 144. How hard was that? The problem is, once you have the sentence:

“The 12th Fibonacci number is 144.”

written down (or committed to the computer’s memory), all you need to do is to look at your own writing and read
the answer. If you have the answer in your hand, any problem becomes very easy.

The challenge is estimating how long it would take to compute the n-th Fibonacci number using the recurrence.
One way of answering this question is to count (or estimate) the number of operations that you (or the computer)
have to perform to find the answer. If we treat the addition of two integers as one operation1 and count how many
operations we need to perform. Consider this simple algorithm:
def fib(n):

if n ≤ 1:
return 1

else:

return fib(n− 1)+fib(n− 2)

Let us see how many operations will result when we ask the function to compute the 5th Fibonacci number

fib(5) = fib(4) + fib(3)

= (fib(3) + fib(2)) + (fib(2) + fib(1))

= ((fib(2) + fib(1)) + fib(2)) + (fib(2) + fib(1))

= (((fib(1) + fib(0)) + fib(1)) + (fib(1) + fib(0))) + ((fib(1) + fib(0)) + fib(1))

1you probably see that this is ignores the difficulty that adding single-digit numbers is a lot easier than adding numbers with hundreds
of digits, but we’ll ignore this for now

2



and now using that fib(1) = 1 and fib(0) = 0, we conclude, using 7 operations that F5 = 5. While this seems
okay at this magnitude, it really isn’t very efficient. Since fib(n) refers to fib(n−1) and fib(n−2), we are almost
doubling the number of terms at every step! This is what we would call exponential time complexity, and this is
considered very bad. To compute fib(n) this way, an upper bound for the number of additions is 2n and it’s not
easy to come up with a smaller upper bound!

Notice that during the course of computing fib(5), we computed fib(2) three different times. This seems
really inefficient, and if we are just a little bit smarter with the code and we remember each computation as we
are performing them (like when we wrote it on a paper/the computer’s memory), we can reduce the number of
operations significantly. This technique is called dynamic programming. For example, if we are faced with the task
of computing fib(5), we could start by computing fib(2) = fib(1) + fib(0) = 1 + 0 = 1 (a single operation),
then saving it to memory. Then we could proceed to compute fib(3) = fib(2) + fib(1) = 1 + 1 = 2 (here we are
reading the value of fib(2) from memory), which would take us another operation. We see that using this method,
we would have to perform at most n additions.

6 Big Oh notation ([KT17], Chapter 4.3)

At this point it should be clear that the second way of computing the Fibonacci numbers is better, but how do we
quantify this? It would likely be unfeasible to count exactly how many operations we would have to perform, and it
also would not be completely relevant. Remember, we are trying to study the problem, not solve an any particular
case of it. We don’t care about how long the computation will exactly take, we just want to know how long it will
take approximately. We want to know that if we run the code, is it going to return an output within seconds, hours,
months, or maybe in a million years? So we really just want a good upper bound for the time.

Definition 6.1. Let f, g : N→ R be functions. We write

f = O(g)

and say f is “Big Oh” of g when there is a constant C and an integer n0 such that f(n) ≤ Cg(n) whenever n > n0.

This definition is trying to say that if f = O(g), then for large enough n, f is “asymptotically at most g”.
For example, let f and g be the functions that describe the number of additions required by the two algorithms

we used to compute the Fibonacci numbers. Note that we did not actually find how many additions they each
took, but we found good appriximations for both. Then in the Big Oh language,

f = O(2n)

g = O(n)

We have quantified the complexity of the two algorithms that let us compute Fibonacci numbers. But in fact,
f is much bigger than g for large n, and this is captured by the “little oh” notation

Definition 6.2. Let f, g : N→ R≥0 be functions. We write

f = o(g)

and say that f is “little oh” of g if limn→∞
f(n)
g(n) = 0.

In our example, we have g = o(f).

References

[KT17] Mitchel T. Keller and William T. Trotter. Applied Combinatorics. Open access, 2017. Available at
http://www.rellek.net/appcomb/. 1, 2, 3

3

http://www.rellek.net/appcomb/

	Announcements
	This week
	Recap
	The Pigeonhole principle (Chapter 4.1 in KT17)
	Computing Fibonacci numbers
	Big Oh notation (KT17, Chapter 4.3)

