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1 Announcements

2 This week

This week, we are talking about

1. The generalized binomial theorem

3 Recap

Last time we talked about

1. Encoding counting problems in power series

4 The generalized binomial theorem (Chapter 8.3 in [KT17])

Recall the following corollary of the Binomial Theorem:

Corollary 4.1. If p ≥ 1 is a positive integer, then

(1 + x)p =

p∑
n=0

(
p

n

)
xn.

Note that this means that the generating function for the number of n-subsets of a p-element set is (1 + x)p.
The right-hand side (1 + x)p makes sense for p any real number, but binomial coefficients are only defined for

p, n ∈ Z≥0.

Definition 4.2. The generalized binomial coefficient, for n ≥ 0, p ∈ R is(
p

n

)
=

p(p− 1) · · · (p− n + 1)

n!
,

note that
(
p
0

)
= 1.

Note that this definition agrees with our definition of binomial coefficients for p ∈ Z≥0.

Example 4.3. (
−2

5

)
=

(−2)(−3)(−4)(−5)(−6)

5!
= −6

It turns out that with this definition, the Binomial Theorem generalizes

Theorem 4.4 (Theorem 8.9. in [KT17]). For all p ∈ R, p 6= 0,

(1 + x)p =

p∑
n=0

(
p

n

)
xn.

1



Why is Theorem 4.4 useful? If we have a generating function of the form f(x) = (1 + ax)p, then the coefficient
of xn is

(
p
n

)
ap (for p ∈ R).

Using the method of partial fractions, we can apply Theorem 4.4 to more functions.

Exercise 4.5 (Example 8.1. in [Mor17]). Suppose we have a generating function

f(x) =
1 + x

(1− 2x)(2 + x)

What is the coefficient of xn?

Solution: We want to write

f(x) =
1 + x

(1− 2x)(2 + x)
=

A

1− 2x
+

B

2 + x
.

for some A,B ∈ R. Note that this leads to

A(2 + x) + B(1− 2x)

(1− 2x)(2 + x)
=

1 + x

(1− 2x)(2 + x)
.

and therefore
A(2 + x) + B(1− 2x) = 1 + x.

Since this is an equality between two polynomials, it should hold for specific values of x. If we let x = −2, we see
that

5B = −1,

or, B = −1
5 , and if we let x = 1

2 , we see that
5

2
A =

3

2

or, A = 3
5 . Therefore we have

f(x) =
3
5

1− 2x
−

1
5

2 + x
.

We can already use Theorem 4.4 on the first term, but the (2 + x) denominator is still a problem. So we rewrite

1
5

2 + x
=

1
10

1 + x
2

.

Then we can apply Theorem 4.4 to both terms, and find that the coefficient of xn in f(x) is

3

5
2n − 1

10
(
−1

2
)n

Example 4.6 (Example 8.6 in [KT17]). Find the number of integer solutions to the equation

x1 + x2 + x3 = n

with x1 ≥ 0 even, x2 ≥ 0 and 0 ≤ x3 ≤ 2.

This problem would be very difficult without using generating functions, as we don’t have a good way to
represent this computation as stars and bars.
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Solution: The generating function for the problem is easy to write down, we just multiply the generating functions
for the terms together to get

f(x) =
1

1− x2
· 1

1− x
·
(
1 + x + x2

)
=

1 + x + x2

(1− x2)(1− x)
.

We again want to rewrite this as sums of simpler rational functions. Since the denominator has a double root, we
want to solve

1 + x + x2

(1− x2)(1− x)
=

A

1 + x
+

B

1− x
+

C

(1− x)2

for A,B,C constants. We again clear the denominators to get

1 + x + x2 = A(1− x)2 + B(1− x2) + C(1 + x)

substituting x = 1 gives
3 = 2C,

or, C = 3
2 . substituting x = −1 gives

1 = 4A,

or, A = 1
4 . Then we can compare the x2 terms on both sides to obtain

1 = A−B

and we get B = − 3
4 .

So we may write

f(x) =
1

4

1

1 + x
− 3

4

1

1− x
+

3

2

1

(1− x)2
=

1

4

∞∑
n=0

(−1)nxn − 3

4

∞∑
n=0

xn +
3

2

∞∑
n=0

nxn−1

so the coefficient of xn in f(x) is
(−1)n

4
− 3

4
+

3(n + 1)

2
.

(note that this is an integer).

5 Generating functions and recursion

Example 5.1 (Example 8.6. in [Mor17]). Consider the recursively defined sequence a0 = 2, and for every n ≥
1, an = 3an−1 − 1. Find an explicit formula for an in terms of n.

Solution: The sequence an has generating function a(x) =
∑∞

n=0 anx
n. How can we use the fact that am =

3am−1 − 1? Note that

a(x) = a0 + a1x + a2x
2 + . . . + amxm + . . .

−3xa(x) = − 3a0x − 3a1x
2 − . . . − 3am−1x

m − . . .

a(x)− 3xa(x) = a0 − x − x2 − . . . − xm − . . .

Therefore, we have the following equality

(1− 3x)a(x) = 3− (1 + x + x2 + . . .)

and since (1 + x + x2 + . . .) = 1
1−x , we have the equality between generating functions

(1− 3x)a(x) = 3− 1

1− x
,

or, equivalently,

a(x) =
3

1− 3x
− 1

(1− x)(1− 3x)
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we can use the method of partial fractions to rewrite this as

a(x) =
1
2

1− x
+

3
2

1− 3x
.

The coefficient of xn is therefore

an =
1

2
+

3

2
3n.

We can check the first few terms of this sequence, in particular,

a0 =
1

2
+

3

2
= 2

a1 =
1

2
+

3

2
3 = 5

a2 =
1

2
+

3

2
32 = 14

Which agrees with the recurrence relation an = 3an−1 − 1.

6 Exponential generating functions

We declared that the function

a(x) =

∞∑
n=0

anx
n

is the generating function for the sequence an (that probably represents the answer to a counting problem). These
sort of generating functions are based on the function

1

1− x
=

∞∑
n=0

xn.

We could have chosen another series to base the encoding of our counting problems on, for example, the Taylor
series of the exponential function

ex =

∞∑
n=0

xn

n!
.

Definition 6.1 (Definition 9.6. in [Mor17]). The exponential generating function of a sequence a0, a1, . . . is

∞∑
n=0

an
xn

n!

So, the coefficients of an exponential generating function and an ordinary generating function differ by a factor
of n!. We will also use exponential generating functions to encode answers to counting problems, and we’ll see that
they are useful when we consider objects where the order matters.

Example 6.2. The exponential generating function for the number of binary strings of length n is

e2x =

∞∑
n=0

(2x)n

n!
=

∞∑
n=0

2n
xn

n!
.

compare this with the ordinary generating function for the same sequence

1

1− 2x
=

∞∑
n=0

2nxn
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The difference between the two functions e2x and 1
1−2x is that they have different algebraic properties, and

this makes one or the other more convenient in certain situations. For example, the way exponential generating
functions multiply is more convenient to use when the order matters. Why is this? Consider how exponential

generating functions multiply. If a(x) =
∑∞

k=0 ak
xk

k! and b(x) =
∑∞

l=0 bl
xl

l! , then

a(x)b(x) =

∞∑
n=0

∑
k+l=n

ak
xk

k!
bl
xl

l!
=

∞∑
n=0

n∑
k=0

akbn−k
n!

k!(n− k)!

xn

n!

and we see the coefficient n!
k!l! = n!

k!(n−k)! appear, which corresponds to the number of binary strings of length n

with exactly k 0s.
For example, note that in the example above, we could represent a 0-string of length n (or a 1-string of length

n) by the exponential generating function ex or the ordinary generating function 1
1−x . If we want to make a binary

string of length n, we can just multiply the two exponential generating functions together

exex = e2x

and get the correct answer. If we multiply the two ordinary generating functions together

1

1− x

1

1− x
=

1

(1− x)2
=

∞∑
n=0

nxn−1

then we get the number of ways of picking a total n 0s and 1s, i.e. a {0, 1}-combination with repetition. We could
also interpret this as {0, 1}-strings when anagrams are considered the same.

Example 6.3 (Example 8.16 in [KT17]). Find the number of ternary strings in which the number of 0s is even.

Solution: The exponential generating function for the 1s and 2s in the sequence is just ex. To get an even number
of 0s, we need the function

1 +
x2

2!
+

x4

4!
+ . . . =

∞∑
n=0

22n

(2n)!
.

(Note that this is not the function e2x). How can we represent this as a function? Note that

e−x = 1− x +
x2

2!
− x3

3!
+ . . . =

∞∑
n=0

(−1)nxn

n!
.

and therefore

ex + e−x = 2 + 2
x2

2!
+ 2

x4

4!
+ . . .

so the exponential generating function for the 0s is ex+e−x

2 .
Then we multiply the exponential generating functions for the letters together to get

ex + e−x

2
exex =

e3x + ex

2
=

1

2

( ∞∑
n=0

3nxn

n!
+

∞∑
n=0

xn

n!

)
.

so the number of ternary strings with an even number of 0s is

3n + 1

2
.
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