MAT344 Lecture 17

2019/ July/16

1 Announcements

2 This week

This week, we are talking about

1. Recurrence equations

3 Recap

Last time we talked about

1. Ordinary and exponential generating functions

4 Recurrence Equations (Ch. 9 in [ D

We have already seen recurrences earlier in the semester where we used them to prove that certain objects are
counted by the same formula. For example, we showed that Catalan numbers C,, count triangulations of a convex
polygon by showing that they satisfy the same recurrence relation

Crp1 =Y CiCr
k=0

and have the same initial conditions. Similarly, we argued that domino tilings of a 2 x n rectangle are counted by
Fibonacci numbers.
Last week, using generating functions, we were able to “solve” the recurrence equation
ap =301 —1

and ag = 2. What do we mean by solving a recurrence equation? We were able to establish the formula

1 3
=4 23n
in =53

A formula for a sequence is always better than a recursion. Just think about the number of operations required to
compute a, using the recursive definition versus plugging in into the formula.

5 Linear Recurrence Equations (Ch. 9.2 in | D
Consider the Fibonacci recurrence
Fo—F,1—F, 2=0.
this is a linear recurrence, because we can compute the n-th term as a linear combination of the previous terms.
Definition 5.1. A linear recurrence is a recurrence equation of the form
Con+k + C1Qntk—1 + ... + Cray = g(’l’b)

Compare this to the Catalan recurrence, which is not linear. The RHS of the Fibonacci recurrence is zero, and
we will refer to this as a homogeneous linear recurrence.



6 Advancement Operators (Ch. 9.3 in | D

The theory of linear recurrence equations is very similar to that of linear differential equations.

Example 6.1 (Example 9.4. in | ). Solve the differential equation

d
Zr_3
7o =3fm
with the initial condition f(0) = 2.
If you have seen differential equations, you know that the solution is f(x) = 2e3%.

For differential equations, we apply the operator % (or its powers) to a (differentiable) function, and look for
a solution.

For recurrence equations, we replace differentiable functions by sequences of numbers (or, functions f : Z — R),
and the operator % by the advancement operator A defined by

Af(n) = f(n+1).
For example, we could represent the Fibonacci sequence by the function
F(n) = F,,
and then the recurrence, rewritten in terms of the advancement operator is
(A* = A—=1)f(n) = A’f(n) — Af(n) — f(n) = 0.
Before we solve this equation, let’s take a look at an easier one.

Example 6.2 (Example 9.6 in | ). Suppose that the sequence {sn|n > 0} satisfies s = 3 and spy1 = 28, for
n > 1. Find an explicit formula for s,,.

Solution: After some thought, we can guess that the solution is s,, = 3 - 2", but let us rewrite it in terms of the
advancement operator. We have

As(n) = 2s(n)

As(n) —2s(n) =0
(A—=2)s(n) =0

Notice that the advancement polynomial (A — 2) has a root exactly at 2, and the solution is s, = 3 - 2".

Example 6.3 (Example 9.7 in | D). Find all solutions to the advancement operator equation

(A2 + A —6)f(n) =0.

Solution: We factor the polynomial A2 + A — 6 = (A + 3)(A — 2). If we write the equation now, we see that
(A+3)(A—-2)f(n) =0. (1)
Note that any solution to (A —2)f(n) =0 or (A+ 3)f(n) = 0 is a solution to equation (1).

For example, if f(n) = ¢2™ for some constant ¢ (as in the previous example), then f(n) is still a solution. Also,
by a similar logic, any function of the form f(n) = ¢(—3)" is also a solution. We will try to find all the solutions.
Let f(n) = 12" 4+ c2(—3)™, and apply (A + 3)(A — 2). We have

(A+3)(A=2)f(n) = (A+3) (212" + c2(=3)""" = 2(c12" + c2(—3)"™))
= (A4 3)(=5ca(—3)")
=0.
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