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Let ∆1, . . . , ∆n be n polytopes in Rn . There are many ways to decompose
the polytopes ∆i into smaller polytopes Γj

i and then choose certain “consistent”
collections that contain a single polytope Γji

i from each polytope ∆i in such a way
that the following formula holds:

(∗) V (∆1, . . . , ∆n) =
∑

V (Γj1
1 , . . . , Γjn

n ),

where V is the mixed volume, and the summation is taken over all consistent
collections. The theory of Newton polytopes provides a lot of examples of this kind
(see §2). The present paper arose from attempts to clarify whether there exists
a similar effect for other finitely additive measures that differ from the volume
measure (for instance, for the number of integral points of a polytope).

In the paper we introduce the notion of consistent partition for several polytopes
(whose number can differ from the dimension of the underlying space). The main
result of the present paper is the generalization of relation (∗) to any consistent
partition and for any finitely additive measure (see §3).

Consider a measure on the integral polytopes that is polynomial with respect to
the shifts of the polytopes by the vectors of the integral lattice. As is known, such
a measure is a polynomial on the semigroup of integral polytopes with respect to
the Minkowski addition. For the measures invariant with respect to shifts by the
vectors of the integral lattice, this result is due to McMullen [6]. It was extended to
the case of polynomial measures with respect to the shifts in [5], where the integral
over the Euler characteristic was used. Here we show that the result is the direct
consequence of the generalized relation (∗) .

§1. Consistent regular partitions

In the paper, by a polytope we mean a compact convex polytope, that is, the
convex hull of a finite sets of points. By a partition of a polytope ∆ we mean a
finite set of polytopes R(∆) such that

1) the union of the polytopes from R(∆) is the polytope ∆,
2) the set R(∆) contains all faces of any polytope from R(∆) , and
3) the intersection of any two polytopes from R(∆) is either empty or a face

of these polytopes.
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2 A. KHOVANSKĬI

The simplest example of a partition is the tautological partition of a polytope
that contains the polytope and all its faces.

Among the partitions of a polytope, regular partitions are selected [3]. First, this
class of partitions is closely related to the theory of Newton polytopes (see [7]), and,
secondly, it is flexible and convenient to work with. Let us pass to the definition of
this class of partitions.

Let ∆ be a polytope in a linear space L1 . We say that a polytope ∆̃ that
belongs to the product of the space L1 and the real line R1 lies over the polytope
∆ if ∆ is the projection of ∆̃ . We assume that an orientation is chosen in R1 .
Let e1 be a basis vector in R1 . We say that a point x ∈ ∆̃ is an upper point of ∆̃
if the ray x + λe1 , where λ > 0 , intersects ∆̃ at the point x only. A face of the
polytope ∆̃ is called an upper face if each of its points is an upper point of this
polytope.

Obviously, a face Γ of the polytope ∆̃ is an upper face if and only if there exists
a covector ξ ∈ (L1 ×R1)∗ for which 〈ξ, e1〉 > 0 and such that the maximum on ∆̃
of the inner product with the covector ξ is attained on the face Γ.

By a partition of a polytope ∆ related to a polytope ∆̃ that lies over ∆ we
mean the partition R(∆) that consists of the projections of the upper faces of ∆̃ .
A partition of ∆ related to some polytope ∆̃ is said to be regular.

Note that a regular partition of a polytope ∆ depends not on ∆̃ itself but only
on the upper points of ∆̃ . The set of upper points of ∆̃ can be regarded as the
graph of a convex piecewise linear function on the polytope ∆. Conversely, to each
of the convex piecewise linear functions on the polytope ∆ , a regular partition is
assigned , namely, for the corresponding polytope ∆̃ we must take the convex hull
of the graph of this function.

Let R(∆1), . . . ,R(∆k) be a set of regular partitions of the polytopes ∆1, . . . , ∆k .
Let us choose polytopes ∆̃1, . . . , ∆̃k that lie over ∆1, . . . , ∆k , respectively, and gen-
erate the partitions R(∆1), . . . ,R(∆k) . The choice of the polytopes ∆̃i determines
the consistency of the regular partitions.

We say that the polytopes Γ1, . . . , Γk from the partitions R(∆1), . . . ,R(∆k) are
regularly consistent (for the polytopes ∆̃i ) if the Minkowski sum Γ̃1 + · · ·+ Γ̃k of
the upper faces Γ̃i (of the polytopes ∆̃i ) that lie over Γi is an upper face Γ̃ of the
polytope ∆̃ = ∆̃1 + · · ·+ ∆̃n . Thus, to each of the upper faces Γ̃ of ∆̃ we assign
a unique set of consistent polytopes Γ1, . . . , Γk .

An equivalent definition can be given as follows. Polytopes Γ1, . . . , Γk from
partitions R(∆1), . . . ,R(∆k) are said to be regularly consistent (for the polytopes
∆̃i ) if there exists a linear function l : L1 × R1 → R1 whose maximum on the ith
polytope ∆̃i is attained exactly on the upper face Γ̃i of the polytope ∆̃i that lies
over Γ.

We say that the polytopes ∆1, . . . , ∆k are affinely independent if the mini-
mal affine subspaces containing these polytopes are independent. In other words,
∆1, . . . , ∆k are affinely independent if the dimension of their Minkowski sum is
equal to the sum of their dimensions:

dim(∆1 + · · ·+ ∆k) = dim ∆1 + · · ·+ dim∆k .
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Theorem. Any collection R(∆1), . . . ,R(∆k) of regular partitions can be made
regularly consistent in such a way that any consistent collection of polytopes will be
affinely independent.

Proof. Let a regular partition of the polytope ∆ be assigned to a convex piecewise
linear function f : ∆ → R . If we add a linear function to the function f , then
the corresponding regular partition remains unchanged. Let the partition R(∆i)
be assigned to a function fi : ∆i → R . We can readily see that by adding suffi-
ciently general linear functions Li to the functions fi , we can make any consistent
collection of polytopes affinely independent.

Corollary. The tautological partitions of several polytopes in Rn can be made
regularly consistent in such a way that any consistent collection will contain the
affinely independent faces of these polytopes.

Proof. Indeed, the tautological partition is clearly regular because it is assigned to
any linear function on the polytope.

§2. Newton polytopes and mixed volumes

In this section we discuss the relation between algebraic geometry and the prob-
lems that are studied in the paper. This discussion here are not used in the sequel
and this section can be omitted at the first reading.

Consider the system of n equations

(1) P1 = · · · = Pn = 0

in (C∗)n , where P1, . . . , Pn are Laurent polynomials that are sufficiently general
for their Newton polytopes ∆1, . . . , ∆n . The connection between measure theory
and algebraic geometry is provided by the Bernshtein theorem [1] which states that
the number of solutions of system (1) is n!V (∆1, . . . , ∆n) .

Denote by aij the coefficients of the Laurent polynomial Pi , Pi =
∑

aijx
j ,

j ∈ Zn . Consider arbitrary Laurent polynomials aij(τ) in one variable τ such
that aij(1) = aij .

We can regard the system of equations

(2) P̃1(x, τ) = · · · = P̃n(x, τ) = 0,

in which we set P̃i(x, τ) =
∑

aij(τ)xj , as a system of equations with unknown
point x ∈ (C∗)n and with parameter τ . For τ = 1, system (2) coincides with
system (1) and has the same roots. The theory of Newton polytopes makes it
possible to describe the behavior of the roots of system (2) as τ → ∞ , at least in
the case in which the Laurent polynomials P̃1, . . . , P̃n are sufficiently general for
their Newton polytopes ∆̃1, . . . , ∆̃n .

Namely, consider an arbitrary upper face Γ̃ of the polytope ∆̃ = ∆̃1 + · · ·+∆̃n .
This face is the sum of certain upper faces Γ̃1, . . . , Γ̃n of ∆̃1, . . . , ∆̃n . To any upper
face Γ̃ we assign the system of equations

(3eΓ) P̃
eΓ1
1 (x, τ) = · · · = P̃

eΓn
n (x, τ) = 0,

where P̃
eΓi
i is the truncation of the Laurent polynomial P̃i with respect to the face

Γ̃i [4]. We obtain as many systems as there are upper faces of the polytope ∆̃ .
Let τ : (R1, 0) → (C̃,∞) be a germ of a real curve on the Riemann sphere such

that τ(0) = ∞ . Consider the roots of system (1) for τ = τ(t) as t → 0 and
τ(t) →∞ .
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Theorem (on the asymptotic solution of system (1), cf. [1, 4]). If the Laurent poly-
nomials P̃1, . . . , P̃n are ∆ -nondegenerate with respect to their Newton polytopes,
then, on a germ τ(t) of a curve, there exists a one-to-one correspondence between
the set {x(τ(t))} of all roots of system (1) and the union {x̃(τ(t))} of the roots of
systems (3eΓ) over all upper faces Γ̃ of the polytope ∆̃ . Here the ratio xx̃−1 , in
the group (C∗)n , of the mutually corresponding roots x and x̃ tends to the identity
element of the group (C∗)n as t → 0 and τ(t) →∞ .

In particular, it follows from this theorem that the number of solutions of sys-
tem (1) is equal to the sum of the numbers of solutions of systems (3eΓ ) for a chosen
value τ(t0) of the parameter τ , where t0 is a small number. Denote by Γi ⊂ ∆i

the projection of the face Γ̃i of ∆̃i . For τ = τ(t0) , the Newton polytopes of sys-
tem (3eΓ ) are the projections Γ1, . . . , Γn of the faces Γ̃1, . . . , Γ̃n . By applying the
Bernshtein theorem to these systems, we obtain the following assertion.

Corollary. Under the above assumptions, we have the relation

n!V (∆1, . . . , ∆n) =
∑

n!V (Γ1, . . . , Γn),

where the sum is taken over all collections Γ1, . . . , Γn of corresponding regular
partitions of the polytopes ∆1, . . . , ∆n that are consistent by means of the polytopes
∆̃1, . . . , ∆̃n .

Remark 1. If for some face Γ̃ of the polytope ∆̃ , where Γ̃ = Γ̃1+· · ·+Γ̃n , Γ̃i ∈ ∆̃i ,
a face Γ̃j is a vertex, then the mixed volume V (Γ1, . . . , Γn) of the corresponding
polytopes is zero. To this face Γ̃ , an inconsistent system (3eΓ ) is assigned.

Remark 2. The Laurent polynomials aij(τ) can be chosen so that all systems (3eΓ )

can be solved explicitly. To this end, it suffices to take any Laurent polynomial P̃
eΓi
i

(for each of the faces Γ̃ ⊂ ∆̃ such that the corresponding system (3eΓ ) is consistent)
as the linear combination of two monomials. In this case, the projection of the face
Γ̃ is a parallelepiped, and the number of solutions of system (3eΓ ) is equal to the
volume of this parallelepiped multiplied by n! . Applying this argument, we can
not only prove the Bernshtein theorem, but also obtain new formulas for the mixed
volume (which generalize formulas from [3]). I will return to this subject elsewhere.

§3. Consistent partitions of several polytopes

Our nearest goal is the general definition of the consistency of (not necessarily
regular) partitions of k polytopes. Two approaches to the definition are possible.
The first is based on the “multidimensional” point of view and uses the join of k
polytopes. The other approach uses the point of view of the underlying space of
the k polytopes. We begin with the multidimensional viewpoint.

By the join Ω of polytopes ∆1, . . . , ∆k which lie in a linear space L1 , over a
simplex of dimension k − 1 with vertices A1, . . . , Ak , which lies in a space L2 , we
mean the convex hull of the polytopes (∆i, Ai) ⊂ L1 × L2 .

In what follows we give a description of the faces of the join of polytopes
∆1, . . . , ∆k . We need the following definition. A collection of faces Γ1, . . . , Γk

of polytopes ∆1, . . . , ∆k ⊂ L is said to be consistent if there exists a covector
ξ ∈ L∗ such that the maximum on ∆i of the inner product with the covector ξ is
attained precisely on the face Γi .

The following assertion can readily be verified.
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Proposition 1. To any subset ∆i1 , . . . , ∆il
of the set of polytopes ∆1, . . . , ∆k and

to each of consistent collections of faces Γi1 ⊂ ∆i1 , . . . , Γil
⊂ ∆il

, there corresponds
a face of the join Ω of the polytopes ∆1, . . . , ∆l . Namely, this face is the join of
the faces Γi1 , . . . , Γil

over the simplex with the vertices Ai1 , . . . , Ail
. Conversely,

any face of the join Ω has the above form.

A partition R(Ω) of the join Ω of the polytopes ∆1, . . . , ∆k over a simplex
in a space L2 with vertices A1, . . . , Ak is said to be correct if the projection of
any vertex of this partition to the space L2 is one of the vertices A1, . . . , Ak . A
correct partition R(Ω) of the join defines certain partitions R(∆1), . . . ,R(∆k) of
the polytopes ∆1, . . . , ∆k . To construct the partition R(∆i) , we must identify the
polytope ∆i with the face (∆i, Ai) of the join Ω and consider the partition of this
face induced by the partition R(Ω) . In this case we also say that a correct partition
R(Ω) of the join defines a consistency of the partitions R(∆1), . . . ,R(∆k) of the
polytopes ∆1, . . . , ∆k .

Denote by R(Ω, k) the subset of the polytopes of a correct partition R(Ω)
whose vertices are projected into the set A1, . . . , Ak . It is clear that any polytope
Γ ∈ R(Ω, k) is the join of the corresponding polytopes Γ1, . . . , Γk from the parti-
tions R(∆1), . . . ,R(∆k) . The set R(Ω, k) completely defines the partition R(Ω) :
namely, R(Ω) contains only the polytopes from R(Ω, k) and their faces.

The set R(Ω, k) can be defined by introducing the following subset S in the
Cartesian product R(∆1)×· · ·×R(∆k) : a collection of polytopes (Γ1(s), . . . , Γk(s)) ,
where Γi ∈ R(∆i) , is a point s of the set S if and only if the set R(Ω, k) contains
the join of the polytopes Γ1, . . . , Γk over the simplex with vertices A1, . . . , Ak .

The set S ⊂ R(∆1)× · · · × R(∆k) has the following properties:
1) for any k -tuple of positive reals (λ1, . . . , λk) = λ , the set of polytopes

Γ(s, λ) = λ1Γ1(s) + · · · + λkΓk(s) is a partition, say, R(∆(λ)) , of the
polytope ∆(λ) = λ1∆1+· · ·+λk∆k ; moreover, each polytope Γ ∈ R(∆(λ))
coincides with a polytope of the form Γ(s, λ) for exactly one s ∈ S ;

2) for any covector ξ and any element s1 ∈ S , there exists an element s2 ∈ S

such that Γi(s2) = Γξ
i (s1) .

Conversely, we can define the consistency of the partitions R(∆1), . . . ,R(∆k)
by choosing a subset S of the Cartesian product R(∆1)× · · · ×R(∆k) with prop-
erties 1) and 2). This gives the second (“low-dimensional”) description of the
consistency of partitions of polytopes.

Proposition 2. A regular consistency of regular partitions of several polytopes is
a consistency of these polytopes.

Proof. Let a regular consistency of regular partitions of polytopes ∆1, . . . , ∆k is
related to convex piecewise linear functions f1, . . . , fk . Consider a convex piecewise
linear function F on the join Ω of these polytopes, where F is defined as follows:
the convex hull of the graph of the function F coincides with the convex hull of the
graphs of the functions fi that are given on the faces (∆i, Ai) of the join Ω. We can
readily verify that the regular partition of the join related to the function F defines
a consistency of the regular partitions of polytopes ∆1, . . . , ∆k that coincides with
their regular consistency related to the functions f1, . . . , fk .

§4. Partitions and the Euler characteristic

Now we need the following Propositions 3 and 4, which are related to the Euler
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characteristics and partitions of polytopes.
Denote by χ∆ the characteristic function of an arbitrary polytope ∆.

Proposition 3. For each polytope ∆ and any of its partitions R(∆) , the following
relation holds:

χ∆ =
∑

Γ∈R(∆), Γ 6⊂∂∆

(−1)codim ΓχΓ .

(The boundary ∂∆ of a polytope ∆ is always taken in the topology of the minimal
affine subspace that contains the polytope ∆ .)

Proof. Denote by B(x, ε) the ball of radius ε with center at the point x . For each
point x ∈ ∆, the intersection B(x, ε)∩∆ is a closed convex set whose dimension is
equal to that of the polytope ∆. The Euler characteristic of the relative homology
groups of the set B(x, ε)∩∆ with respect to its boundary ∂(B(x, ε)∩∆) is equal
to (−1)dim ∆ . For a sufficiently small ε , the Euler characteristic of the relative
homology can be calculated by means of the cells B(x, ε) ∩ Γ, where Γ is an
arbitrary polytope from the partition R(∆) that contains the point x and does
not belong entirely to the boundary of the set B(x, ε) ∩∆. This yields

(−1)dim ∆χ∆(x) =
∑

x∈Γ, Γ∈R(∆), Γ 6⊂∂∆

(−1)dim ΓχΓ(x),

or χ∆(x) =
∑

(−1)codim ΓχΓ(x) , and the proof is complete.

Corollary 1. For any finitely additive measure µ such that all polytopes from a
partition R(∆) are measurable, the following relation holds:

µ(∆) =
∑

Γ∈R(∆), Γ 6⊂∂∆

(−1)codim Γµ(Γ) .

Proposition 4. For each partition R(∆) of a polytope ∆ , the following identity
holds:

1 =
∑

Γ∈R(∆), Γ 6⊂∂∆

(−1)codim Γ.

Proof. The identity follows from the general topological fact: the Euler character-
istic of the pair (∆, ∂∆) is equal to (−1)dim ∆ .

Remark. Certainly, Proposition 4 is related to Corollary 1. The point is that there
exists a finitely additive measure on the Boolean algebra generated by the convex
polytopes whose value on any polytope is equal to its Euler characteristic, i.e.,
is equal to one [8, 5]. We shall formally use this fact in the proof of the main
theorem (see §5). However, in fact we shall apply Proposition 4 for a correct
partition of a join only.

Let us apply these facts to the partition R(Ω) of the join of k polytopes (see §3).
The set R(Ω, k) has a subset R0(Ω, k) that consists of the polytopes Γ for which
the corresponding polytopes Γ1, . . . , Γk do not belong to the consistent faces of the
polytopes ∆1, . . . , ∆k . In other words, this subset consists of the polytopes Γ for
which there exists no nonzero covector ξ such that Γi ⊂ ∆ξ

i .
The description of the faces of the join (Proposition 1), Proposition 4, and Corol-

lary 1 of the present section imply the following assertion.
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Corollary 2. 1. For any finitely additive measure g such that all polytopes Γ from
the partition R(∆) are measurable, the following relation holds:

g(Ω) =
∑

Γ∈R0(Ω,k)

(−1)codim Γg(Γ).

2. We have
1 =

∑

Γ⊂R0(Ω,k)

(−1)codim Γ.

Our main theorem (see §5) is proved by applying Corollary 2 to a special measure
g on L1 × L2 constructed by a given measure µ on the space L1 .

§5. Main theorem

Let R(Ω) be an arbitrary consistent partition of polytopes ∆1, . . . , ∆k in the
space L1 , and let all polytopes in each partition R(∆i) be measurable with respect
to a finitely additive measure µ . Let the Boolean algebra Bµ of the sets that are
measurable with respect to µ have the following property: if it contains convex
polytopes ∆1 and ∆2 , then it contains their Minkowski sum ∆1 + ∆2 as well.
Under these assumptions we have the following assertion.

Main Theorem. For any measurable consistent partition R(Ω) of the polytopes
∆1, . . . , ∆k we have the relation

∑

J∈2I

(−1)n−|J|µ
(

0 +
∑

i∈J

∆i

)

=
∑

Γ∈R0(Ω,k)

(−1)codim(Γ)

( ∑

J∈2I

(−1)n−|J|µ
(

0 +
∑

i∈J

Γi

))
,

where I = (1, . . . , k) is the set of the first k positive integers, and the sums over
J ∈ 2x are taken over all subsets J of the set I .

Proof. Starting with the measure µ on the space L1 we construct a new measure µ
on the space L1×L2 that contains a join Ω of the polytopes ∆1, . . . , ∆k . The main
theorem is obtained by applying Corollary 2 to this measure. We begin with the
construction of an auxiliary measure µJ on the space L1×L2 . Let Ω be the join of
the polytopes ∆1, . . . , ∆k ⊂ L1 over a (k− 1) -dimensional simplex, in a space L2 ,
with vertices A1, . . . , Ak . For any nonempty subset J of the segment I = (1, . . . , k)
of positive integers, denote by LJ the affine space that is the preimage, under the
projection π : L1 × L2 → L2 , of the point AJ ∈ L2 given by the formula

AJ =
1
|J |

( ∑

i∈J

Ai

)
,

where |J | is the number of elements of the set J . Denote by B0
J the Boolean

algebra (on the affine space LJ ) that consists of the sets (X, AJ) such that the
set |J |X (the homothetic dilation of the set X with coefficient |J | ) belongs to the
Boolean algebra Bµ . For µJ (X) we take µ(|J |X) . This measure can be extended
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to the Boolean algebra BJ (on the space L1×L2 ) that consists of the sets Y such
that Y ∩LJ ∈ B0

J as follows: µJ = µJ(Y ∩LJ) . We can readily see that the value
of the measure µJ on the join of the polytopes Γ1, . . . , Γk is µ(

∑
i∈J Γi) .

We also introduce a measure µ∅ for the empty subset ∅ ⊂ I . Let B∅ be the
Boolean algebra generated by all convex polytopes ∆ in the space L1×L2 . For the
value of the measure µ∅ on a polytope ∆ we take µ(0) , where µ(0) is the value of
the measure µ on the singleton {0} ⊂ Ln . In other words, the measure µ∅ is the
measure µ(0)E , where E is the extension by additivity of the Euler characteristic
to the Boolean algebra B∅ .

Finally we set
µ =

∑

J∈2I

(−1)n−|J|µJ ,

where the sum is taken over all subsets J of the segment of positive integers (in-
cluding the empty subset). The measure µ is thus defined on the intersection of
the Boolean algebras BJ . The main theorem is proved by applying Corollary 2 of
§4 to this measure.

Remark. In the proof of the theorem we used the existence of an extension of the
Euler characteristic to the Boolean algebra B∅ . Instead of this, it suffices to apply
assertion 2 of Corollary 2 from §4.

Corollary. For a correct partition R(Ω) of a join of n polytopes in Rn , we have
the identity

V (∆1, . . . , ∆n) =
∑

Γ⊂R0(Ω,n)

V (Γ1, · · · , Γn) .

The proof can be obtained by applying the main theorem to the measure µ that
is equal to the ordinary Euclidean volume.

§6. Polynomials on semigroups

A function f : G →R defined on a commutative semigroup G with zero element
is said to be a polynomial of degree 6 k if, for any chosen elements a1, . . . , am of
the semigroup G , the function f(λ1a1 + · · · + λmam) of the nonnegative integers
λ1, . . . , λm is a polynomial of degree at most k .

We shall need the classical Taylor formula in finite differences for functions on
a lattice. To each element a ∈ G , two operators on the space of real functions f
on the semigroup G are assigned: the shift operator La defined by the formula
Laf(x) = f(x + a) , x ∈ G , and the finite difference operator Da given by the
formula Daf(x) = f(x + a)− f(x) , x ∈ G .

The shift operators and the finite difference operators are related as follows:
La = Da + I , where I is the identity operator.

Taylor formula in finite differences. For any nonnegative integers λ1, . . . , λm

and for each function f : G →R , the following Taylor formula holds:

f(λ1a1 + · · ·+ λmam) =
∑

06k16λ1,...,06km6λm

(
λ1

k1

)
· · ·

(
λm

km

)
(Dk1

a1
◦ · · · ◦Dkm

am
f)(0),

where
(
λi

ki

)
= (λi(λi − 1) · · · (λi − ki + 1))/k! is the binomial coefficient,

(
λi

0

)
= 1 ,

and D0
ai

= I .
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Proof. We have

f(λ1a1 + · · ·+ λmam)

= (Lλ1 ◦ · · · ◦ Lλmamf)(0)((Da1 + I)λ1 ◦ · · · ◦ (Dam + I)λm)(0)

=
∑(

λ1

k1

)
· · ·

(
λm

km

)
(Dk1

a1
◦ · · · ◦Dkm

am
f)(0) .

The Taylor formula in finite differences implies the following assertion.

Corollary. A function f is a polynomial of degree 6 k if, for an arbitrary choice
of elements a1, . . . , ak+1 , the following relation holds:

(Da1 ◦ · · · ◦Dak+1f)(0) = 0 .

We say that f is a polynomial function of degree 6 k with respect to a sub-
semigroup G0 ⊆ G containsing the zero element of G , 0 ∈ G0 , if, for any element
a ∈ G , the restriction of the function fa(x) = f(a+x) to the semigroup G0 defines
a polynomial of degree 6 k on G0 .

Proposition. Let f be a polynomial function of degree 6 k with respect to a
subsemigroup G0 . Suppose that among the elements a1, . . . , am of G , at least
k + 1 elements belong to the semigroup G0 . Then we have Da1 ◦ · · · ◦Damf ≡ 0 .

Proof. Let us enumerate the elements a1, . . . , am so that the first k + 1 elements
belong to the semigroup G0 . Then we have

Da1 ◦ · · · ◦Damf = Dak+2 ◦ · · · ◦Dam(Da1 ◦ · · · ◦Dak+1f) .

The function Da1 ◦ · · · ◦Dak+1f vanishes at any point a ∈ G because the function
fa(x) = f(x + a) is a polynomial on the semigroup G0 of degree 6 k .

§7. On polynomial measures on the space of polytopes

We turn our attention to an application of the main theorem. Let G0 ⊂ Rn be
an arbitrary semigroup with respect to the addition that contains the zero element.
To the semigroup G0 there corresponds a semigroup G of polytopes (with respect
to the addition given by the Minkowski sum) that consists of the polytopes all of
whose vertices belong to the semigroup G0 .

Consider an arbitrary finitely additive measure µ on the Boolean algebra of sets
generated by the polytopes from the semigroup G . We say that µ is a polynomial
measure of degree 6 k if, for any chosen polytope ∆ ∈ G , the function f∆(x) =
µ(x + ∆), x ∈ G0 , is a polynomial of degree 6 k on the semigroup G0 . This
definition agrees with that in §6 in which a polynomial function with respect to a
semigroup is defined.

Theorem. For any polynomial measure µ of degree 6 k and for any chosen poly-
nomials ∆1, . . . , ∆m ∈ G , the function µ(λ1∆1 + · · ·+ λm∆m) of the nonnegative
integers λ1, . . . , λm is a polynomial of degree 6 n + k .

Proof. To the measure µ , a function µ : G → R on the semigroup G is assigned
so that µ maps each polytope ∆ ∈ G to its measure µ(∆) . According to the
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description of the polynomial functions on a semigroup, it suffices to show that
for any collection of n + k + 1 polytopes, say, ∆1, . . . , ∆n+k+1 ∈ G , the following
relation holds:

D∆1 ◦ · · · ◦D∆n+k+1µ(0) = 0 .

Consider a consistency of the tautological partitions of the polytopes ∆1 , . . . ,
∆n+k+1 such that each of the consistent collections contains affinely independent
faces of these polytopes (see the corollary in §1).

In any consistent collection of faces Γ1, . . . , Γn+k+1 , at least k +1 faces are ver-
tices because we have dimΓ1 + · · ·+dim Γn+k+1 = n . In other words, at least k+1
polytopes from the collection Γ1, . . . , Γn+k+1 are elements of the semigroup G0 .
By the proposition in §6, we have

(DΓ1 ◦ · · · ◦DΓn+k+1µ)(0) = 0 .

Furthermore, by the main theorem, we have the relation

(D∆1 ◦· · ·◦D∆n+k+1µ)(0) =
∑

Γ∈R0(Ω,n+k+1)

(−1)codim Γ(DΓ1 ◦· · ·◦DΓn+k+1µ)(0) = 0 .

Therefore, the measure µ , regarded as a function on the semigroup G of polytopes,
is a polynomial of degree 6 n + k (see the corollary in §6).
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