
MAT344 Lecture 4

2019/May/16

1 Announcements

2 This week

This week, we are talking about

1. Binomial coefficients

2. Lattice paths and Catalan numbers

3. The binomial theorem

3 Recap

Last time we talked about

1. Combinations

2. Combinatorial proofs

4 Lattice paths (Chapter 2.5 in [KT17])

Exercise 4.1 ([Bog04], Chapter 1.3.1 Problem 47). In a part of a city, all streets run either noth-south or east-west
and there are no dead ends. Suppose we are standing on a street corner. In how many ways may we walk to a
corner that is four blocks north and six blocks east, using as few block as possible?

Solution: We have to walk ten blocks, and we choose four out of these ten where we walk north. We can do this
in
(
10
4

)
many ways.

Example 4.2 ([Bog04], Chapter 1.3.1 Problem 48). Problem 4.1 has a geometric interpretation in a coordinate
plane. A lattice path in the plane is a curve made up of line segments that either go from a point (i, j) to the
point (i + 1, j) or from a point (i, j) to the point (i, j + 1) where i and j are integers. (Thus lattice paths always
move either up or to the right.) The length of the path is the number of such line segments.

1. What is the length of a lattice path from (0, 0) to (m,n)?

2. How many such lattice paths of that length are there?

3. How many lattice paths are there from (i, j) to (m,n), assuming i, j,m, n are integers?
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Solution:

1. We have to take m steps right and n steps up, for a total of m + n steps.

2. Similarly to problem 4.1, we have to choose m of the m + n steps to be toward the right, so we have
(
m+n
m

)
choices.

3. If i > m or j > n then we can not go from (i, j) to (m,n), since we can only travel up and right. Otherwise
we have to make m− i right and n− j up steps, and there are

(
m−i+n−j

m−i
)

many ways of doing so.

Remark 4.3. There is another kind of lattice path, sometimes called a diagonal lattice path that is common
in the literature. These consist of steps from (i, j) to either (i + 1, j + 1) or (i + 1, j − 1). From the enumerative
perspective, there is not much difference between these and the ones we will consider. See [Bog04], Chapter 1.3.1
Problem 49. for a comparison.

Exercise 4.4 ([Bog04], Chapter 1.3.1 Problem 50). A school play requires a ten dollar donation per person; the
donation goes into the student activity fund. Assume that each person who comes to the play pays with a ten dollar
bill or a twenty dollar bill. The teacher who is collecting the money forgot to get change before the event. If there
are always at least as many people who have paid with a ten as a twenty as they arrive the teacher won’t have to
give anyone an IOU for change. Suppose 2n people come to the play, and exactly half of them pay with ten dollar
bills.

1. Describe a bijection between the set of sequences of tens and twenties people give the teacher and the set of
lattice paths from (0, 0) to (n, n).

2. What is the geometric interpretation of a sequence that does not require the teacher to give any IOUs?

Solution:

1. We take a right step when someone pays with a $10 bill and an up step when someone pays with a $20 bill.
This defines a lattice path. Since half of all people pay with $10s, the lattice path will end at (n, n). This is
easily seen to be a bijection.

2. With our chosen conventions, a lattice path taht corresponds to a sequence with no IOUs is one that never
goes above the diagonal y = x.

Definition 4.5. A Dyck path is a lattice path from (0, 0) to (n, n) that does not go above the diagonal y = x.

Figure 1: all Dyck paths up to n = 4

Proposition 4.6 ([KT17], Example 2.23). The number of Dyck paths from (0, 0) to (n, n) is the Catalan number

Cn =
1

n + 1

(
2n

n

)
.
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Before giving the proof, let’s take a look at Figure 1. We see that C1 = 1, C2 = 2, C3 = 5, C4 = 14, which agrees
with the formula that Proposition 4.6 predicts.

Proof of Proposition 4.6. The formula includes a factor
(
2n
n

)
which we immediately recognize as the number of all

lattice paths from (0, 0) to (n, n). We will call the ones that go above the diagonal bad paths, count them and
subtract this number from

(
2n
n

)
to get a formula for Cn. We can equivalently represent a path as a sequence of Us

and Rs (up and right steps). Altogether there must be n many Us and n many Rs in the sequence. Let s be a
bad path. Since s is bad, it crosses the diagonal after some step. Let i be the first time it happens. Notice that
i must be odd, so we let i = 2j + 1. In the first i steps of s there are exactly j Rs and exactly j + 1 Us. Now
we are going to reflect the tail of the path (starting at step i + 1) across the diagonal. Call this path s′. This has
the effect of exchanging Rs and Us. Since the tail of the path contained exactly n − j Rs and n − j − 1 Us, after
reflecting s′ has n− j Us and n− j − 1 Rs in its tail, whereas the initial segments up to i of s and s′ are identical.
So in total s′ has j + (n− j − 1) = n− 1 Rs and (j + 1) + (n− j) = n + 1 Us. So s′ is a lattice path from (0, 0) to
(n − 1, n + 1). By Problem 4.2, part 2, there are

(
2n
n−1
)

many of these paths. What did we just do? For any bad
path s, we constructed a path s′ from (0, 0) to (n− 1, n + 1).

We claim that this map from bad paths to paths from (0, 0) to (n− 1, n + 1) is a bijection. To see this, notice
that any path s′ from (0, 0) to (n − 1, n + 1) must cross the diagonal y = x. Let i be the first time this happens,
and again i = 2j + 1. Similarl to the original case, we can reflect the tail (starting at step i + 1) of the path to
obtain a bad path from (0, 0) to (n, n).

Therefore the number of bad paths is
(

2n
n−1
)
, whereas the total number of paths is

(
2n
n

)
so the number of Dyck

paths is (
2n

n

)
−
(

2n

n− 1

)
=

(
2n

n

)(
1− n

n + 1

)
=

1

n + 1

(
2n

n

)
.

Q.E.D.

The above proof is not very difficult and quite pretty, but it does not really explain why we are dividing by
n + 1 in the formula. To see a more combinatorial proof, look at Chapter 1.3.1 Problem 52 of [Bog04].

Counting Dyck paths does not immediately seem like a very useful or applicable endeavor. It turns out that
there is a dazzling number of counting problems whose answers are given naturally in terms of Catalan numbers.
In [Sta99], Stanley gives 66 counting problems that are answered by Catalan numbers (these are available online
at http://www-math.mit.edu/~rstan/ec/catalan.pdf), and he maintains an addendum of more problems that
is currently almost a hundred pages long at http://www-math.mit.edu/~rstan/ec/catadd.pdf for a total of 207
counting problems as of now. We will return to some of these interpretations later when we discuss recursion.

5 The Binomial Theorem (Chapter 2.6 in [KT17])

Theorem 5.1 ([KT17], Theorem 2.24). For every non-negative integer n,

(x + y)n =

n∑
i=0

(
n

i

)
xn−iyi.

Remark 5.2. For some reason in the book there is a requirement that x, y and x+y are non-negative real numbers.
This is unnecessary. The formula is an equality between two polynomials.

Proof of Theorem 5.1. View (x + y)n as the product
∏n

i=1(x + y). If we expand this product, every term of the
resulting sum contains exactly one term of each factor (x + y). The coefficient of xn−iyi in (x + y)n is therefore
number of ways of choosing i many ys and n− i many xs. There are

(
n
i

)
many ways of doing this.

Q.E.D.

Some results that we have already seen are easy consequences of the Binomial Theorem, for example

Corollary 5.3 ([Mor17], Corollary 3.19). For any natural number n, we have

n∑
i=0

(
n

i

)
= 2n.
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Proof. Substitute x = y = 1 into Theorem 5.1.

Q.E.D.

It can also lead us to discover new statements

Exercise 5.4. For any natural number n, we have

n∑
i=0

(−1)i
(
n

i

)
= 0.

Solution: Substitute x = 1, y = −1 into Theorem 5.1.

Exercise 5.5. Find a combinatorial interpretation for this statement.

Exercise 5.6. For n odd, find a combinatorial proof. (Hint: think of complementation)

Exercise 5.7. For n even, find a combinatorial proof.

Let us think a little more deeply about Theorem 5.1. We can understand it as an equality between two functions
in two variables, or, if we set y = 1, as an equality between two single-variable functions. Once we realize this, we
can do calculus with these functions, and it may lead us to new results about binomial coefficients.

Example 5.8. By the Binomial Theorem, we have

(1 + x)n =

n∑
i=0

(
n

i

)
xi.

Differentiating both sides yields

n(1 + x)n−1 =

n∑
i=1

i

(
n

i

)
xi−1.

Note that the i = 0 term (the constant term) has zero derivative. This is still an equality between functions, so we
can specify x to be any value. In particular, if we let x = 1, we get

n2n−1 =

n∑
i=1

(
n

i

)
.

Exercise 5.9. For any natural number, show that

n∑
i=0

i

(
n

i

)
(−1)i−1 = 0.

Exercise 5.10. Explain how figure 2 visualizes the binomial theorem.

We can also use the Binomial Theorem to evaluate complicated-looking expressions

Exercise 5.11 ([Mor17], Exercise 3.21.1). Use the Binomial Theorem to evaluate (i.e. give a formula in terms of
n)

n∑
i=1

(
n

i

)
2i.

6 Multinomial Coefficients (Chapter 2.7 in [KT17])

Binomial coefficients are answers to counting problems about choosing a certain subset of a set. Let X denote the
set of students enrolled in a class with |X| = n. In how many ways can exactly k of them pass the class? Let’s
recall how we interpreted the question in terms of strings. We were looking for k-permutations (strings with no
repeats) of X, but we did not care what order the entries appeared in the permutation. For this question, it does
not matter if you passed with 100% or 51%. So we divide the number of k-permutations of X (which is P (n, k))
by k! to get

(
n
k

)
.

However, most of the time you care about what grade you get, not just passing.

4



Figure 2: Visualization of the binomial theorem

Example 6.1. In how many ways can exactly kG many of them can get a letter grade g for g ∈ G, where
G = {F,D,C,B,A}?

Let us try to generalize from the pass/fail version. Let us imagine that we write down the students (elements
of X) in the order of the increasing total score in their class. Then we decide the cutoffs in a way that exactly kF
many of them will fail, kD many will get a D and so on. Notice that

∑
g∈G kG = n. There are n! many ways of

ordering all the students, but this is obviously an overcount. How much did we overcount by? We only care about
which grade band each student ended up in, so, for example, if we reorder all the failing students’ scores, it makes
no difference for our final answer. And similarly for all the other grade bands. So we find that the answer should
be

n!

kF !kD!kC !kB !kA!
.

Definition 6.2. Let k1, k2, . . . , kr be positive integers and n =
∑r

i=1 ki. Then the number(
n

k1, k2, k3, . . . , kr

)
=

n!

k1!k2!k3! . . . kr!

is called a multinomial coefficient

Notice that this is slightly different from our notation of binomial coefficients, for example(
n

k

)
=

(
n

k, n− k

)
,

but this should not lead to confusion.
The Binomial Theorem (Theorem 5.1) also has a straightforward generalization

Theorem 6.3 (Theorem 2.27 in [KT17]). Let x1, x2, . . . , xr be real numbers. Then for every nonnegative integer
n,

(x1 + x2 + . . . + xr)n =
∑

k1+k2+...+kr=n

(
n

k1, k2, . . . , kr

)
xk1
1 xk2

2 · · ·xkr
r .
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In case you have not seen this sort of notation before, the indexing of the summation
∑

k1+k2+...+kr=n means
that we are summing over all r-tuples (k1, k2, . . . , kr) of nonnegative integers such that k1 + k2 + . . . + kr = n.

What sort of counting problems are answered by multinomial coefficients?

Exercise 6.4 (Problem 2 (i) in [Sta97]). In how many different ways can the letters of the word MISSISSIPPI be
arranged if the four S’s cannot appear consecutively?
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