Logarithmic functional and reciprocity laws

Askold Khovanskii

ABSTRACT. In this paper, we give a short survey of results related to the reciprocity laws over the field \mathbb{C} . We announce a visual topological proof of Parshin's multidimensional reciprocity laws over \mathbb{C} . We introduce the logarithmic functional, whose argument is an *n*-dimensional cycle in the group $(\mathbb{C}^*)^{n+1}$. It generalizes the usual logarithm, which can be considered as the zero-dimensional logarithmic functional. It also generalizes the one-dimensional logarithmic functional that is a natural extension of the functional introduced by Beilinson for a topological proof of the Weil reciprocity law over \mathbb{C} .

1. One-dimensional case

1.1. Weil reciprocity law. Let Γ be a complete connected complex onedimensional manifold (in other words, Γ is an irreducible complex algebraic curve). A *local parameter* u near a point $a \in \Gamma$ is an arbitrary meromorphic function, whose order at a is equal to one. The local parameter u is a coordinate function in a small neighborhood of a. Let φ be a meromorphic function on Γ and let $\sum_{k \leq m} c_m u^m$ be its Laurent expansion at a. The *leading monomial* χ of φ is the first nonzero term in the expansion, i.e. $\chi(u) = c_k u^k$. The leading monomial is defined for any meromorphic function φ not identically equal to zero. For each pair of meromorphic functions f, g on a curve Γ not identically equal to zero and each point $a \in \Gamma$, one defines the Weil symbol $[f, g]_a$. It is a nonzero complex number given by the formula

$$[f,g]_a = (-1)^{nm} a_m^n b_n^{-m},$$

where $a_m u^m$ and $b_n u^n$ are the leading monomials of the functions f and g at a, with respect to the parameter u. The Weil symbol is defined with the help of the parameter u but *it does not depend on the choice of* u. By definition, the *Weil symbol depends multiplicatively on functions* f and g. The multiplicativity with respect to f means that if $f = f_1 f_2$, then $[f,g]_a = [f_1,g]_a [f_2,g]_a$. The multiplicativity with respect to g is defined similarly. The Weil symbol of functions f, g can differ from 1 only at points in the supports of the divisors of f and g.

¹⁹⁹¹ Mathematics Subject Classification. Primary 11S31, Secondary 14M25.

 $Key\ words\ and\ phrases.$ Weil reciprocity law, multidimensional reciprocity laws, symbols, logarithmic functional.

Partially supported by Canadian Grant No. OGP0156833.

ASKOLD KHOVANSKII

THE WEIL RECIPROCITY LAW. The product of the Weil symbols $[f,g]_a$ over all points a of the curve Γ is equal to one

$$\prod_{a \in X} [f,g]_a = 1.$$

EXAMPLE. Take the Riemann sphere for Γ , an affine coordinate function x for f, and a polynomial $P = a_n x^n + \cdots + a_k x^k$ of degree n for g. By the reciprocity law,

$$\prod x(a) = [x, P]_0^{-1} [x, P]_\infty^{-1} = (-1)^{-k} a_k^{-1} (-1)^n a_n = (-1)^{n-k} a_n / a_k,$$

where the product is over all nonzero roots a of P. This formula coincides with the Vieta formula.

1.2. Toric Surfaces and the reciprocity law (see [1]). Consider a compact (possibly singular) toric surface M. Let D be a zero-dimensional positive divisor in the union of one-dimensional orbits. Is there an algebraic curve on the surface M that does not pass through zero-dimensional orbits and intersects onedimensional orbits at the given divisor D?

Let us fix an orientation in the plane of one-parameter subgroups of $(\mathbb{C}^*)^2$. Thus we fix a parameterization $\pi_j : \mathbb{C}^* \to M_j$ of each one-dimensional orbit M_j in M. Consider the map $\pi : \bigcup_j M_j \to \mathbb{C}^*$, whose restriction to M_j equals to π_j^{-1} .

THEOREM. If $D = \sum k_i a_i$ is the divisor of the intersection of a curve not passing through zero-dimensional orbits of M with the union of one-dimensional orbits of M, then

$$\prod (-\pi(a))^{k_i} = 1$$

SKETCH OF THE PROOF. Each curve in $(\mathbb{C}^*)^2$ is given by an equation P = 0, where P is a Laurent polynomial. Let Δ be the Newton polygon of P. On each side \mathbf{n}_j of Δ , a polynomial $P_{\mathbf{n}_j}$ in one variable is written. By the Vieta formula, the product of all nonzero roots of all polynomials $P_{\mathbf{n}_j}$ is equal to 1.

The reciprocity law follows from the previous theorem (see [1]).

1.3. Topological proof of the reciprocity law (see [2 - 4]). Consider a complex algebraic curve Γ and a pair f, g of nonzero meromorphic functions on Γ . Let A be the union of the supports of the principle divisors (f), (g), and let U be $\Gamma \setminus A$. With the pair f, g, Beilinson associated a certain cohomology class $[f,g] \in H^1(U, \mathbb{C}^*)$. One can define this class using the Beilinson Integral.

DEFINITION. The Beilinson Integral against a loop $\gamma : I \to U, \gamma(0) = \gamma(1),$ for a pair of analytic functions $f : U \to \mathbb{C}^*, g : U \to \mathbb{C}^*$ is an element $I_{\gamma}(f,g)$ of the group \mathbb{C}/\mathbb{Z} defined by the formula

$$I_{\gamma}(f,g) = \left(\frac{1}{2\pi i}\right)^2 \int_I \ln(\gamma^* f) \frac{d(\gamma^* g)}{(\gamma^* g)} - \frac{1}{2\pi i} \deg_{\gamma}(f) \ln g(\gamma(1)),$$

where $\ln(\gamma^* f)$ is a continuous branch of the multi-valued function $\ln(\gamma^* f)$ over the interval 0 < t < 1, and $\deg_{\gamma}(f)$ is the mapping degree of the map $\frac{f}{|f|} : \gamma(I) \to S^1$.

One can prove that the Beilinson integral has the following properties. It is invariant under orientation preserving reparameterizations of the loop γ . It is skew symmetric, i.e. $I_{\gamma}(f,g) = -I_{\gamma}(g,f)$, and additive, i.e. $I_{\gamma}(f_1f_2,g) = I_{\gamma}(f_1,g) + I_{\gamma}(f_2,g)$; $I_{\gamma}(f,g_1g_2) = I_{\gamma}(f,g_1) + I_{\gamma}(f,g_1)$. On the diagonal, it is related to the mapping degree: $I_{\gamma}(f,f) = \frac{1}{2} \deg_{\gamma}(f)$.

One can slightly extend the previous definition and define the Beilinson integral $I_{\gamma}(f,g)$ against a linear combination $\gamma = \sum k_i \gamma_i$ of loops γ_i with integer coefficients k_i .

THEOREM. The Beilinson integral $I_{\gamma}(f,g)$ depends only on the homology class of the cycle $\gamma = \sum k_i \gamma_i$ in U and defines an element in $H^1(U, \mathbb{C}/\mathbb{Z})$.

THEOREM. The number $[f, g, \gamma] = \exp(2\pi i I_{\gamma}(f, g))$ depends only on the homology class of the cycle $\gamma = \sum k_i \gamma_i$ in U and defines an element in $H^1(U, \mathbb{C}^*)$. It is skew-symmetric $[f, g, \gamma] = [g, f, \gamma]^{-1}$ and multiplicative $[f_1 f_2, g, \gamma] = [f_1, g, \gamma] \cdot [f_2, g, \gamma]; [f, g_1 g_2, \gamma] = [f, g_1, \gamma][f, g_2, \gamma].$

THEOREM. Consider a small ball B_a centered at a point $a \in X$. Let γ be its boundary $\gamma = \partial B$. Then $[f, g, \gamma]$ is equal to the Weil symbol $[f, g]_a$.

Now let us give a topological proof of the reciprocity law. Let A be the union of supports of principle divisors (f), (g), and let U be $\Gamma \setminus A$. Let B be the union of small balls B_a centered at all points $a \in A$ and let $\gamma = \sum_{a \in A} \partial B_a$ be the boundary of the domain B. Then $\gamma = 0$ in $H_1(U, \mathbb{Z})$ and $[f, g, \gamma] = \prod_{a \in A} [f, g]_a = 1$. The reciprocity law is proved.

2. Product of roots of a system of equations with generic Newton polyhedra (see [5])

Consider a system of equations

$$P_1 = \dots = P_n = 0$$

in $(\mathbb{C}^*)^n$, where P_1, \ldots, P_n are Laurent polynomials. Let $\Delta_1, \ldots, \Delta_n$ be the Newton polyhedra of P_1, \ldots, P_n .

Problem: Compute the product in the group $(\mathbb{C}^*)^n$ of roots of system (1) assuming that the collection of Newton polyhedra $\Delta_1, \ldots, \Delta_n$ is generic.

2.1. Developed sets of polyhedra. Let $\Delta_1, \ldots, \Delta_n$ be convex polyhedra in \mathbb{R}^n , and let Δ be their Minkowski sum. Each face Γ of the polyhedron Δ can be uniquely represented as a sum

$$\Gamma = \Gamma_1 + \dots + \Gamma_n,$$

where Γ_i is a face of Δ_i .

A collection of *n* polyhedra $\Delta_1, \ldots, \Delta_n$ is called *developed* if for each face Γ of the polyhedron Δ , at least one of the terms Γ_i in its decomposition is a vertex.

For a developed collection of polyhedra $\Delta_1, \ldots, \Delta_n$, a map $f : \partial \Delta \to \partial \mathbb{R}^n_+$ of the boundary of $\Delta = \sum \Delta_i$ into the boundary of the positive octant is called *characteristic* if the component f_i of the map $f = (f_1, \ldots, f_n)$ vanishes precisely on the faces Γ , for which the *i*-th term Γ_i in the decomposition is a point (a vertex of the polyhedron Δ_i). The preimage of the origin under the characteristic map is precisely the set of all vertices of the polyhedron Δ . The combinatorial coefficient C_A of a vertex A of Δ is the local degree of the germ

$$f: (\partial \Delta, A) \to (\partial \mathbb{R}^n_+, 0)$$

of the characteristic map restricted to the boundary $\partial \Delta$ of Δ .

2.2. Parshin symbols see [5 - 9]. Consider n + 1 monomials $c_1 \mathbf{x}^{\mathbf{k}_1}, \ldots, c_{n+1}\mathbf{x}^{\mathbf{k}_{n+1}}$ in n complex variables, where $c_i \in \mathbb{C}^*$, $\mathbf{x} = (x_1, \ldots, x_n)$, $\mathbf{k}_i \in (\mathbb{Z})^n$, $\mathbf{k}_i = (k_{i,1}, \ldots, k_{i,n})$, $c_i \mathbf{x}^{\mathbf{k}_i} = c_i x_1^{k_{i,1}} \cdots x_n^{k_{i,n}}$. The Parshin Symbol $[c_1 \mathbf{x}^{\mathbf{k}_1}, \ldots, c_{n+1} \mathbf{x}^{\mathbf{k}_{n+1}}]$ of the sequence $c_1 \mathbf{x}^{\mathbf{k}_1}, \ldots, c_{n+1} \mathbf{x}^{\mathbf{k}_{n+1}}$ is equal by definition to

$$(-1)^{D(\mathbf{k}_1,\dots,\mathbf{k}_{n+1})}c_1^{-\det(\mathbf{k}_2,\dots,\mathbf{k}_{n+1})}\dots c_{n+1}^{(-1)^{n+1}\det(\mathbf{k}_1,\dots,\mathbf{k}_n)} =$$

$$= (-1)^{D(\mathbf{k}_1,\dots,\mathbf{k}_{n+1})} \exp\left(-\det\left(\begin{array}{cccc} \ln c_1 & k_{1,1} & \dots & k_{1,n+1} \\ \vdots & \vdots & & \vdots \\ \ln c_{n+1} & k_{n+1,1} & \dots & k_{n+1,n+1} \end{array}\right)\right),$$

where $D: (\mathbb{Z}^n)^{n+1} \to \mathbb{Z}/2\mathbb{Z}$ is a function (see [9]) with the following properties. The function D depends only on the images $\pi(\mathbf{k}_1), \ldots, \pi(\mathbf{k}_{n+1}) \in (\mathbb{Z}/2\mathbb{Z})^n$ of the exponents $\mathbf{k}_1, \ldots, \mathbf{k}_{k+1}$ under the natural projection $\pi: (\mathbb{Z})^n \to (\mathbb{Z}/2\mathbb{Z})^n$. It is the only nonzero multilinear function of n+1 vectors in the *n*-dimensional space over the field $\mathbb{Z}/2\mathbb{Z}$ that is invariant under all linear transformations and vanishes whenever the rank of n+1 vectors is less than n.

EXAMPLE. The Parshin symbol $[c_1x^{k_1}, c_2x^{k_2}]$ of two monomials $c_1x^{k_1}, c_2x^{k_2}$ in one variable x equals to $(-1)^{k_1k_2}c_1^{-k_2}c_1^{k_1}$. Thus it is equal to the Weil symbol $[c_1x^{k_1}, c_2x^{k_2}]_0$ of these monomials at the origin x = 0.

By definition, the Parshin symbol is skew-symmetric, for example,

 $[c_1 \mathbf{x}^{\mathbf{k}_1}, c_2 \mathbf{x}^{\mathbf{k}_2}, \dots, c_{n+1} \mathbf{x}^{\mathbf{k}_{n+1}}] = [c_2 \mathbf{x}^{\mathbf{k}_2}, c_1 \mathbf{x}^{\mathbf{k}_1}, \dots, c_{n+1} \mathbf{x}^{\mathbf{k}_{n+1}}]^{-1},$ and multiplicative, for example, if $c_1 \mathbf{x}^{\mathbf{k}_1} = a_1 b_1 \mathbf{x}^{\mathbf{l}_1 + \mathbf{m}_1}$, then

$$[c_1\mathbf{x}^{\mathbf{k}_1},\ldots,c_{n+1}\mathbf{x}^{\mathbf{k}_{n+1}}] = [a_1\mathbf{x}^{\mathbf{l}_1},\ldots,c_{n+1}\mathbf{x}^{\mathbf{k}_{n+1}}][b_1\mathbf{x}^{\mathbf{m}_1},\ldots,c_{n+1}\mathbf{x}^{\mathbf{k}_{n+1}}].$$

2.3. The value of a character at the product of roots. Let $\chi_{\mathbf{k}} : (\mathbb{C}^*)^n \to \mathbb{C}^*$ be the character corresponding to a point $\mathbf{k} \in \mathbb{Z}^n$, i.e. for $\mathbf{k} = (k_1, \ldots, k_n)$ and $\mathbf{x} = (x_1, \ldots, x_n)$ the character $\chi_{\mathbf{k}}(\mathbf{x})$ is equal to $x_1^{k_1} \ldots x_n^{k_n}$.

With every vertex A of the polyhedron $\Delta = \Delta_1 + \cdots + \Delta_n$, where Δ_i is the Newton polyhedron of a Laurent polynomial P_i , we associate a number $[P_1, \ldots, P_n, \chi_{\mathbf{k}}]_A \in \mathbb{C}^*$ in the following way: let $A = A_1 + \cdots + A_n$ be the decomposition of the vertex $A \in \Delta$, $A_i \in \Delta_i$. Assume that the vertex A_i of the polyhedron Δ_i corresponds to a monomial $c_i \mathbf{x}^{\mathbf{k}_i}$ of the polynomial P_i . Then the number $[P_1, \ldots, P_n, \chi_{\mathbf{k}}]_A$ is by definition the Parshin symbol $[c_1 \mathbf{x}^{\mathbf{k}_1}, \ldots, c_n \mathbf{x}^{\mathbf{k}_n}, \chi_{\mathbf{k}}]$.

THEOREM. For a system of equations (1), the value of the character $\chi_{\mathbf{k}}$ at the product $M(P_1, \ldots, P_n)$ of roots is given by

$$\chi_{\mathbf{k}}(M(P_1,\ldots,P_n)) = \prod_{A \in \Delta} ([P_1,\ldots,P_n,\chi_{\mathbf{k}}]_A)^{(-1)^n C_A},$$

where the product is over all vertices A of the polyhedron $\Delta = \Delta_1 + \cdots + \Delta_n$, and C_A is the combinatorial coefficient at A.

As an application of the theorem, one can compute all coordinates in $(\mathbb{C}^*)^n$ of the product $M(P_1, \ldots, P_n)$ of roots: each coordinate x_i can be considered as the character $\chi_{\mathbf{k}}$ for $\mathbf{k} = e_i$, where the vector e_i is the *i*-th vector in the standard basis of the lattice $(\mathbb{Z})^n$. The proof of the theorem (see [5]) is based on simple geometry and does not use Parshin theory.

3. Multidimensional case

Parshin generalized the Weil reciprocity law to a multidimensional case (see [6 - 9]). Here we discuss this result and its topological proof due to Brylinski–McLaughlin (see [10]).

3.1. Generalized Points, Parameters, Symbols, Flags and Reciprocity Laws (see [6 - 8]). Let X be a complete irreducible complex n-dimensional algebraic variety (possibly very singular). A sequence $Y_0 \xrightarrow{\pi_0} Y_1 \xrightarrow{\pi_1} \dots \xrightarrow{\pi_{n-1}} Y_n \xrightarrow{\pi_n} X$ consisting of complete normal irreducible *i*-dimensional algebraic varieties Y_i with $i = 0, \ldots, n$, equipped with a collection of maps π_0, \ldots, π_n is called a generalized point of the variety X if for $i = 0, \ldots, n - 1$, the map $\pi_i : Y_i \to Y_{i+1}$ is a normalization of the image $\pi_i(Y_i) \subset Y_{i+1}$ and $\pi_n : Y_n \to X$ is a normalization of X. We identify two generalized points $G_1 = (Y_0 \xrightarrow{\pi_0} Y_1 \xrightarrow{\pi_1} \dots \xrightarrow{\pi_{n-1}} Y_n \xrightarrow{\pi_n} X)$ and $G_2 = (Z_0 \xrightarrow{\rho_0} Z_1 \xrightarrow{\rho_1} \dots \xrightarrow{\rho_{n-1}} Z_n \xrightarrow{\rho_n} X)$ if for $i = 0, \ldots, n$, there are isomorphisms $\tau_i : Z_i \to Y_i$ such that $\pi_i \circ \tau_i = \tau_{i+1} \circ \rho_i$.

Let us give an inductive definition for a set of parameters near a generalized point. A collection of rational functions u_1, \ldots, u_n on X is called a set of parameters near a generalized point $G = (Y_0 \xrightarrow{\pi_0} Y_1 \xrightarrow{\pi_1} \ldots \xrightarrow{\pi_{n-1}} Y_n \xrightarrow{\pi_n} X)$ if the following conditions hold:

1) each of the rational functions $\pi_n^* u_1, \ldots, \pi_n^* u_n$ on Y_n has no poles on $X_{n-1} = \pi_{n-1}(Y_{n-1})$;

2) the principal divisor $(\pi_n^* u_n)$ in the normal variety Y_n contains the subvariety X_{n-1} with coefficient 1;

3) if n > 1, then the set of restrictions of $\pi_n^* u_1, \ldots, \pi_n^* u_{n-1}$ to X_{n-1} is a set of parameters for the generalized point $\tilde{G} = (Y_0 \xrightarrow{\pi_0} Y_1 \xrightarrow{\pi_1} \ldots \xrightarrow{\pi_{n-2}} Y_{n-1} \xrightarrow{\pi_{n-1}} X_{n-1})$ on the (n-1)-dimensional variety X_{n-1} .

With a rational function f and a generalized point G one can associate the leading monomial f_G using a set of parameters near G. Let us give an inductive definition of the leading monomial. Let the order of the function $\pi_n^* f$ at X_{n-1} be k_n . Then the restriction φ of $(\pi_n^* f) u^{-k_n}$ to X_{n-1} is well-defined. Consider the generalized point $\tilde{G} = (Y_0 \xrightarrow{\pi_0} Y_1 \xrightarrow{\pi_1} \dots \xrightarrow{\pi_{n-2}} Y_{n-1} \xrightarrow{\pi_{n-1}} X_{n-1})$ of the (n-1)-dimensional variety X_{n-1} . Let $c(\pi_n^* u_1)^{k_1} \dots (\pi_n^* u_{n-1})^{k_{n-1}}$ be the leading monomial of φ at the generalized point \tilde{G} with parameters $(\pi_n^* u_1), \dots, (\pi_n^* u_{n-1})$. Then, by definition, the leading monomial f_G is equal to $cu_1^{k_1} \dots u_{n-1}^{k_{n-1}} u_n^{k_n}$.

Let f_1, \ldots, f_{n+1} be a sequence of (n+1) rational functions on an *n*-dimensional algebraic variety X. With a generalized point G, one can associate the Parshin symbol $[f_1, \ldots, f_{n+1}]_G$: by definition, it is equal to the Parshin symbol of a sequence of leading monomials of the functions with respect to a set of parameters near the generalized point G. One can prove that the Parshin symbol is independent of a set of parameters and depends only on the sequence of rational functions f_1, \ldots, f_{n+1} and on the generalized point G.

Consider a flag $F = (C_0 \subset C_1 \subset \cdots \subset C_{n-1})$ in X consisting of complete irreducible k-dimensional algebraic subvarieties C_k of X with $k = 0, 1, \ldots, n-1$. A generalized point $G = (Y_0 \xrightarrow{\pi_0} Y_1 \xrightarrow{\pi_1} \ldots \xrightarrow{\pi_{n-1}} Y_n \xrightarrow{\pi_n} X)$ is a generalized point over the flag F if for $j = 0, \ldots, n-1$, the image $\tilde{\pi}_j(Y_j)$ of Y_j under the map $\tilde{\pi}_j = \pi_n \circ \pi_{n-1} \circ \cdots \circ \pi_j$ is equal to C_j . Over each flag F, there are finitely many different generalized points. Consider a flag $F = C_0 \subset \cdots \subset C_{n-1}$ on X and take a collection f_1, \ldots, f_{n+1} of rational functions on X. The Parshin symbol $[f_1, \ldots, f_{n+1}]_F$ of the collection f_1, \ldots, f_{n+1} at the flag F is by definition the product of $\prod [f_1, \ldots, f_{n+1}]_G$ over all generalized points G over the flag F.

EXAMPLE. Let X be an irreducible algebraic curve. With a generalized point $G = (Y_0 \xrightarrow{\pi_0} Y_1 \xrightarrow{\pi_1} X)$ in X, one can associate the flag F = (a) in X, where $a = \pi_1 \circ \pi_0(Y_0)$, and the point $b = \pi_0(Y_0)$ on the normalization Y_1 of the curve X. A rational function u on X is a parameter near G if $\pi_1^* u$ is a parameter near b on Y_1 . For a pair of rational functions f_1, f_2 on X, the Parshin symbol $[f_1, f_2]_G$ coincides with the Weil symbol $[\pi_1^* f_1, \pi_1^* f_2]_b$. The Parshin symbol $[f_1, f_2]_F$ at the flag F is equal to the product $\prod [\pi_1^* f_1, \pi_1^* f_2]_c$ over all points $c \in \pi_1^{-1} a$.

Fix a flag $L = (C_0 \subset \cdots \subset C_{n-1})$ on X. For each 0 < i < n, denote by $\Psi^i(L)$ the set of all flags $F = (\tilde{C}_0 \subset \cdots \subset \tilde{C}_{n-1})$, where $\tilde{C}_j = C_j$ if $j \neq i$, and \tilde{C}_i is any *i*-dimensional irreducible subvariety such that $C_{i-1} \subset \tilde{C}_i \subset C_{i+1}$. Denote by $\Psi^0(L)$ the set of all flags $F = \tilde{C}_0 \subset C_1 \cdots \subset C_{n-1}$ such that \tilde{C}_0 is a point in C_1 .

PARSHIN'S RECIPROCITY LAWS (SEE [6 - 8]). Fix a collection f_1, \ldots, f_{n+1} of rational functions on X, a flag L in X and a number $0 \le i < n$. Then the symbol $[f_1, \ldots, f_{n+1}]_F$ is different from 1 for only finitely many flags $F \in \Psi^i(L)$, and the following relation holds

$$\prod_{F \in \Psi^i(L)} [f_1, \dots, f_{n+1}]_F = 1.$$

3.2. The Brylinski–McLaughlin topological version of the Parshin theory (see [10]). Consider a sequence f_1, \ldots, f_{n+1} of (n+1) rational functions on an *n*-dimensional complete complex algebraic variety X. Let A be the union of the supports of the principle divisors $(f_1), \ldots, (f_{n+1})$ and of the singular locus S(X) of the variety X. Denote by U the domain $X \setminus A$.

Brylinski and McLaughlin defined a certain cohomology class $(f_1, \ldots, f_{n+1}) \in H^n(U, \mathbb{C}^*)$. The class (f_1, \ldots, f_{n+1}) is skew symmetric in f_1, \ldots, f_{n+1} and is multiplicative in each argument.

Let $F = (C_0 \subset C_1 \subset \cdots \subset C_{n-1})$ be a flag of irreducible complete algebraic subvarieties of X such that dim $C_k = k$. With the flag F, Brylinski and McLaughlin associated a *flag-localized homology class* $\gamma_F \in H_n(U, \mathbb{Z})$. They had proved the following results.

THEOREM (TOPOLOGICAL RECIPROCITY LAWS). Fix a flag L in X and a number $0 \leq i < n$. Then the flag-localized homology class $\gamma_F \in H_n(U,\mathbb{Z})$ is different from zero for only finitely many flags $F \in \Psi^i(L)$, and in the group $H_n(U,\mathbb{Z})$, the following relation holds

$$\sum_{F \in \Psi^i(L)} \gamma_F = 0.$$

THEOREM. The Parshin symbol $[f_1, \ldots, f_{n+1}]_F$ can be obtained by the pairing of the cohomology class $(f_1, \ldots, f_{n+1}) \in H^n(U, \mathbb{C}^*)$ with the flag-localized homology class $\gamma_F \in H_n(U, \mathbb{Z})$.

Using these results one can immediately obtain Parshin's reciprocity laws. So Brylinski and McLaughlin gave a topological proof of the multidimensional reciprocity laws over complex numbers and found a topological generalization of Parshin symbols. Their topological constructions make a heavy use of sheaf theory and are not visual at all.

The search for a formula for the product of the roots of a system of equations (see [5]) convinced me that, over complex number, there should be an intuitive geometric explanation of the Parshin symbols and reciprocity laws. The multidimensional logarithmic functional provides such an explanation.

4. A Logarithmic Functional (see [11])

4.1. Definitions and examples. Consider the group $(\mathbb{C}^*)^{n+1}$ with coordinate functions x_1, \ldots, x_{n+1} . The group $(\mathbb{C}^*)^{n+1}$ is homotopy equivalent to the torus $T^{n+1} \subset (\mathbb{C}^*)^{n+1}$ defined by equations $|x_1| = \cdots = |x_{n+1}| = 1$. On the group $(\mathbb{C}^*)^{n+1}$, there is a remarkable (n+1)-form

$$\omega = \left(\frac{1}{2\pi i}\right)^{n+1} \frac{dx_1}{x_1} \wedge \dots \wedge \frac{dx_{n+1}}{x_{n+1}}.$$

Restriction of the form ω to the torus T^{n+1} is the real (n+1)-form

$$\omega|_{T^{n+1}} = \frac{1}{(2\pi)^n} d(\arg x_1) \wedge \dots \wedge d(\arg x_{n+1}).$$

The integral of ω over the torus T^{n+1} oriented by the form $\omega|_{T^{n+1}}$ is equal to 1.

Denote by E the subset of $(\mathbb{C}^*)^{n+1}$ consisting of all points (x_1, \ldots, x_{n+1}) , one of whose coordinates is equal to 1, i.e. $(x_1, \ldots, x_{n+1}) \in E \Leftrightarrow \{\exists j, 1 \leq j \leq n+1\}: \{x_j = 1\}.$

Let X be an n-dimensional simplicial complex and let $\gamma = \sum k_j \Delta_j$, where $k_j \in \mathbb{Z}$ and Δ_j is an oriented n-dimensional cell in X, be an n-dimensional cycle, i.e. $\partial \gamma = 0$. Consider a piecewise-smooth mapping $\mathbf{f} : X \to (\mathbb{C}^*)^{n+1}$, $\mathbf{f} = (f_1, \ldots, f_{n+1})$, of the complex X into the group $(\mathbb{C}^*)^{n+1}$.

The logarithmic functional is the functor that takes a map $\mathbf{f} : X \to (\mathbb{C}^*)^{n+1}$ and an *n*-dimensional cycle $\gamma = \sum k_j \Delta_j$ on X to the element $\ln(\mathbf{f}, \gamma)$ of \mathbb{C}/\mathbb{Z} defined by the formula

$$\ln(\mathbf{f},\gamma) = \int_{\sigma} \omega,$$

where σ is an (n + 1)-dimensional chain in $(\mathbb{C}^*)^{n+1}$, whose boundary $\partial \sigma$ is equal to the difference of the image $\mathbf{f}_*(\gamma)$ of γ under the map \mathbf{f}_* and some cycle γ_1 lying in E.

The logarithmic functional has the following obvious properties:

1) The value of the logarithmic functional is a well-defined element of the group \mathbb{C}/\mathbb{Z} .

2) The logarithmic functional depends skew-symmetrically on the components of the map \mathbf{f} , for example

$$\ln(f_1, f_2, \dots, f_{n+1}, \gamma) = -\ln(f_2, f_1, \dots, f_{n+1}, \gamma).$$

3) The logarithmic functional depends multiplicatively on the components of the map \mathbf{f} , for example,

$$\ln(\varphi_1\psi_1, f_2, \dots, f_{n+1}, \gamma) = \ln(\varphi_1, f_2, \dots, f_{n+1}, \gamma) + \ln(\psi_1, f_2, \dots, f_{n+1}, \gamma)$$

EXAMPLE (LOGARITHMIC FUNCTION AS LOGARITHMIC FUNCTIONAL). Let X be a point $\{a\}$ and γ the point $\{a\}$ with coefficient 1. Then for a map $\mathbf{f} : X \to \mathbb{C}^*$, we have

$$\ln(\mathbf{f}, \gamma) = \frac{1}{2\pi i} \ln f(a),$$

where $f = \mathbf{f}$.

EXAMPLE (THE BEILINSON INTEGRAL AS THE LOGARITHMIC FUNCTIONAL [3]). Consider a complex algebraic curve X and two nonzero meromorphic functions f and g on X. Let A be the union of the divisors (f) and (g), and let U be $X \setminus A$. Take a loop γ in U. Then for a map $(f,g): \gamma \to (\mathbb{C}^*)^2$, we have

$$\ln(\mathbf{f},\gamma) = I_{\gamma}(f,g)$$

where $\mathbf{f} = (f, g)$.

4.2. Topology and the logarithmic functional. The logarithmic functional has the following topological property. Let M be a real manifold and $\mathbf{f}: M \to (\mathbb{C}^*)^{n+1}$ a smooth map. An *n*-dimensional cycle $\tilde{\gamma}$ on M can be considered as the image under a piecewise smooth map $\phi: X \to M$ of some *n*-dimensional cycle γ on some *n*-dimensional complex X. With the cycle $\tilde{\gamma}$ on M, associate the element $\ln(\mathbf{f} \circ \phi, \gamma)$ of \mathbb{C}/\mathbb{Z} . The *n*-dimensional co-chain thus obtained gives an *n*dimensional cohomology class of M with coefficients in the group \mathbb{C}/\mathbb{Z} if and only if $\mathbf{f}^*\omega \equiv 0$.

THEOREM. If the form $\mathbf{f}^*\omega$ is identically equal to zero on M, then the functional that takes a cycle $\phi : \gamma \to M$ to the element $\ln(\mathbf{f} \circ \phi, \gamma) \in \mathbb{C}/\mathbb{Z}$ is a cohomology class in $H^n(M, \mathbb{C}/\mathbb{Z})$.

MAIN EXAMPLE. Let X be an n-dimensional complex algebraic variety, f_1, \ldots, f_{n+1} a sequence of (n + 1) rational functions on X, and S(X) the singular locus of X. Consider the manifold $M = X \setminus ((f_1) \cup \cdots \cup (f_{n+1}) \cup S(X))$ and the map $\mathbf{f} : M \to (\mathbb{C}^*)^{n+1}, \mathbf{f} = (f_1, \ldots, f_{n+1})$. Then $\mathbf{f}^* \omega \equiv 0$. So, by the theorem, \mathbf{f} gives rise to a cohomology class in $H^n(M, \mathbb{C}/\mathbb{Z})$. Denote by $\{\ln(\mathbf{f}, \gamma)\}$ its value on a cycle γ .

4.3. Multiplicative version of the logarithmic functional. One can define a multiplicative version of the logarithmic functional that takes a map \mathbf{f} and a cycle γ to the number $\exp(2\pi i \ln(\mathbf{f}, \gamma))$. By the construction, the functional $\exp(2\pi i \ln(\mathbf{f}, \gamma))$ takes values in \mathbb{C}^* and has the following properties:

1) it depends skew-symmetrically on the components of \mathbf{f} , for example

 $\exp(2\pi i \ln(f_1, f_2, \dots, f_{n+1}, \gamma)) = (\exp(2\pi i \ln(f_2, f_1, \dots, f_{n+1}, \gamma)))^{(-1)};$

2) it depends multiplicatively on the components of \mathbf{f} , for example

 $\exp(2\pi i \ln(\varphi_1 \psi_1, f_2, \dots, f_{n+1}, \gamma)) = \\ = \exp(2\pi i \ln(\varphi_1, f_2, \dots, f_{n+1}, \gamma) \exp 2\pi i \ln(\psi_1, f_2, \dots, f_{n+1}, \gamma)).$

THEOREM. If the form $\mathbf{f}^*\omega$ is identically equal to zero on M, then the cochain, whose value on a cycle γ equals to $\exp(2\pi i \{\ln(\mathbf{f}, \gamma)\})$, is a cohomology class in $H^n(M, \mathbb{C}^*)$.

THEOREM. Let $X \subset (\mathbb{C}^*)^n$ be the real n-dimensional torus $|y_1| = \cdots = |y_n| = 1$ and γ the fundamental cycle of X. Consider n+1 monomials $c_1 \mathbf{y}^{\mathbf{k}_1}, \ldots, c_{n+1} \mathbf{y}^{\mathbf{k}_{n+1}}$. Let $\mathbf{f} : X \to (\mathbb{C}^*)^{n+1}$ be the restriction of the map $(c_1 \mathbf{y}^{\mathbf{k}_1}, \ldots, c_{n+1} \mathbf{y}^{\mathbf{k}_{n+1}}) : (\mathbb{C}^*)^n \to (\mathbb{C}^*)^{n+1}$ to X. Then $\exp(2\pi i \{\ln(\mathbf{f}, \gamma)\})$ is equal to the Parshin symbol $[c_1 \mathbf{y}^{\mathbf{k}_1}, \ldots, c_{n+1} \mathbf{y}^{\mathbf{k}_{n+1}}]$.

THEOREM. Consider n + 1 rational functions $\mathbf{f} = (f_1, \ldots, f_{n+1})$ on an ndimensional complete complex algebraic variety X. Let F be a flag on X and $\gamma_F \in H_k(U, \mathbb{Z})$ the flag-localized homology class. Then $\exp 2\pi i \{\ln(\mathbf{f}, \gamma_F)\}$ is equal to the Parshin symbol $[f_1, \ldots, f_{n+1}]_F$.

The author would like to thank A.N. Parshin for his comments and T.V. Belokrinitskaya, V. Kirichenko and V.A. Timorin for their help in preparation of this paper.

References

- Khovanskii A., Newton polytopes, curves on toric surfaces, and inversion of Weil's theorem, Russian Math. Surveys 52 (1997), no. 6, 1251–1279.
- Beilinson A.A., Higher regulators and values of L-functions of curve, Functional analysis and Its Applications 14 (1980), no. 2, 116–118.
- 3. Deligne P., Le symbole modere., Publications Mathematiques de l'IHES, 73 (1991), 147–181.
- Khovanskii A., Logarithmic functional and the Weil reciprocity law., Proceedings of the Waterloo Workshop on Computer Algebra 2006 (Kotsireas I, Zima E., eds.), World Scientific Press, 2007.
- Khovanskii A., Newton polyhedrons, a new formula for mixed volume, product of roots of a system of equations, Proceed. of a Conf. in Honour of V.I. Arnold, vol. 24, Amer. Math. Soc., Fields Inst. Comm., USA, 1999, pp. 325–364.
- 6. Parshin A. N., Local class field theory, Trudy Mat. Inst. Steklov, vol. 165, 1984.
- Parshin A. N., Galois cohomology and Brauer group of local fields, Trudy Mat. Inst. Steklov, vol. 183, 1990; English Transl. Proc. Steklov Inst. Math., vol 183, 191–201, 1991.
- Fimmel T. and Parshin A. N., "Introduction to higher adelic theory", Preprint, Steklov Mathematical Institute, Moscow, 1999.
- Khovanskii A., An Analog of Determinant Related to Parshin-Kato Theory and Integral Polytopes, Functional analysis and Its Applications 40 (2006), no. 2, 55–64.
- Brylinski J.-L., McLaughlin D.A., Multidimensional reciprocity laws, J. reine angew. Math. 481 (1996), 125–147.
- 11. Khovanskii A., Multidimensional logarithmic functional and Parshin reciprocity laws., (in preparation).

Department of Mathematics, University of Toronto, Toronto, Canada $E\text{-}mail\ address:\ \texttt{askold@math.toronto.edu}$