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1 Announcements

2 This week

This week, we are talking about

1. Minimal spanning trees

3 Recap

Last time we talked about

1. Prim’s algorithm

4 Directed Graphs (Ch. 12.3 in [KT17])

If we want to model flows in a network using graphs, we would like to be able to identify a “direction” of the flow.
Or, you might want to model streets in a city as a graph, but some of the streets may be one way streets. This is
the motivation for directed graphs.

Definition 4.1. A directed graph, or digraph G is a pair (V,E) where V is a set (the set of vertices of G) and
E ⊆ V × V is a set of ordered pairs (x, y) of vertices of G.

When drawing directed graphs, we will indicate the direction by drawing an arrow on the edge. We can also
assign weights to the edges of a directed graph. The weight may also represent distance (or travel time) between
vertices. If P is a (directed) path in our digraph, then the length of the path is defined to be the sum of the
weights of the edges that it contains. If r and x are vertices, then the distance from r to x is defined to be the
minimal length of a path from r to x.

5 Dijkstra’s Algorithm (Ch. 12.4 in [KT17])

In many cases, we want to find the distance between two vertices a and x, or a shortest path. Dijkstra’s algorithm
will do this for us. The idea behind the algorithm is to start with a and add the vertices (along with the shortest
paths to them) one by one.

Let’s say we have the graph on Figure 1 and we want to find the shortest path (and distance) from a to all the
other vertices. We select a as the starting vertex, and mark it as visited (see Figure 2a).

We will have to keep record of the tentative shortest distances to all the vertices in our graph. For a vertex x,
we will denote by δ(x) this tentative distance. Since we start at a, we set δ(a) = 0, and we set δ(x) = ∞ for all
other vertices.

The next step is to scan from a to see if we can improve one of our distances. So we look at all directed edges
from a (see Figure 2b) to see if we can find a shorter distance to a vertex than before.
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Figure 1: A directed graph

(a) Starting at a (b) Scanning from a

Figure 2

We update the distances

δ(a) = 0

δ(b) = 6

δ(c) = 4

δ(d) = 8

δ(e) =∞
δ(f) =∞

Then we select the vertex with the least distance not already visited (in this case, c), and mark it as visited
(see Figure 3a). For a vertex that we add to the visited vertices, we record the shortest path from a (in this case,
P (c) = (a, c).

(a) c is now visited (b) Scanning from c

Figure 3
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The next step is to scan from the newly added vertex (Figure 3b) to see if we can update one of our distances
The vertex e is now reachable, so we record the current shortest distance to it

δ(a) = 0

δ(b) = 6

δ(c) = 4

δ(d) = 8

δ(e) = 4 + 7 = 11

δ(f) =∞

The vertex with the smallest distance not already added is b, so we add it as visited (Figure 4a). We record
P (b) = (a, b).

(a) b is now visited (b) Scanning from b

Figure 4

We scan from the newly added vertex (b this time, Figure 4b)
We update the distancesn

δ(a) = 0

δ(b) = 6

δ(c) = 4

δ(d) = 8

δ(e) = 11

δ(f) = 6 + 15 = 21

The closest vertex not already visited is d, so we add it (P (d) = (a, d)), and scan from it (Figure 5).
We update the distances (note that the distance to e has decreased)

δ(a) = 0

δ(b) = 6

δ(c) = 4

δ(d) = 8

δ(e) = 10

δ(f) = 21

We add e (P (e) = (a, d, e)), scan from it

3



Figure 5: d is now visited, scanning

Figure 6: Scanning from e

and after a last update of distances,

δ(a) = 0

δ(b) = 6

δ(c) = 4

δ(d) = 8

δ(e) = 10

δ(f) = 10 + 2 = 12

we add f to the visited vertices P (f) = (a, d, e, f). We have now found the distance and a shortest path from
a to every other vertex. (Figure 7).

Figure 7: A shortest path from a to f

Theorem 5.1 (Theorem 12.8 in [KT17]). Dijkstra’s algorithm finds the distance for every vertex x in G. Moreover,
the path P (x) is a shortest path.
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Proof. Let (v1, v2, . . . , vn) be the list of vertices in the order in which they are visited by the algorithm (so, for
example, a = v1). Note that this means δ(v1) ≤ δ(v2) ≤ . . . ≤ δ(vn).

We will do induction on the minumum number of edges in a shortest path to a vertex. Let x 6= a and let P (x)
and δ(x) be the output of Dijkstra’s algorithm for x. The base case is k = 0, and this is clearly true for a, as
δ(a) = 0 and P (a) = (a) is a shortest path from a to a.

Assume for induction that any vertex whose minimum number of edges in a shortest path is at most k, Dijkstra’s
algorithm produces the correct distance and shortest path. Let x be a vertex for which the minimum number of
edges in a shortest path is k + 1. Fix a shortest path Q = (a, u1, u2, . . . uk, x). Since this is a shortest path, the
path R = (a, u1, u2, . . . uk−1, uk) must also be a shortest path. Therefore by the inductive hypothesis, δ(uk) is the
distance from a to uk and P (uk) is a shortest path from a to uk (note: P (uk) need not be (a, u1, u2, . . . , uk).

Also, the distance from a to x is δ(uk) + w(uk, x) ≥ δ(x)
Let i, j be the integers for which uk = vi and x = vj (i.e. the step at which uk and x are added as visited).

• If j < i then
δ(x) = δ(vj) ≤ δ(vi) = δ(uk) ≤ δ(uk) + w(uk, x),

and by our previous observation, this is the distance from a to x. Therefore the algorithm has found a path
that is at most δ(uk) + w(uk, x) long (therefore it must be shortest), and a shortest path P (x) (note: this
need not be the same path as Q, but it has the same length).

• If i < j then scanning from uk = vi results in

δ(x) ≤ δ(vi) + w(vi, x) = δ(uk) + w(uk, x).

which is the distance from a to x again, so the same argument applies.

Q.E.D.

6 Network flows (Ch. 13 in [KT17])

We will continue looking at weighted directed graphs and study the flows in them. The standard terminology in this
area is to refer to the weights as capacities and denote them c(e). In most of the examples we will be considering,
there will be a source vertex s and a sink, or target vertex t. All edges incident to the source are oriented away
from it and all edges incident to the sink are oriented towards it.

Definition 6.1. A flow in a network is a function f which assigns to each directed edge e = (x, y) a non-negative
value f(e) = f(x, y) ≤ c(e) such that for every vertex which is neither the source nor the sink,∑

x

f(x, y) =
∑
x

f(y, x),

i.e. the amount leaving y is equal to the amount entering y. The value or strength of a flow is denoted by |f |.

Example 6.2. The flow in Figure 8 illustrates a flow. There are two numbers on each edge, the first is the capacity,
the second one is the value of the flow through that edge.

Theorem 6.3. For any flow f in a network G, the total flow out of the source is equal to the total flow into the
sink.

Proof. Consider the sum

S =
∑

x∈V \{t}

∑
y∈V

f(x, y)−
∑
y∈V

f(y, x)

 .

We can rewrite the summation as

S =
∑

x∈V \{t}

∑
y∈V

f(x, y)−
∑

x∈V \{t}

∑
y∈V

f(y, x)
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Figure 8: A network flow

every arc e = (x, y) appears in both sums unless y = t (and there are no arcs with x = t), so it contributes 0 to the
total value. So the entire sum is equal to

∑
x∈V \{t} f(x, t).∑

y∈V
f(s, y) = S =

∑
y∈V

f(y, t).

Q.E.D.

References

[KT17] Mitchel T. Keller and William T. Trotter. Applied Combinatorics. Open access, 2017. Available at
http://www.rellek.net/appcomb/. 1, 4, 5

6

http://www.rellek.net/appcomb/

	Announcements
	This week
	Recap
	Directed Graphs (Ch. 12.3 in KT17)
	Dijkstra's Algorithm (Ch. 12.4 in KT17)
	Network flows (Ch. 13 in KT17)

