
MAT344 Lecture 12

2019/June/13

1 Announcements

2 This week

This week, we are talking about

1. Planar graphs

2. Labeled trees

3 Recap

Last time we talked about

1. Planar graphs

4 The Euler characteristic

If we want to identify which graphs are planar, we have to look for something that involves the planar drawing.
Any drawing of a graph has vertices and edges, but a planar drawing also has

Definition 4.1. Given a planar drawing of a graph, a face of the drawing is a region of the plane bounded by
vertices and edges not containing any other vertices and edges.

What patterns do we notice between the vertices, edges and faces of a planar graph? Let’s compute some
examples.

Figure 1: A planar graph

Example 4.2.

For example, the graph on Figure 1 has 4 vertices, 6 edges, and 4 faces (one is the unbouded “outside” face).

The triangle graph K3 has 3 vertices, 3 edges and 2 faces.

The path graphs Pn have n vertices, n− 1 edges and one face.

The cycle graphs Cn have n vertices, n edges and 2 faces.
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Theorem 4.3 (Euler, Theorem 5.11 in [KT17]). For any planar drawing of a connected graph G, let v, e, f denote
the number of vertices, edges and faces in the drawing. Then

v − e + f = 2.

To prove the theorem, we need some basic results about graphs:

Theorem 4.4 (Theorem 12.27 in [Mor17]). The following are equivalent for a graph T with n vertices:

1. T is a tree.

2. T is connected and has n− 1 edges.

3. T has no cycles and has n− 1 edges.

4. T is connected, but deleting any edge leaves a disconnected graph.

Proof of Theorem 4.3. Let V (G), E(G), and F (G) denote the set of vertices, edges and faces of G. Let v =
|V (G)|, e = |E(G)|, f = |F (G)|. Since the graph is connected, if it has v vertices, it has at least v − 1 edges (by
Theorem 4.4). We will use induction on e− v, with the base case being e− v = 1. In this case, G is a tree (using
Theorem 4.4 again), and therefore contains no cycles. Therefore the number of regions in the planar drawing is 1,
and in this case, we have

v − e + f = v − (v − 1) + 1 = 2,

so the base case holds.
Now assume for induction that any connected planar graph with e− v < n satisfies v − e + f = 2.
For the inductive step, suppose that e−v = n, with n ≥ 2. Then G must have a cycle (using Theorem 4.4 again).

Remove one edge from one of the cycles in G. Call the resulting connected graph G′. Then |V (G′)| = |V (G)| = v,
|E(G′)| = |E(G)| − 1 = e − 1. We want to show that |F (G′)| = |F (G)| − 1 = f − 1. Since the edge we removed
was part of a cycle, it used to separate two regions in the drawing, and now those two regions are joined into one,
and the other regions are unchanged, therefore F (G′) = f − 1. So we have |E(G′)| − |V (G′)| = e − 1 − v < n, so
applying the inductive hypothesis for the graph G′, we see that

2 = |V (G′)| − |E(G′)|+ |F (G′)|
= v − (e− 1) + (f − 1)

= v − e + f

Q.E.D.

Corollary 4.5. Let G be a connected planar graph. Then every planar drawing of G has the same number of faces.

Proof. |V (G)| and |E(G)| are determined independently of the drawing, and |F (G)| = 2− |V (G)|+ |E(G)|.

Q.E.D.

Corollary 4.6 (Theorem 5.12. in [KT17]). If G is a connected planar graph and |V | ≥ 3, then

|E| ≤ 3|V | − 6.

If, in addition, G has no cycles of length less than 4, then

|E| ≤ 2|V | − 4

Proof. We will give a combinatorial proof, counting the number of edges we encounter as we move around the
boundary of each face.

First, note that every edges is adjacent to either one or two faces. If it is adjacent to two faces, it separates
them, and as we move around both of those faces, we will count the edge once for each face. If an edge is adjacent
to just one face, it will still be counted twice as we move around the boundary of the face (once we move toward
the “inside” of the face and once when we move “putward”). So every edge is counted exactly twice, so our count
is 2|E|.
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Secondly, we look at all the faces and count how many edges surround that face. There must be at least 3 edges
around each face, unless there is just one face (in this case G is a tree, so |E| = |V | − 1 and since |V | ≥ 3, we
are done). Therefore, we have counted at least 3|F | edges (there is some overcount here, but that’s okay, we are
looking for an inequality).

From the above, we learn that 2|E| ≥ 3|F |, or, equivalently

|F | ≤ 2|E|
3

.

Using Euler’s formula, |F | = 2− |V |+ |E|, we get

2 ≤ |V | − |E|+ 2|E|
3

,

and some algebra yields
|E| ≤ 3|V | − 6.

For the second part, we assume that G has no cycles of length less than 4. In this case, every face must be
surrounded by at least 4 edges, and the rest of the argument is unchanged.

So we get the estimate 2|E| ≥ 4|F |, or

|F | ≤ |E|
2

.

And applying Euler’s formula yields

2− |V |+ |E| ≤ |E|
2

from which we get
|E| ≤ 2|V | − 4.

Q.E.D.

Consider the case of K3,3. It has 6 vertices and 9 edges. It also has no cycles of length 3 (or any odd-length
cycles, since it’s bipartite). Any planar graph that has 6 vertices and contains no 3-cycles must have at most

2 · 6− 4 = 8

edges. So K3,3 is not planar.

5 Homeomorphic graphs and Kuratowski’s Theorem

It turns out that K5 and K3,3 are the two graphs that determine planarity. Let us say what this means. We already
know that any graph containing either a copy of K5 or K3,3 as a subgraph can not be planar. Consider the graph
on Figure 2.

Figure 2: A graph homeomorphic to K3,3

The first thing that we notice is that the graph looks very similar to K3,3, except that we subdivided an edge
between the top two vertices by adding an extra vertex z. In particular, the vertices x and y are no longer adjacent.
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Definition 5.1. If G is a graph and xy is an edge, then we can form a new graph G′ called an elementary
subdivision of G by adding a new vertex z and replacing the edge xy by edges xz and zy.

As a result, the graph no longer contains a copy of K3,3. The only possible subgraph that could be a copy of
K3,3 would be all vertices except z (for degree reasons), but as x is not adjacent to y, we can conclude that this
graph does not contain K3,3.

Should this affect planarity? As we are drawing the edges in the plane, all we care about are edge crossings.
Having the vertex z in our graph adjacent to both x and y does not change the drawing problem in any meaningful
way (note that we can not cheat by making an edge “pass through” z, since z is not adjacent to any vertex other
than x and y).

Definition 5.2. Two graphs G1 and G2 are said to be homeomorphic if they can be obtained from some graph
G by a sequence of elementary subdivisions.

Exercise 5.3. If you know some topology, prove that graphs that are homeomorphic as graphs are also homeomor-
phic as topological spaces (with the subspace topology from R2.

Our argument above can be generalized to the following proposition

Proposition 5.4. Any graph containing a subgraph homeomorphic to K5 or K3,3 is nonplanar.

Exercise 5.5. Show that the Petersen graph (from Lecture 10) is not planar by finding a subgraph homeomorphic
to K3,3.

What is much more surprising is that the converse of Proposition 5.4 is also true:

Theorem 5.6 (Kuratowski, 1930, Theorem 5.13 in [KT17]). A graph is planar if and only if it does not contain a
subgraph homeomorphic to K5 or K3,3.

In this week’s tutorials you saw two operations on graphs, edge deletion and edge contraction.

Definition 5.7 (Definition 15.19 in [Mor17]). Let G be a graph. Then H is a minor of G if we can construct H
from G by a sequence of edge deletions, edge contractions and vertex deletions.

Theorem 5.8 (Wagner, 1937, Theorem 15.20 in [Mor17]). A graph is planar if and only if it has no minor
isomorphic to K5 or K3,3.

6 Prüfer codes and Counting labeled trees

So far all the vertices of the graphs we considered were indistinguishable. In many practical problems where graphs
are used (such as connecting cities by highways, for example), the vertices are distinguishable. How do we model this
phenomenon with graphs? We will assign a label to each vertex, and we will only consider two graphs isomorphic
if the labels also match, for example, the graphs on figure 3 are isomorphic as graphs but not isomorphic as labeled
graphs.

Figure 3: Two nonisomorphic labeled graphs

We will be focusing on labeled trees, and trying to answer the question: How many trees are there with the
vertex set [n]?
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For n = 1 or n = 2, there is just one labeled tree. For n = 3, there is still only one tree (the path graph P3 on
3 vertices), but now it matters which of the 3 labels is assigned to the vertex of degree 2. So there are 3 labeled
trees on 3 vertices.

Exercise 6.1. Count all the labeled trees on 4 vertices. Hint: there are only two trees, the complete bipartite graph
K1,3 and the path graph P4

Theorem 6.2 (Cayley’s formula, Theorem 5.15 in [KT17]). The number Tn of labeled trees on n vertices is nn−2.

We will use an algorithm that systematically deconstructs the labeled tree T on n vertices, until it is the (unique)
labeled tree on 2 vertices, and produces a string with n − 2 elements from the alphabet [n]. This string will be
called the Prüfer code of the labeled tree, denoted Prüfer(T ). If v is a leaf (a vertex of degree 1) of T , we will
denote T − v the labeled tree obtained from T by removing v (and the edge adjacent to it).

We define Prüfer(T ) as follows

1. If T is the unique labeled tree on 2 vertices, return the empty string.

2. Else, let v be the leaf of T with the smallest label, and let u be its unique neighbor. Let i be the label of u.
Return (i,Prüfer(T − v)).

Let’s do an example, consider the labeled tree T on figure 4.

Figure 4: The graph T

Let v be the vertex with label 2 (it is the leaf with the smallest label). It is adjacent to 6, so

Prüfer(T ) = (6,Prüfer(T − v).

Exercise 6.3. Find the Prüfer code of T .

Solution:

• The next smallest leaf is labeled 5, also adjacent to 6, so so far our code is 66.

• The next smallest leaf is labeled 6 (note that this just became a leaf), it is adjacent to 4, so our code so far
is 664.

• Then 7 is deleted, and our code is 6643.

• Then 8 is deleted, our code is 66431.

• Then 1 is deleted, our code is 664314.

• Then 4 is deleted, our code is 6643143, and the remaining tree has 2 vertices.

So
Prüfer(T ) = 6643143.

What does this accomplish? To a labeled n-vertex tree, we assigned an [n]-string of length n − 2. There are
nn−2 many such strings, so if we can prove that this assignment is a bijection, we will have proved Theorem 6.2.
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