
MAT344 Lecture 10

2019/June/6

1 Announcements

2 This week

This week, we are talking about

1. Graphs

3 Recap

Last time we talked about

1. Graph isomorphism

4 The Handshaking Lemma

If there are many people shaking hands, the total number of hands shaken is twice the number of all handshakes.

Theorem 4.1 (Handshaking Lemma, Theorem 5.1 in [KT17]). Let degG(v) denote the degree of vertex v in a
graph G = (V,E). Then ∑

v∈V
degG(v) = 2|E|.

Proof. We will give a combinatorial proof. For the left hand at every vertex we count the number of edges incident
to that vertex. For the right hand side, notice that this way we counted each edge twice, as every edge is incident
to two vertices.

Q.E.D.

Theorem 4.1 seems obvious, but it has at least one useful corollary.

Corollary 4.2 (Corollary 5.2 in [KT17]). Every graph has an even number of vertices of odd degree.

Proof. The right hand side of the equation in Theorem 4.1 is even, so on the left hand side, we must have an even
number of odd numbers.

Q.E.D.

5 Forests and Trees

Definition 5.1. A graph that contains no cycles is called a forest. We call a graph connected when there is a
path from x to y in G for every pair x, y of vertices. A connected forest is called a tree.

Trees have some really important applications, as they are “minimal connected graphs” in some sense.

Definition 5.2. If G = (V,E) is a graph, then T = (V, F ) with F ⊆ E is a spanning tree of G if T is a tree
(note that the vertex set of both graphs is the same).

Later in the class we will study algorithms to find spanning trees.
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Figure 1: A graph and a spanning tree

6 Eulerian Graphs (Chapter 5.3 in [KT17])

In this section, by “graph”, we will mean a multigraph.

Definition 6.1. A walk on a graph is called an Euler walk if it traverses every edge exactly once. An Euler walk
is called an Euler circuit or Euler cycle if the walk finishes at the same vertex where it started.

In the previous lecture we have seen that a graph can not have an Euler walk if more than two of the edges have
odd degrees. A similar argument shows that a graph can only have an Euler circuit if all the vertices have even
degrees. It is also clear that in order to have either an Euler walk or Euler circuit, the graph needs to be connected.

Theorem 6.2 (Theorem 5.4. in [KT17]). A graph G has an Euler circuit if and only if it is connected and every
vertex has even degree.

The proof is a bit subtle, and we have to make sure we are doing a rigorous job, but the idea is simple. Since all
vertices have an even degree, if we start a walk and traverse edges in some order, we can never get “stuck”, since
whenever we enter a vertex (hence using up one of the edges incident to it) we can always “leave” (using another
edge). So the only place where we can end up without more edges to traverse is the starting vertex. Our path
may not be long enough, but the key idea here is that the if we remove the edges we traversed from the graph, the
remaining graph still satisfy the property that all degrees are even, so we can repeat the procedure.

Example 6.3. Before seeing the proof, let’s see an example of this idea in action. Consider the graph in figure 2.
At first we take an arbitrary path, starting at vertex 1, like in figure 3.

Figure 2: An Eulerian graph

Proof of Theorem 6.2. We already know that the conditions on degrees and connectedness are necessary, so we
proceed to prove the converse. Assume that G = (V,E) is a connected graph with every vertex having even degree.
We will proceed by induction on the number of edges n = |E|. As a base case, we have the graph with one vertex
and no edges, this graph has an Euler circuit (the empty walk). Assume for induction that all connected graphs on
at most n − 1 vertices with vertices having even degrees have an Euler circuit. Consider the case where |E| = n.
Start at any vertex v0 and traverse edges in any order. Since every vertex has even degree, we can always leave any
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(a) Tracing the first cycle (b) Adding the second cycle (c) Finishing with the third cycle

Figure 3: Finding an Euler circuit

vertex we entered, so at some point our walk will get us back to v0. If we traversed all edges, we have found an
Euler circuit and we are done. Otherwise, let W = (v0, v1, . . . vk = v0) be the walk G′ be the graph G with the edges
from the walk W removed. The graph G′ may be disconnected, let its connected components be G′1, G

′
2, . . . , G

′
m.

Because G is connected, at least one vertex in each of the G′is appears in W . Let wi,1 be a vertex that appears in
W and is contained in G′i. Any component G′i still only has vertices with even degrees, as for any vertex of G we
have removed an even number of edges. Therefore, by the induction hypothesis, Gi has an Euler circuit. Note that
if a graph has an Euler circuit starting at some vertex, it will have an Euler circuit starting at any vertex (we can
cyclically shift the circuit). Therefore we may assume that G′i has an Euler circuit of the form

(wi,1, wi,2, . . . , wi,ki
= wi,ki

.

Now we will patch these Euler circuits together with W . After possibly reordering the components, we may assume
that W contains the starting vertices of the G′is in the order w1,1, w2,1, w3,1, . . . , wm,1. Define a new walk as follows:

(v0, v1, . . . vi1 = w1,1, w1,2, . . . , w1,k1 = vi1 , vi1+1, . . .

. . . , vi2 = w2,1, w2,2, . . . , w2,k2 = vi2 , vi2+1, . . .

. . . , vim = wm,1, wm,2, . . . , wm,km = vim , vim+1, . . . , vk = v0.

Our walk now uses every edge in the graph exactly once.

Q.E.D.

Exercise 6.4. Under what conditions does a graph have an Euler walk (not necessarily a circuit)?

7 Hamiltonian Graphs (Chapter 5.3 in [KT17])

Definition 7.1. A Hamilton path is a path in the graph that traverses every vertex exactly once. If v0, . . . , vk
is a Hamilton path and vkv0 is also an edge in the graph, then we call this Hamilton path a Hamilton cycle. A
graph that has a Hamilton cycle is said to be Hamiltonian.

Exercise 7.2. Explain why the graph in Figure 4 has no Hamilton path.

Figure 4: A graph with no Hamilton path
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Figure 5: The Petersen graph

Figure 5 shows the Petersen graph, a graph that provides many counterexamples, and a Hamilton path in it.

Exercise 7.3. Prove that the Petersen graph does not have a Hamilton cycle. (this is not easy!)

Theorem 6.2 tells us that it is very easy to tell when a graph has an Euler circuit (and an Euler walk). For
Hamilton paths and cycles, there is no known easy way of answering the question in general. Finding a Hamilton
path on an n-vertex graph is also very difficult, the brute-force check takes O(n!) time if the basic operation is
“given a sequence of vertices, check if it is a path in the graph”, but the best known algorithm still takes O(n22n)
time.

However, in some cases we can conclude that the graph has a Hamilton cycle. For example, any complete graph
Kn has a Hamilton cycle. Notice that having more edges can never hinder the existence of a Hamilton cycle (unlike
in the case of Euler cycles). So most of the Theorems that guarantee the existence of Hamilton cycles are about
the graph having “sufficiently many edges”.

Theorem 7.4 (Dirac, 1952, Theorem 5.5. in [KT17]). If a simple graph G has n vertices with n ≥ 3 and each
vertex v has degG(v) ≥ dn2 e then G is Hamiltonian.

Proof. Suppose the Theorem fails, and let n be the smallest positive integer for which there is a graph with each
vertex having degree at least dn2 e and there is no Hamiltonian cycle in G. Since the only possible graph on 3 vertices
with degG(v) ≥ 2 is the complete graph, and it has a Hamilton cycle, we may assume n ≥ 4.

Let t be the largest integer for which G has a path P = (x1, . . . , xt) on t vertices. Since the path begins with x1
and ends with xt, if any neighbor of x1 or xt is not already in P , we could attach them to the beginning or the end,
resulting in a longer path. So we may assume that all neighbors of x1 and all neighbors of xt are all in P already.
In particular, this shows that dn2 e < t

Set up t − 1 ≤ n − 1 boxes and put the (at least dn2 e many) edges of the form x1xi+1 into box i, and put the
(similarly at least dn2 e many) edges of the form xixt into box i. We have at least n edges to put in at most n− 1
boxes, so there is an index i with 1 ≤ i < t such that both x1xi+1 and xixt are edges in G. Then we can reverse
the end of the path and form

C = (x1, x2, . . . , xi, xt, xt−1, . . . , xi+2, xi+1),

which is now a cycle of length t. Since G has no Hamilton cycle, we must have t < n, and combining it with our
other estimate for t, we get dn2 e < t < n. If y is a vertex not contained in C, there must be an xj adjacent to y, in
which case we can form a path in G of length t + 1 by starting a path at y, then tracing the cycle from xj . This
contradicts our assumption that t was maximal.
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Q.E.D.

A different proof of Theorem 7.4 leads to some other sufficient conditions for the existence of Hamilton cycles.
For the proof, see [Mor17], Theorem 13.13 or [Gui18], Theorem 5.3.2.

8 Graph coloring (Chapter 5.4 in [KT17])

Definition 8.1. If G is a graph and C is a set (the elements of C are often called colors), a proper coloring of
G is a function f : V (G)→ C such that if xy ∈ E(G), we have f(x) 6= f(y). The smallest integer t for which there
is a proper coloring of G with |C| = t is called the chromatic number χ(G) of G. In this case, we say that G is
t-colorable.

Figure 6 shows a 5-coloring of a graph

Figure 6: A 5-coloring of a graph

But is this the minimal number of colors we need?

Figure 7: A 4-coloring of the same graph

But is this the minimal number of colors? It’s not so easy to decide.
Deciding when a graph has a k-coloring is another example of a computationally difficult problem. Like many

other difficult problems, in certain special cases it’s quite easy.

Theorem 8.2. A graph is 1-colorable if it has no edges.

Example 8.3. Prove that a complete graph Kn has χ(Kn) = n.
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Theorem 8.4 (Theorem 5.7 in [KT17]). A graph is 2-colorable if and only if it does not contain an odd-length
cycle.

Proof. Clearly the condition is necessary. It suffices to consider connected graphs. Pick a vertex x and define a
map f : E(G)→ [2] by the rule

f(y) =

{
1 if the shortest path from x to y is odd

2 if the shortest path from x to y is even

We claim this is a proper coloring. If there are adjacent vertices y and z both colored i (for i = 1 or 2), then
consider shortest paths (x = y0, y1, . . . , yk−1, yk = y) from x to y and (x = z0, z1, . . . , zl = z) from x to z. Note
that if yi = zj for some i, j then i must equal j as the paths must be minimal to the vertex yi = zj . Then
(yi, yi+1, . . . yk = y, z = zl, zl−1, . . . , zi+1, zi) is an odd length cycle.

Q.E.D.

A 2-colorable graph is called a bipartite graph. This refers to the idea that we can partition the vertices
into 2 subsets A and B such that there are no edges between vertices in A, and no edges between vertices in
B. Equivalently, the induced subgraphs of G by A and B are independent, and A ∪ B = V (G). This also easily
generalizes to n-colorable graphs.

9 Cliques and Chromatic number (Chapter 5.4.2 in [KT17])

Definition 9.1. A clique in a graph G is a set K ⊆ V (G) such that the subgraph induced by K is the complete
graph K|K|. The maximum clique size or clique number of a graph G, denoted ω(G) is the largest t for which
there exists a clique K with |K| = t.

Considering example 8.3, we see that
χ(G) ≥ ω(G).

But this estimate is not very effective at computing the chromatic number:

Proposition 9.2 (Proposition 5.9 in [KT17]). For every t ≥ 3, there exists a graph Gt such that χ(Gt) = t and
ω(Gt) = 2.

Moreover, finding the maximum clique size is also a computationally difficult problem. Both computing ω(G)
and χ(G) are difficult problems but they both have easy to verify certificates. That is, given a proposed solution
(a coloring of the vertices, or a proposed set of vertices that is supposed to be a clique) is easily verified to be a
solution. In both cases, we just need to check that certain vertices are or are not adjacent (which is at most

(
n
2

)
checks in the worst case). So these problems are in NP (see [KT17] Chapter 4.4.3 for a discussion of the class
NP).

It turns out that both the maximum clique problem and the graph coloring problems are as difficult as any
problem that is in NP (in particular, they are probably more difficult than the graph isomorphism problem, but
this depends on P = NP). Problems in this complexity class are known as NP-complete.
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