
MAT344 Week 7

2019/Oct/21

1 This week

This week, we are talking about

1. Homeomorphic graphs

2. Criteria for planarity

3. Minimum weight spanning trees

2 More on the Euler characteristic

Corollary 2.1. Let G be a connected planar graph. Then every planar drawing of G has the same number of faces.

Proof. |V (G)| and |E(G)| are determined independently of the drawing, and |F (G)| = 2− |V (G)|+ |E(G)|.

Q.E.D.

Corollary 2.2 (Theorem 5.12. in [KT17]). If G is a connected planar graph and |V | ≥ 3, then

|E| ≤ 3|V | − 6.

If, in addition, G has no cycles of length less than 4, then

|E| ≤ 2|V | − 4

Proof. We will give a combinatorial proof, counting the number of edges we encounter as we move around the
boundary of each face.

First, note that every edge is adjacent to either one or two faces. If it is adjacent to two faces, it separates
them, and as we move around both of those faces, we will count the edge once for each face. If an edge is adjacent
to just one face, it will still be counted twice as we move around the boundary of the face (once we move toward
the “outside” of the face and once when we move toward the “inside”). So every edge is counted exactly twice, so
our count is 2|E|.

Secondly, we look at all the faces and count how many edges surround that face. There must be at least 3 edges
around each face, unless there is just one face (in this case G is a tree, so |E| = |V | − 1 and since |V | ≥ 3, we
are done). Therefore, we have counted at least 3|F | edges (there is some overcount here, but that’s okay, we are
looking for an inequality).

From the above, we learn that 2|E| ≥ 3|F |, or, equivalently

|F | ≤ 2|E|
3

.

Using Euler’s formula, |F | = 2− |V |+ |E|, we get

2 ≤ |V | − |E|+ 2|E|
3

,

1

and some algebra yields
|E| ≤ 3|V | − 6.

For the second part, we assume that G has no cycles of length less than 4. In this case, every face must be
surrounded by at least 4 edges, and the rest of the argument is unchanged.

So we get the estimate 2|E| ≥ 4|F |, or

|F | ≤ |E|
2

.

And applying Euler’s formula yields

2− |V |+ |E| ≤ |E|
2

from which we get
|E| ≤ 2|V | − 4.

Q.E.D.

Corollary 2.3. K3,3 is not planar.

Proof. Consider the case of K3,3. It has 6 vertices and 9 edges. It also has no cycles of length 3 (or any odd-length
cycles, since it’s bipartite). Any planar graph that has 6 vertices and contains no 3-cycles can have at most

2 · 6− 4 = 8

edges. So K3,3 is not planar.

Q.E.D.

3 Homeomorphic graphs and Kuratowski’s Theorem

It turns out that K5 and K3,3 are the two graphs that determine planarity. Let us say what this means. We already
know that any graph containing either a copy of K5 or K3,3 as a subgraph can not be planar. Consider the graph
on Figure 1.

Figure 1: A graph homeomorphic to K3,3

The first thing that we notice is that the graph looks very similar to K3,3, except that we subdivided an edge
between the top two vertices by adding an extra vertex z. In particular, the vertices x and y are no longer adjacent.

Definition 3.1. If G is a graph and xy is an edge, then we can form a new graph G′ called an elementary
subdivision of G by adding a new vertex z and replacing the edge xy by edges xz and zy.

As a result, the graph no longer contains a copy of K3,3. The only possible subgraph that could be a copy of
K3,3 would be all vertices except z (for degree reasons), but as x is not adjacent to y, we can conclude that this
graph does not contain K3,3.

Should this affect planarity? As we are drawing the edges in the plane, all we care about are edge crossings.
Having the vertex z in our graph adjacent to both x and y does not change the drawing problem in any meaningful
way (note that we can not cheat by making an edge “pass through” z, since z is not adjacent to any vertex other
than x and y).

2

Definition 3.2. Two graphs G1 and G2 are said to be homeomorphic if they can be obtained from some graph
G by a sequence of elementary subdivisions.

Exercise 3.3. If you know some topology, prove that graphs that are homeomorphic as graphs are also homeomor-
phic as topological spaces (with the subspace topology from R2).

Our argument above can be generalized to the following proposition

Proposition 3.4. Any graph containing a subgraph homeomorphic to K5 or K3,3 is nonplanar.

Exercise 3.5. Show that the Petersen graph (see Figure 2) is not planar by finding a subgraph homeomorphic to
K3,3.

Figure 2: The Petersen graph

What is much more surprising is that the converse of Proposition 3.4 is also true:

Theorem 3.6 (Kuratowski, 1930, Theorem 5.13 in [KT17]). A graph is planar if and only if it does not contain a
subgraph homeomorphic to K5 or K3,3.

In this week’s tutorials you’ll see two operations on graphs, edge deletion and edge contraction. For a graph
G with an edge xy, we can construct two new graphs:

• G− {xy} by deleting the edge, leaving the vertices alone;

• G/{xy} by contracting the edge, combining x and y into one vertex, and removing any multiple edges or
loops.

For example, deleting any edge in the cycle graph C4 gives P4, and contracting any edge gives C3.

Definition 3.7 (Definition 15.19 in [Mor17]). Let G be a graph. Then H is a minor of G if we can construct H
from G by a sequence of edge deletions, edge contractions and vertex deletions.

Theorem 3.8 (Wagner, 1937, Theorem 15.20 in [Mor17]). A graph is planar if and only if it has no minor
isomorphic to K5 or K3,3.

Exercise 3.9. Find a minor in the graph on Figure 1 isomorphic to K3,3.

Exercise 3.10. Find a minor of the Petersen graph (see Figure 2) isomorphic to K5.

3

4 Minimum weight spanning trees (Ch.12.1 in [KT17])

We have looked at graphs as representing many real-world scenarios before. However, in many cases, a graph does
not contain all the necessary information that would model the problem accurately. For example, if we have a
graph that represnts nodes in a future network, and we want to establish connections between these nodes, it is
likely that the cost of establishing connections between different nodes are different.

For example, consider the graph in 3. The nodes may represent locations of computers, and the labels (weights)
on the edges represent the cost of laying the cables necessary for the connection between two given locations.
We would like all computers to be able to communicate with each other, and we want to minimize the cost of
establishing the connection.

Figure 3: A proposed network

Definition 4.1. Let G = (VG, EG) be a graph, and let w : EG → R≥0 be a function. For any edge e ∈ EG, the
quantity w(e) is called the weight of e. If H = (VH , EH) ⊆ G is a subgraph of G, then w(H) =

∑
e∈EH

w(e).

In mathematical terms, we are looking for a spanning tree in this graph that has a minimal sum of weights. We
know that a mimimal spanning tree is out there, but enumerating over all cases is not really an option, so we need
a more clever algorithm.

This question is one that can be solved by a greedy algorithm. A greedy algorithm is one that proceeds with a
step that seems most optimal immediately.

5 Prim’s algorithm (Ch. 5.6 in [Gui18])

Prim’s algorithm was developed in 1930 by Vojtěch Jarńık, then it was rediscovered by Robert C. Prim in 1957.
Given a weighted connected graph G, we construct a minimum weight spanning tree T as follows.
Choose any vertex v0 in G and include it in T . If vertices S = {v0, v1, . . . , vk} have been chosen, choose an

edge with one endpoint in S and one endpoint not in S and with smallest weight among all such edges. Let vk+1

be the endpoint of this edge not in S, and add it and the associated edge to T . Continue until all vertices of G are
in T .

Theorem 5.1 (Theorem 5.6.2 in [Gui18]). Prim’s algorithm produces a minimum weight spanning tree

Proof. Suppose G is connected on n vertices. Let T be the spanning tree produced by the algorithm, and Tmin a
minimum cost spanning tree. We prove that w(T) = w(Tmin).

Let e1, e2, . . . , en−1 be the edges of T in the order in which they were added to T ; we label the vertices in
a way that one endpoint of ei is vi, the other is in {v0, . . . , vi−1}. We construct a sequence of trees Tmin =
T0, T1, . . . , Tn−1 = T such that for each i, w(Ti) = w(Ti+1).

4

Suppose we have constructed tree Ti. If ei+1 is in Ti, let Ti+1 = Ti. Otherwise, add edge ei+1 to Ti. This
creates a cycle, one of whose edges, call it fi+1, is not in e1, e2, . . . , ei and has exactly one endpoint in {v0, . . . , vi}.
Remove fi+1 to create Ti+1. Since the algorithm added ei+1, w(ei+1) ≤ w(fi+1). If w(ei+1) < w(fi+1), then
w(Ti+1) < w(Ti) = w(Tm), a contradiction, so w(ei+1) = w(fi+1) and w(Ti+1) = w(Ti).

Therefore w(T) = w(Tn−1) = w(T0) = w(Tmin).

Q.E.D.

Remark 5.2. There is another commonly used algorithm, known as Kruskal’s algorithm. See [KT17], Ch. 12.2.1
for details.

References

[Gui18] David Guichard. Combinatorics and Graph Theory. Open access, 2018. Available at https://www.

whitman.edu/mathematics/cgt_online/book/. 4

[KT17] Mitchel T. Keller and William T. Trotter. Applied Combinatorics. Open access, 2017. Available at
http://www.rellek.net/appcomb/. 1, 3, 4, 5

[Mor17] Joy Morris. Combinatorics. Open access, 2017. Available at http://www.cs.uleth.ca/~morris/

Combinatorics/Combinatorics.html. 3

5

https://www.whitman.edu/mathematics/cgt_online/book/
https://www.whitman.edu/mathematics/cgt_online/book/
http://www.rellek.net/appcomb/
http://www.cs.uleth.ca/~morris/Combinatorics/Combinatorics.html
http://www.cs.uleth.ca/~morris/Combinatorics/Combinatorics.html

	This week
	More on the Euler characteristic
	Homeomorphic graphs and Kuratowski's Theorem
	Minimum weight spanning trees (Ch.12.1 in KT17)
	Prim's algorithm (Ch. 5.6 in Gui)

