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1 This week

This week, we are talking about

1. Recursion

2. Induction

2 Recap

Last week we talked about

1. Binomial Coefficients

2. Stars and bars

3. Lattice paths

4. The binomial theorem

3 Recursion (Chapter 3.4 in [KT17])

Let’s find a formula for the number of ways of triangulating a convex polygon. We start by computing some small
examples. We see that In addition to the 1 way of triangulating the triangle, there are 2 ways to triangulate a

Figure 1: Triangulations of convex polygons

square, 5 to triangulate a pentagon and 14 to triangulate the hexagon. These agree with the number of Dyck paths
for n = 1, 2, 3, 4. We would like to prove this, but there does not seem to be an obvious combinatorial proof.

Let us try a different method. We will find a way to express Cn in terms of Cks with k ≤ n. This is known as a
recurrence relation. Then if any other counting problem satisfies the same recurrence relation and agrees with
our values in small examples, the answer must be Cn.
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Let us clarify what we mean here. Recall that we defined factorials as

n! = n(n− 1)(n− 2) . . . 2 · 1.

Technically, this is not quite a flawless definition, since multiplication should be a binary operation, i.e. you are
only supposed to multiply two numbers at a time. We could instead say

n! = n · (n− 1)!.

It seems like that we are just pushing the problem one step further but if we also define 0! = 1, then we see that
(after n steps), we can find the value of n!. The formula n! = n · (n−1)! that lets us compute the value of a function
(the one sending a number n to n!) in terms of other values of the function is called a recursive formula. We call
this process recursion.

Recursion can involve more than one variable, for example, we proved the identity(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
(1)

with binomial coefficients. If we define
(
n
n

)
=
(
n
0

)
= 1 for all n, then we can use (1) to compute binomial coefficients.

Exercise 3.1. What does this recursion look like in Pascal’s triangle?

Let us get back to Catalan numbers that we know count Dyck paths. Notice that after the first up step, any
Dyck path will touch the diagonal at some point. Let (k, k) be the first time this happens. Then the 2k-th step
must have been a up step. Since this is the first time we are touching the diagonal, our path from (1, 0) to (k, k−1)
never crosses the line y = x− 1, so we may remove the first and last step from this initial segment and end up with
a Dyck path from (0, 0) to (k − 1, k − 1), in addition to the tail of the path (from (k, k) to (n, n)), which itself can
be considered as a Dyck path from (0, 0) to (n− k, n− k). Counting Dyck paths this way we obtain the recursive
formula

Cn =

n∑
k=1

Ck−1Cn−k.

It is customary to reindex this as

Cn+1 =

n∑
k=0

CkCn−k. (2)

Let’s check that this agrees with what we know about Catalan numbers. We define C0 = 1 and we compute

C0 = 1

C1 = C0C0 = 1

C2 = C0C1 + C1C0 = 2

C3 = C0C2 + C1C1 + C2C0 = 5

C4 = C0C3 + C1C2 + C2C1 + C3C0 = 14

We want to show that triangulations of polygons satisfy the same recurrence. The relation suggests that from
a triangulation of an n + 2-gon, we should produce two other polygons (with triangulations), a k-gon, and an
n− k + 1-gon, since we expect j + 2-gons to be counted by Cj . Number the vertices from 1 to n + 2 and focus on
the single external edge between the two vertices 1 and n+ 2. This is part of a triangle in the triangulation, and it
connects to, say, vertex k. The rest of the polygon is now split into two polygons (with triangulations). Note that
if k = 2 or k = n+ 1 one of these polygons is empty, and we have just removed a triangle from our n+ 2-gon to get
a triangulation of an n + 1-gon. If 3 ≤ k ≤ n, then we get a k-gon on one side and an n− k + 1-gon on the other
side (both with triangulations).To check that this is a bijection, note that we can put the triangulations of the
k-gon and n− k + 1-gon together with the triangle connecting vertices 1, k, and n + 2 to recover the triangulation
of the n + 2-gon. This shows that the number of triangulations of a convex polygon satisfy the same recurrence,
and therefore we conclude that the number of triangulations of a convex n + 2-gon is Cn.
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4 Fibonacci numbers

The famous Fibonacci sequence starts like this:

1, 1, 2, 3, 5, 8, 13, . . .

The rule defining the sequence is F1 = 1, F2 = 1, and for n ≥ 3,

Fn = Fn−1 + Fn−2.

This is a recursive formula. As you might expect, if certain kinds of numbers have a name, they answer many
counting problems.

Exercise 4.1 (Example 3.2 in [KT17]). Show that a 2× n checkerboard can be tiled with 2× 1 dominoes in Fn+1

many ways.

Solution: Denote the number of tilings of a 2× n rectangle by Tn. We check that T1 = 1 and T2 = 2. We want
to prove that they satisfy the recurrence relation

Tn = Tn−1 + Tn−2.

Consider the domino occupying the rightmost spot in the top row of the tiling. It is either a vertical domino, in
which case the rest of the tiling can be interpreted as a tiling of a 2× (n−1) rectangle, or it is a horizontal domino,
in which case there must be another horizontal domino under it, and the rest of the tiling can be interpreted as a
tiling of a 2× (n− 2) rectangle. Therefore

Tn = Tn−1 + Tn−2.

Since the number of tilings satisfies the same recurrence relation as the Fibonacci numbers, and T1 = F2 = 1 and
T2 = F3 = 2, we may conclude that Tn = Fn+1.

Exercise 4.2. Use figure 2 to explain how the number of ancestors on the X chromosome inheritance line is related
to Fibonacci numbers.

Figure 2: X chromosomes

3



Exercise 4.3 (from section 1.4 in [Gui18]). A partition of a set S is a collection of non-empty subsets Ai ⊆ S,

1 ≤ i ≤ k (the parts of the partition), such that
⋃k

i=1 Ai = S and for every i 6= j, Ai ∩Aj = ∅.
The number of partitions of an n-element set is denoted Bn and is called the n-th Bell number. Show that the

Bell numbers satisfy the recurrence

Bn+1 =

n∑
k=0

(
n

k

)
Bk.

5 Induction (Chapter 3.6 in [KT17]

Many of you have probably seen mathematical induction before, but we review it here. We already proved combi-
natorially that

n∑
i=1

i =

(
n + 1

2

)
, (3)

but let us forget that for a moment. Let us refer to (3) as statement Sn. That is, for example, S1 is the following
statement:

1∑
i=1

i =

(
2

2

)
which is true. The idea of mathematical induction is to infer the truth of Sn from the truth of the statements Sk

for k ≤ n. How do we do this? We relate a statement Sn to earlier statements. For example, if we know that Sn is
true, we know that

1 + 2 + . . . + (n− 1) + n =
n(n + 1)

2
(4)

is true, and we want to prove that

1 + 2 + . . . + n + (n + 1) =
(n + 1)(n + 2)

2
(5)

is true. Notice how similar the two statements look. With a bit of algebra, starting from (4), we get

1 + 2 + . . . + (n− 1) + n =
n(n + 1)

2

1 + 2 + . . . + (n− 1) + n + (n + 1) =
n(n + 1)

2
+ (n + 1)

=
n(n + 1) + 2(n + 1)

2

=
(n + 1)(n + 2)

2

and this is exactly Sn+1. So assuming Sn is true, we may conclude that Sn+1 is true. We already checked that S1

was true, which implies that S2 is true, which implies that S3 is true and so on. . . .
The principle of mathematical induction says that if there is such a sequence of statements Sn, and we

can demonstrate that

• S1 is true

• For each positive integer k, assuming that Sj is true for all 0 ≤ j ≤ k implies that Sk is true

then we may conclude that Sn is true for every positive integer. This is something that requires proof, and it relies
on the Well ordered property of positive integers, that says that every non-empty set of positive integers has
a minimal element. This is not very important for us, but if you are interested see Appendix A of [KT17]

Exercise 5.1. Does every non-empty set of positive integers have a maximal element?
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How does induction work? We have a base step where we check a small case, or maybe several small cases, of
the statement (S0) we are interested in. This is followed by assuming that the statement is true for all k such that
k ≤ n (or sometimes just k = n), this is called the inductive hypothesis and is commonly shortened to “IH” in
proofs. Proving that Sk for k ≤ n being true implies that Sn+1 is true is the inductive step, and this completes
a proof by induction.

Our textbook distinguishes between two types of induction:

• Ordinary induction, where to show that Sn+1 is true, we only need to know that Sn is true.

• Strong inducion, where in order to show that Sn+1 is true we need to know that Sk is true for possibly all
k such that k ≤ n.

The underlying principle between both kinds of induction is the same. However, it is important to recognize what
language we should be using when writing proofs by induction.

Example 5.2 (Example 6.13 in [Mor17]). Let us define a sequence by the rule a1 = 2 and for every integer n ≥ 2,
let

an =

n−1∑
i=1

ai.

Prove by induction that for every n ≥ 2, we have an = 2n−1.
The base case a2 = a1 = 2 is clear. If we assume that an = 2n−1, and express

an+1 =

n∑
i=1

ai

since we assumed that an = 2n−1, and this leads to

an+1 =

n−1∑
i=1

ai + 2n−1.

But here we are stuck, as we do not know what to do with the other ais. What we should do instead is to assume
that ak = 2k−1 for all k ≤ n. Then when we get to the induction step we can replace all the ais with 2i−1 to get

an+1 = 2 +

n∑
i=2

2i−1

and now this is a sum of a geometric sequence, in particular

n∑
i=2

2i−1 =

(
n−1∑
i=0

2i

)
− 1 = (2n − 1)− 1

so altogether we have
an+1 = 2n,

and we are done by induction.

This does not seem like a big difference, but when you write a proof, it is important to always check that you
made the right assumptions (and that you can make those assumptions).

Exercise 5.3. Find the mistake in the following famous proof that all horses are the same color:
We will prove that all horses are the same color by induction. Let Sn be the statement:

Any set of n horses have the same color.

The base case S1 is clearly true, as any horse is the same color as itself. Assume for induction that Sn−1 is true.
Consider a set of n horses and number them. By IH, the horses numbered {1, 2, . . . , n− 1} are all the same color.
Similarly, the horses numbered {2, 3, . . . , n− 1, n} are also all the same color. But since

{1, 2, . . . , n− 1} ∩ {2, 3, . . . , n} = {2, 3, . . . , n− 1}

the two sets intersect, so all horses numbered {1, 2, . . . , n} are all the same color, hence Sn is true and by the
principle of mathematical induction, all horses are the same color.
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Proofs by induction are generally less satisfying and less enlightening than combinatorial proofs. On the plus
side, doing things by induction is a relatively straightforward recipe that results in pefectly valid proof. Once you
know something is true, you can still continue to think about combinatorial proofs. There are many statements
that are combinatorial but have no known combinatorial proofs!

Induction can also help with some problems that may be inaccessible combinatorially

Exercise 5.4 (Example 6.16 in [Mor17]). Prove by induction that the nth term of the Fibonacci sequence Fn is at

least
(
3
2

)n−1
for every n ≥ 0.

Solution: We check the two base cases. When n = 0, we have

F0 = 1 ≥ 2

3
=

(
3

2

)−1

,

and when n = 1, we have

F1 = 1 ≥ 1 =

(
3

2

)0

so the base cases hold.
Let n ≥ 1 and assume that for every integer k such that 1 ≤ k < n, Fk ≥

(
3
2

)k−1
(note that we are using strong

induction here). We have

Fn = Fn−1 + Fn−2 by definition

≥
(

3

2

)n−2

+

(
3

2

)n−3

by IH

=

(
3

2

)n−3(
3

2
+ 1

)
=

5

2

(
3

2

)n−2

=
5

3

3

2

(
3

2

)n−2

>

(
3

2

)n−1

.

This completes the proof of the inductive step, and we are done by the principle of mathematical induction.

Exercise 5.5 (Exercise 6.17. 1) in [Mor17]). Prove by induction that for every n ≥ 0, the nth term of the Fibonacci
sequence is no greater than 2n.
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