
MAT344 Week 5

2019/Oct/7

1 This week

This week, we are talking about

1. Hamilton cycles

2. Graph coloring

3. Planar graphs

2 Recap

Last week we talked about

1. Basics of Graphs

2. Eulerian graphs

3 Hamiltonian Graphs (Chapter 5.3 in [KT17])

Definition 3.1. A Hamilton path is a path in the graph that traverses every vertex exactly once. If v0, . . . , vk
is a Hamilton path and vkv0 is also an edge in the graph, then we call this Hamilton path a Hamilton cycle. A
graph that has a Hamilton cycle is said to be Hamiltonian.

Exercise 3.2. Explain why the graph in Figure 1 has no Hamilton path.

Figure 1: A graph with no Hamilton path

Figure 2 shows the Petersen graph, a graph that provides many counterexamples, and a Hamilton path in it.

Exercise 3.3. Prove that the Petersen graph does not have a Hamilton cycle. (this is not easy!)

It is very easy to tell when a graph has an Euler circuit (and an Euler walk), one just has to count degrees of
vertices. For Hamilton paths and cycles, there is no known easy way of answering the question in general.
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However, in some cases we can conclude that the graph has a Hamilton cycle. For example, any complete graph
Kn has a Hamilton cycle. Notice that having more edges can never hinder the existence of a Hamilton cycle (unlike
in the case of Euler cycles). So most of the Theorems that guarantee the existence of Hamilton cycles are about
the graph having “sufficiently many edges”.

1In the language of complexity theory, finding a Hamilton path on an n-vertex graph is also very difficult, the brute-force check
takes O(n!) time if the basic operation is “given a sequence of vertices, check if it is a path in the graph”, but the best known algorithm
still takes O(n22n) time.
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Figure 2: The Petersen graph

Theorem 3.4 (Dirac, 1952, Theorem 5.5. in [KT17]). If a simple graph G has n vertices with n ≥ 3 and each
vertex v has degG(v) ≥ dn2 e then G is Hamiltonian.

Proof. The proof is tricky, we will proceed in the following steps:

1. We will give a lower bound for the length of the longest path,

2. We will show that we can modify any longest path to a cycle of the same length,

3. Finally we will argue that we can make this cycle into a longer path.

Suppose the Theorem fails, and let n be the smallest positive integer for which there is a graph with each vertex
having degree at least dn2 e and there is no Hamiltonian cycle in G. Since the only possible graph on 3 vertices with
degG(v) ≥ 2 is the complete graph, and it has a Hamilton cycle, we may assume n ≥ 4.

1. Let t be the largest integer for which G has a path P = (x1, . . . , xt) on t vertices. Since the path begins with
x1 and ends with xt, if any neighbor of x1 is not already in P , we could attach it to the beginning, resulting
in a longer path. So we may assume that all neighbors of x1 are all in P already. In particular, this shows
that dn2 e < t. We can also repeat this argument with xt to argue that all of its neighbors must be in P also.

2. Set up t− 1 ≤ n− 1 boxes and put the (at least dn2 e many) edges of the form x1xi+1 into box i, and put the
(similarly at least dn2 e many) edges of the form xixt into box i. We have at least n edges to put in at most
n − 1 boxes, so there is an index i with 1 ≤ i < t such that both x1xi+1 and xixt are edges in G. Then we
can reverse the end of the path and form

C = (x1, x2, . . . , xi, xt, xt−1, . . . , xi+2, xi+1),

which is now a cycle of length t.

3. Since G has no Hamilton cycle, we must have t < n, and combining it with our other estimate for t, we get
dn2 e < t < n. If y is a vertex not contained in C, there must be an xj adjacent to y, in which case we can
form a path in G of length t+ 1 by starting a path at y, then tracing the cycle from xj . This contradicts our
assumption that t was maximal.

Q.E.D.

A different proof of Theorem 3.4 leads to some other sufficient conditions for the existence of Hamilton cycles.
For the proof, see [Mor17], Theorem 13.13 or [Gui18], Theorem 5.3.2.
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4 Graph coloring (Chapter 5.4 in [KT17])

Definition 4.1. If G is a graph and C is a set (the elements of C are often called colors), a proper coloring of
G is a function f : V (G)→ C such that if xy ∈ E(G), we have f(x) 6= f(y). The smallest integer t for which there
is a proper coloring of G with |C| = t is called the chromatic number χ(G) of G. In this case, we say that G is
t-colorable.

Figure 3 shows a 5-coloring of a graph

Figure 3: A 5-coloring of a graph

But is this the minimal number of colors we need?

Figure 4: A 4-coloring of the same graph

But is this the minimal number of colors? It’s not so easy to decide.
Deciding when a graph has a k-coloring is another example of a computationally difficult problem. Like many

other difficult problems, in certain special cases it’s quite easy.

Theorem 4.2. A graph is 1-colorable if it has no edges.

Example 4.3. Prove that a complete graph Kn has χ(Kn) = n.

Theorem 4.4 (Theorem 5.7 in [KT17]). A graph is 2-colorable if and only if it does not contain an odd-length
cycle.

Proof. Clearly the condition is necessary. It suffices to consider connected graphs. Pick a vertex x and define a
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map f : V (G)→ [2] by the rule

f(y) =

{
1 if the shortest path from x to y is odd

2 if the shortest path from x to y is even

We claim this is a proper coloring. If there are adjacent vertices y and z both colored i (for i = 1 or 2), then
consider shortest paths (x = y0, y1, . . . , yk−1, yk = y) from x to y and (x = z0, z1, . . . , zl = z) from x to z. Note
that if yi = zj for some i, j then i must equal j as the paths must be minimal to the vertex yi = zj . Then
(yi, yi+1, . . . yk = y, z = zl, zl−1, . . . , zi+1, zi) is an odd length cycle.

Q.E.D.

A 2-colorable graph is called a bipartite graph. This refers to the idea that we can partition the vertices
into 2 subsets A and B such that there are no edges between vertices in A, and no edges between vertices in
B. Equivalently, the induced subgraphs of G by A and B are independent, and A ∪ B = V (G). This also easily
generalizes to n-colorable graphs.

5 Cliques and Chromatic number (Chapter 5.4.2 in [KT17])

Definition 5.1. A clique in a graph G is a set K ⊆ V (G) such that the subgraph induced by K is the complete
graph K|K|. The maximum clique size or clique number of a graph G, denoted ω(G) is the largest t for which
there exists a clique K with |K| = t.

Considering example 4.3, we see that
χ(G) ≥ ω(G).

But this estimate is not very effective at computing the chromatic number:

Proposition 5.2 (Proposition 5.9 in [KT17]). For every t ≥ 3, there exists a graph Gt such that χ(Gt) = t and
ω(Gt) = 2.

6 Planar graphs (Chapter 5.5 in [KT17])

Given a map of certain countries, how many colors do we need to color the map if no two adjacent countries can
have the same color? If you try with a couple of maps, you’ll notice that four colors seem to be enough. It is also
easy to draw a map where 4 colors are necessary, for example, Figure 9

Figure 5: A map that requires four colors

We can easily translate this question into a graph coloring problem by constructing a graph where the vertices
represent the countries and there is an edge between two vertices if the two countries share a border, see Figure 6.

How can four colors be enough? Last week we saw that there are graphs with arbitrarily large chromatic number.
There must be something special about graphs that we get this way from maps of countries.

Definition 6.1. A graph if planar if it can be drawn in the plane (R2) without edges crossing.
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Figure 6: The graph representing the map in Figure 9

Theorem 6.2 (Four color Theorem, Theorem 5.14 in [KT17]). Every planar graph has chromatic number at most
four.

The proof of Theorem 6.2 was a gigantic effort, only finished in 1976, the published paper was pretty much
unreadable and it relied on a computer checking many cases, and it contained several flaws (that were later fixed).
For more details on this famous Theorem, see [Mor17], section 15C.

Definition 6.1 should give you some discomfort. We defined graphs abstractly, and noticed that it is not so easy
to tell when two drawings represent the same graph. Especially if a graph is given to us as a drawing, it may be
difficult to say if it is planar or not. It may be possible that this particular drawing has intersecting edges, but if
we position the vertices differently we may be able to avoid this.

It also makes it very difficult to prove that a graph isn’t planar, so we would like to have alternative character-
izations of planar graphs.

We already know that certain graphs can’t be planar, as Theorem 6.2 implies that if G is planar, then χ(G) ≤ 4.
So any graph with a chromatic number at least 5 can not be planar. This leads to the following theorem.

Theorem 6.3. Any graph that contains a copy of K5 can not be planar.

Could this be the characterization? Consider the complete bipartite graph K3,3 on 3 + 3 vertices, shown on
Figure 7.

Figure 7: K3,3

This graph clearly has χ(K3,3) = 2, but this way of drawing it has a lot of intersections. If we draw the graph
slightly differently, for example, as in Figure 8, it does not look that far from being planar.

Figure 8: K3,3
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Exercise 6.4. Let {v1, v2, v3} and {u1, u2, u3} be the vertices of the complete bipartite graph K3,3. Consider the
4-cycle u1, v1, u2, v2. This 4-cycle divides the plane into two regions. The remaining two vertices u3 and v3 must
both lie either inside or outside the 4-cycle, because they are adjacent. In both cases, find a contradiction, thereby
showing that K3,3 is not planar.

7 The Euler characteristic

If we want to identify which graphs are planar, we have to look for something that involves the planar drawing.
Any drawing of a graph has vertices and edges, but a planar drawing also has

Definition 7.1. Given a planar drawing of a graph, a face of the drawing is a region of the plane bounded by
vertices and edges not containing any other vertices and edges.

What patterns do we notice between the vertices, edges and faces of a planar graph? Let’s compute some
examples.

Figure 9: A planar graph

Example 7.2.

For example, the graph on Figure 9 has 4 vertices, 6 edges, and 4 faces (one is the unbouded “outside” face).

The triangle graph K3 has 3 vertices, 3 edges and 2 faces.

The path graphs Pn have n vertices, n− 1 edges and one face.

The cycle graphs Cn have n vertices, n edges and 2 faces.

Theorem 7.3 (Euler, Theorem 5.11 in [KT17]). For any planar drawing of a connected graph G, let v, e, f denote
the number of vertices, edges and faces in the drawing. Then

v − e+ f = 2.

To prove the theorem, we need some basic results about graphs:

Theorem 7.4 (Theorem 12.27 in [Mor17]). The following are equivalent for a graph T with n vertices:

1. T is a tree.

2. T is connected and has n− 1 edges.

3. T has no cycles and has n− 1 edges.

4. T is connected, but deleting any edge leaves a disconnected graph.

Proof of Theorem 7.3. Let V (G), E(G), and F (G) denote the set of vertices, edges and faces of G. Let v =
|V (G)|, e = |E(G)|, f = |F (G)|. Since the graph is connected, if it has v vertices, it has at least v − 1 edges (by
Theorem 7.4). We will use induction on e− v, with the base case being e− v = −1. In this case, G is a tree (using
Theorem 7.4 again), and therefore contains no cycles. Therefore the number of regions in the planar drawing is 1,
and in this case, we have

v − e+ f = v − (v − 1) + 1 = 2,

so the base case holds.
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Now assume for induction that any connected planar graph with e− v < n satisfies v − e+ f = 2.
For the inductive step, suppose that e − v = n, with n > −1. Then G must have a cycle (using Theorem 7.4

again). Remove one edge from one of the cycles in G. Call the resulting connected graph G′. Then |V (G′)| =
|V (G)| = v, |E(G′)| = |E(G)| − 1 = e− 1. We want to show that |F (G′)| = |F (G)| − 1 = f − 1. Since the edge we
removed was part of a cycle, it used to separate two regions in the drawing, and now those two regions are joined
into one, and the other regions are unchanged, therefore F (G′) = f−1. So we have |E(G′)|−|V (G′)| = e−1−v < n,
so applying the inductive hypothesis for the graph G′, we see that

2 = |V (G′)| − |E(G′)|+ |F (G′)|
= v − (e− 1) + (f − 1)

= v − e+ f

Q.E.D.
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