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Abstract

We consider a system of n algebraic equations P1 = · · · = Pn = 0 in the
space (C/0)n. It is assumed that the Newton polytopes of the equations are in a
sufficiently general position with respect to one another. Let ω be any rational n-
form which is regular on (C \ 0)n outside the hypersurface P1 . . . Pn = 0. Formerly
we have announced an explicit formula for the sum of the Grothendieck residues
of the form ω at all roots of the system of equations. In the present paper this
formula is proved.
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Consider a system of equations

P1 = · · · = Pn = 0

in (C \ 0)n, where P1, . . . , Pn are Laurent polynomials with Newton polytopes
∆1, . . . , ∆n. To each Laurent polynomial Q let us assign the n-form

ω =
(

Q

P

)
dz1

z1
∧ · · · ∧ dzn

zn
,

where z1, . . . , zn are the independent variables and P = P1 . . . Pn. This paper
contains the proof of the formula announced in [1] for the sum of the Grothendieck
residues of the form ω at all roots of the system of equations, under the assumption
that the Newton polytopes ∆1, . . . , ∆n are in a sufficiently general position with
respect to one another. The main result is stated in 1.5.

The authors are grateful to T. V. Belokrinitskaya for help during the work on
this paper.

1. Statements of the results and applications

1.1. The Grothendieck residue. Recall the definition of the Grothendieck
residue. Let a point z be an isolated solution of a system of analytic equations
P1 = · · · = Pn = 0 on an n-dimensional complex analytic variety Mn. Let us define
the Grothendieck cycle γz in n-dimensional homology of the complement (U \ Γ)
of a small neighborhood U of the point z to the hypersurface Γ defined by the
equation P = P1 . . . Pn = 0. For almost all points ε ∈ Rn

+, ε = (ε1, . . . , εn), the
set γz,ε defined by the system of equations |P1| = ε1, . . . , |Pn| = εn is a smooth

1Partially supported by RFBS grant 99-01-00245, Canadian Grant OGP0156833, and grant
INTAS 00259.
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real submanifold in U . For ε small, all components εi being positive, the manifold
γz,ε is a compact submanifold of U \ Γ. Define an orientation on the manifold
γz,ε by means of the form d(arg P1) ∧ · · · ∧ d(arg Pn). This orientation depends
on the choice of order of the equations P1 = 0, . . . , Pn = 0. Let us call by the
Grothendieck cycle γz related to the root z of the system of equations P1 = 0, . . . ,
Pn = 0 the oriented manifold γz,ε for sufficiently small ε. The homology class of
the Grothendieck cycle in the set U \ Γ does not depend on the choice of ε (but
does depend on order of the equations P1 = 0, . . . , Pn = 0).

The Grothendieck residue at the root z of the system of equations P1 = · · · =
Pn = 0 of n-form α holomorphic on the complement to the hypersurface Γ is
defined as the number 1

(2πi)n

∫
γz

α, where the integral of the form α is taken over
the Grothendieck cycle γz.

The Grotendeick residue is defined correctly, because a holomorphic n-form is
automatically closed and its integrals over homologous cycles are equal.

1.2. The combinatorial coefficients. Let ∆1, . . . , ∆n be convex polytopes
in Rn, and let ∆ be their Minkowski sum. Each face of the polytope ∆ is a sum of
faces of the polytopes ∆i. Let us call a face Γ locked if among its summands there
is at least one vertex. Let us call a vertex A ∈ ∆ critical if all faces adjacent to it
are locked.

Consider a continuous map F : ∆ → Rn, F = (f1, . . . , fn), whose each compo-
nent fi is nonnegative and vanishes on exactly those faces Γ = Γ1 + · · · + Γn for
which the summand Γi is a point, a vertex of the polytope Γi. The restriction F̃
of the map F to the boundary ∂∆ of the polytope ∆ sends a neighborhood of a
critical vertex to a neighborhood of the zero point on the boundary ∂Rn

+ of the
positive octant.

Let us call by the combinatorial coefficient kA of a critical vertex A ∈ ∆ the
local degree of the germ of the map F̃ : (∂∆, A) → (∂Rn

+, 0). The coefficient kA does
not depend on the choice of a map F and depends only on the choice of orientations
of the polytope ∆ and the positive octant Rn

+.
Let us call an n-tuple of polytopes ∆1, . . . , ∆n unfolded if all the faces of the

sum polytope ∆ are locked. Almost all n-tuples of polytopes in Rn are unfolded.
For an unfolded n-tuple of polytopes, each vertex of the polytope ∆ is critical.

1.3. Orientations. The sign of the form ω depends on the choice of order
of the independent variables z1, . . . , zn. The choice of this order yields also an
orientation of the space Rn containing the lattice of monomials za and the Newton
polytope ∆ = ∆1 + · · ·+∆n. The orientation of the Newton polytope ∆ appearing
in the definition of the combinatorial coefficient is induced from the orientation of
Rn.

The choice of order of the equations P1 = 0, . . . , Pn = 0 yields an orientation
of the Grothendieck cycle and hence the sign of the Grothendieck residue. The
choice of order of the equations P1 = 0, . . . , Pn = 0 (or their Newton polytopes
∆1, . . . , ∆n) yields also an orientation of the space Rn

+ appearing in the definition
of the combinatorial coefficient.

Let us choose order of the independent variables and order of the equations in
an arbitrary way. The sign of the form ω, the sign of the Grothendieck residue, and
the signs of the combinatorial coefficients are defined by this choice.
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1.4. The residue of a form at a vertex of the polytope. For each ver-
tex A of the Newton polytope ∆(P ) of a Laurent polynomial P , let us construct the
Laurent series of the function Q/P , where Q is an arbitrary Laurent polynomial.

The monomial corresponding to the vertex A of the polytope ∆(P ) occurs
in P with some nonzero coefficient qA, and hence the constant term of the Laurent
polynomial P̃ = P/(qAza) equals one. Let us define the Laurent series of 1/P̃ by
the formula 1/P̃ = 1 + (1− P̃ ) + (1− P̃ )2 + . . . . Each monomial zb has a nonzero
coefficient in only a finite number of summands (1− P̃ )k. Therefore the coefficient
of each monomial zb in this series is defined correctly. Let us call the formal product
of the obtained series with the Laurent polynomial qA · za ·Q the Laurent series of
the rational function Q/P at the vertex A of the Newton polytope ∆(P ).

By the residue resA ω of a rational form ω =
(

Q
P

)
dz1
z1
∧· · ·∧ dzn

zn
at the vertex A

of the Newton polytope ∆(P ) let us call the constant term of the Laurent series
of the function Q/P at the vertex A. The residue resA ω is an explicitly calculated
polynomial in q−1

A and the coefficients of the Laurent polynomial P and Q.

1.5. Main theorem.

The main theorem. The sum of the Grothendieck residues of the form

ω =
(

Q

P

)
dz1

z1
∧ · · · ∧ dzn

zn

at all the roots in (C \ 0)n of the system of equations P1 = · · · = Pn = 0 with
unfolded Newton polytopes ∆1, . . . , ∆n is equal to (−1)n

∑
kA resA ω, where the

summation is taken over all vertices A of the polytope ∆ = ∆1 + · · ·+ ∆n.

The signs of the quantities appearing in the main theorem depend on the choice
of order of the independent variables z1, . . . , zn and on the choice of order of the
equations P1 = 0, . . . , Pn = 0. In the statement of the main theorem, orders of the
independent variables and of the equations are fixed in an arbitrary way. A change
of order of the independent variables yields a change of the sign of the form ω and
hence a change of the signs of all Grothendieck residues. Simultaneously, the signs
of all combinatorial coefficients change also. A change of order of the equations also
simultaneously changes the signs of all Grothendieck residues and all combinatorial
coefficients.

The proof of the main theorem (see 4.3) uses the technique of toric compacti-
fications [2] and is based on the topological theorem stated in 1.10.

1.6. An algebraic application.

Corollary. The sum
∑

R(z)µ(z) of the values of any Laurent polynomial R
over all roots z of a system of equations with unfolded Newton polytopes, counted
with multiplicities µ(z), is equal to (−1)n

∑
kA resA ω, where

ω = R
dP1

P1
∧ · · · ∧ dPn

Pn
=

[
Rz1 . . . zn det

(
∂P

∂z

)/
(P1 . . . Pn)

]
dz1

z1
∧ · · · ∧ dzn

zn
.

The corollary follows immediately from the main theorem, since the Grothendieck
residue of the form ω at a root z equals R(z)µ(z).
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1.7. A geometric application. Each vertex A of the polytope ∆ = ∆1 +
· · ·+ ∆n defines an n-tuple of vertices Ai ∈ ∆i such that A = A1 + · · ·+ An. Put
detA equal to the determinant of the matrix constituted by the vectors A1, . . . , An.

Theorem. The following formula holds for the mixed volume V of unfolded
polytopes ∆1, . . . , ∆n with rational vertices: n!V = (−1)n

∑
kA detA.

Homothetically increasing the polytopes ∆1, . . . , ∆n, one can assume that their
vertices be integral. For polytopes with integral vertices, the theorem follows by
comparing the Bernstein formula for the number of roots of a system of equations [3]
with the corollary from 1.6 for R ≡ 1.

1.8. An application to the theory of elimination. The corollary from 1.6
allows one to construct an explicit theory of elimination for a system of equations
in (C \ 0)n with unfolded Newton polytopes. For example, let us explain how to
obtain an equation for the first coordinate z1 of the roots of the system. To this
end, it suffices to calculate the sums

∑
R(z)µ(z) for polynomials R equal to 1,

z1, . . . , zN
1 , where N = n!V − 1, and apply the Newton formulas expressing the

coefficients of the equation via the sums of powers of its roots. Equations for the
other coordinates z2, . . . , zn are obtained similarly.

1.9. The cycle related to a vertex of the Newton polytope. Consider
a hypersurface Γ in the torus (C \ 0)n given by the equation P = 0, where P is
a Laurent polynomial with the polytope ∆. To each vertex A of ∆ let us assign
an n-dimensional cycle Tn

A in the complement (C \ 0)n \ Γ of the torus (C \ 0)n

to the hypersurface Γ. Denote by Tn the oriented torus given by the equations
|z1| = · · · = |zn| = 1, whose orientation is given by the form

(
1

2πi

)n
dz1

z1
∧ · · · ∧ dzn

zn
.

Let ξ = (ξ1, . . . , ξn) be an integral covector such that the maximum of the
linear function 〈ξ, x〉 is achieved at the vertex A of the polytope ∆. Consider the
one-parametric group λ(t) = (tξ1 , . . . , tξn). Let us act by this one-parametric group
on the torus Tn. For the absolute value of t sufficiently large, the cycle λ(t)Tn does
not intersect the hypersurface Γ. Denote this cycle by TA. It is easy to check that
the homology class of the cycle TA in (C \ 0)n is defined correctly, i. e., does not
depend on the choice of an integral covector ξ and the parameter t, provided |t| is
sufficiently large.

1.10. A topological theorem. Let ∆1, . . . , ∆n be an unfolded n-tuple of
polytopes in Rn, and let P1, . . . , Pn be Laurent polynomials with the Newton
polytopes ∆1, . . . , ∆n. Denote by Γ the hypersurface in (C \ 0)n given by the
equation P = 0.

Theorem. In the complement (C\0)n\Γ of the torus to the hypersurface Γ, the
sum of the Grothendieck cycles γz over all roots z of the system P1 = · · · = Pn = 0
is homologous to the cycle (−1)n

∑
kATn

A, where the summation is taken over all
vertices A of the polytope ∆, and kA is the combinatorial coefficient of the polytopes
∆1, . . . , ∆n at the vertex A.
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1.11. Remarks. In the paper [1] published 7 years ago, we have announced
a more general theorem on sum of Grothendieck residues. Approximately at the
same time we have prepared a text with proofs. A. G.Khovanskii delivered lectures
on this subject at many universities. However, our text has not been submitted to
a journal, and the proof has not been published. The proof of the more general
theorem, including simultaneously toric, affine and local cases, turned out rather
cumbersome. It obscured simple arguments necessary for the proof of the result
in the toric case, with which we started and with which most of applications are
concerned. In this paper we consider the toric case separately. More cumbersome
general case is considered similarly. We intend to return to it later.

Since that time new results were obtained. In the paper [4] the product in
the group (C \ 0)n of all roots of a system of equations P1 = · · · = Pn = 0 with
sufficiently general Newton polytopes is calculated. The formula for the product
of roots uses Parshin symbols and surprisingly resembles the new formula for the
mixed volume from 1.7. The new formula for the mixed volume can be proved
geometrically and without the assumption of rationality of the vertices. Under
some additional restrictions, such a proof was given in [5], and in the general case
in [4].

Why the formula for the product of roots from [4] so much resembles the
formula for the mixed volume? In [6] the answer to this question is given. That
paper contains a simple construction of the cohomology class responsible for Parshin
symbols. After that, the formula for the product of roots is proved by the reference
to the topological theorem from 1.10. I. A. Soprunov (A.G. Khovanskii’s graduate
student) has proved the formula for the sum of Grothendieck residues and the
formula for the product of roots using Parshin’s reciprocity laws. His paper is in
preparation.

1.12. Arrangement of the material. In section 2 some local characteristic
classes are introduced and global relations between them are proved. In section 3,
we show that the Grothendieck cycles and combinatorial coefficients are described
via these local characteristic classes. In the same section 3, we compute local
characteristic classes related to affine toric varieties. In section 4, the situation is
described arising after the natural toric compactification of the group (C \ 0)n and
the hypersurfaces Pi = 0 lying in this group. Due to the condition of unfoldedness of
the Newton polytopes ∆1, . . . , ∆n, the points at infinity added in compactification
of the group (C \ 0)n can be covered by nice closed sets invariant with respect to
(C\0)n. In 4.2, using, in this situation, global relations between local characteristic
classes from section 2 and computation of these classes from section 3, we obtain
the topological theorem from 1.10. In 4.3, using the topological theorem from 1.10
and the Stokes formula, we prove the main theorem from 1.5.

2. Global relations between local characteristic classes

2.1. The local characteristic class. Let X be a germ at the point a of a
locally compact set, Y be a germ of its closed subset. We will assume that the
complement X \ Y to the closed set Y in X is a germs of a smooth oriented N -
dimensional manifold. By a covering of the germ Y let us call its representation
as a union of an ordered n-tuple of germs of closed subsets Y1, . . . , Yn, numbered
by indices 1, . . . , n,

⋃
Yi = Y , intersecting at the only point a,

⋂
Yi = a. To each
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covering of the set Y let us assign an (N −n)-dimensional homology class of the set
X \ Y , which we will call the local characteristic class of the covering Y1, . . . , Yn.

Let us call a continuous function on X with values in nonnegative real numbers
R+ a lining function of a closed subset A of X if the function f vanishes on the
subset A and is positive on the complement to this subset. The existence of a lining
function is guaranteed by Uryson’s theorem.

Definition 1. For an ordered n-tuple of closed subsets Y1, . . . , Yn of the set X,
let us call by a lining map a map F : X → Rn

+, F = (F1, . . . , Fn), from the set X
to the positive octant Rn

+, whose i-th component Fi is a lining function of the i-th
subset Yi.

A lining map is defined not uniquely, but any two lining maps are homotopic
in the class of lining maps. Indeed, if F1 and F2 are lining maps, then for any t
subject to the inequalities 0 ≤ t ≤ 1, the map Ft = tF1 + (1− t)F2 is lining.

A continuous lining map can be approximated by a smooth in X \Y lining map
homotopic to the given one in the class of lining maps. Let us fix some lining map F
smooth on X \ Y for an ordered n-tuple of subsets Y1, . . . , Yn which is a covering
of the set Y . The preimage of zero under this map consists of the only point a of
intersection of the sets Yi. Hence the image of the boundary of a sufficiently small
neighborhood Ua of the point a has a finite distance from zero in Rn

+, and there exists
a neighborhood V0 of zero in the interior of the positive octant Rn

+ whose preimage
is contained in Ua. By the Sard theorem, the preimage of almost any point in V0 is
a smooth (N −n)-dimensional submanifold in X \Y . This submanifold is endowed
with a co-orientation induced by the standard orientation in Rn

+. By assumption,
the variety X \ Y is oriented, hence a co-oriented submanifold is equipped with a
natural orientation. Recall its definition. Consider a normal space at some point
of a submanifold, choose a basis e1, . . . , en in it, whose image under the differential
of the lining map is a positively oriented basis of Rn

+. Let us take as a positively
oriented basis such a basis p1, . . . , pN−n in the tangent space to a submanifold that
the basis p1, . . . , pN−n, e1, . . . , en of the tangent space to the manifold X \ Y is
positively oriented.

Definition 2. Let us call by the local characteristic cycle Ca related to the
point a =

⋂
Yi of a covering Y1, . . . , Yn of a set Y the preimage F−1(c) of any

sufficiently small regular value c of any lining map F smooth on X \ Y , endowed
with the orientation described above.

General theorems of smooth topology [7] imply that the homology class of the
characteristic cycle Ca in the set X \Y is defined correctly, i.e., depends neither on
the choice of a lining map F nor on the choice of a sufficiently small regular value c.

Let us consider one particular case more closely. Let the number n of sets in a
covering Y1, . . . , Yn of a closed set Y be equal to the dimension n of the manifold
X \Y , and let the manifold X \Y be connected. In this case, the group H0(X \Y )
is one-dimensional.

The characteristic class of the covering Y1, . . . , Yn of the set Y is an element of
the one-dimensional group H0(X \ Y ), i.e., equals kae, where ka is an integer and
e is the generator of the group.

Definition 3. The integer ka is called the degree of the local characteristic
class of the covering Y1, . . . , Yn.
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Let us give an interpretation of the degree of the local characteristic class as
the degree of a mapping. Consider any proper continuous map F : X → Rn

+ from
the set X to the positive octant Rn

+ for which the preimage of the i-th coordinate
hyperplane Γi ⊂ Rn

+ (defined by the equality ui = 0 where ui is the i-th coordinate
function in the space Rn) coincides with the set Yi. The degree of the map F equals
the degree ka of the local characteristic class of the covering Y1, . . . , Yn.

2.2. Global relations. Let X be a connected compact topological space, Y
be a closed subset of X. We will assume that the complement X \Y to the set Y in
the set X is a smooth oriented N -dimensional manifold. Let Y be represented as
the union of an n-tuple of closed subsets Y1, . . . , Yn so that the intersection of the
subsets Yi consists of finitely many points. We will call the points from the finite set⋂

Yi by the singular points of the n-tuple Y1, . . . , Yn. In a small neighborhood Ux

of each singular point x of the n-tuple Y1, . . . , Yn one defines the local characteristic
cycle Cx of the covering Y1, . . . , Yn, belonging to the group HN−n((X \ Y )

⋂
Ux).

Since the set (X \ Y )
⋂

Ux is included into the manifold X \ Y , one can consider
the cycle Cx as an element of the group HN−n(X \ Y ).

Theorem 1. The sum of local characteristic classes over all singular points x
of the n-tuple Y1, . . . , Yn is homologous to zero in X \ Y .

Proof. Consider a lining map F : X → Rn
+ of the n-tuple of sets Y1, . . . , Yn

whose restriction to the submanifold X \ Y is smooth. Then the preimage of
an interior regular point of Rn

+ sufficiently close to zero under the map F is the
sum of local characteristic cycles. And the preimage of a point of Rn

+ sufficiently
far from zero is empty by compactness of X. By general theorems of smooth
topology [7] the preimages of different regular values are homologous, whence the
theorem follows. ¤

Consider a somewhat more general situation. Let us call two ordered n-tuples
Z1, . . . , Zn,W1, . . . , Wn of subsets of the set X mutually normal if for any i =
1, . . . , n the intersection Zi

⋂
Wi is empty.

Let a closed subset Y be represented as the union of two subsets Z and W . Let
the subsets Z and W be represented as the unions of two ordered mutually normal
n-tuples of closed sets Z1, . . . , Zn and W1, . . . , Wn, Z =

⋃
Zi and W =

⋃
Wi, so

that the sets
⋂

Zi and
⋂

Wi consist of no more than a finite number of points.
Then in a neighborhood of each singular point z of the n-tuple Z1, . . . , Zn the local
characteristic cycle Cz is defined, and in a neighborhood of each singular point w
of the n-tuple W1, . . . , Wn the local characteristic cycle Cw is defined as well.

Theorem 2. The sum of local characteristic cycles Cz over all singular points z
of the n-tuple Z1, . . . , Zn in the manifold X \ Y is homologous to the sum of local
characteristic cycles Cw over all singular points w of the n-tuple W1, . . . , Wn taken
with the coefficient (−1)n:

∑

z∈TZi

Cz ≈ (−1)n
∑

w∈TWi

Cw.

Proof. Consider a continuous map F : X → Rn
+ whose each component Fi

possesses the following properties. The function Fi satisfies the inequalities 0 ≤
Fi ≤ 1, and F−1

i (0) = Zi and F−1
i (1) = Wi. The existence of the map F is
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guaranteed by Uryson’s theorem. The map F can be chosen smooth on the sub-
manifold X \Y . Denote by In the cube in the space Rn

+ defined by the inequalities
0 ≤ x1 ≤ 1, . . . , 0 ≤ xn ≤ 1. By general theorems of smooth topology [7] the
preimages of two regular values of the map F in the cube In are homologous to
each other in the manifold X \ Y . This implies theorem 2. Indeed, the preimage
of a regular value close to zero is the sum of local characteristic cycles Cz in the
manifold X \ Y over all singular points z of the n-tuple of sets Z1, . . . , Zn. The
preimage of a regular value close to the vertex (1, . . . , 1) is the sum of local charac-
teristic cycles Cw over all singular points w of the n-tuple of sets W1, . . . , Wn with
the coefficient (−1)n. Indeed, the central symmetry τ of the cube In with respect
to its center

(
1
2 , . . . , 1

2

)
changes the orientation of the cube for n odd and does not

change it for n even. The preimage under the map F of a point a close to the
vertex (1, . . . , 1) of the cube In coincides with the preimage under the map τF of
the point τ(a) close to the vertex (0, . . . , 0). The map τF is lining for the n-tuple
W1, . . . , Wn, and its preimage equals the sum of local characteristic cycles Cw. ¤

3. Computation of some local characteristic classes

3.1. The Grothendieck cycle. The class of the Grothendieck cycle of an
isolated root z of a system of analytic equations P1 = · · · = Pn = 0 on an n-
dimensional complex analytic variety Mn can be described by means of a local
characteristic class. Consider a small neighborhood of the point z in Mn as X, the
hypersurface in X given by the equation P1 . . . Pn = 0 as Y . The hypersurface Y
is the union of closed hypersurfaces Yi in X defined by the equations Pi = 0.

Statement. In the group Hn(X\Y ), the class of the Grothendieck cycle differs
from the characteristic class of the covering Y1, . . . , Yn of the hypersurface Y only
by the sign (−1)n(n+1)/2.

Proof. Indeed, a lining map F : X → Rn
+ for the n-tuple of hypersurfaces

Y1, . . . , Yn can be chosen in the form F = (|P1|, . . . , |Pn|). Both the Grothendieck
cycle and the characteristic class of the covering can be given by the equations
|P1| = ε1, . . . , |Pn| = εn. In general, the orientation of the characteristic cycle of the
covering differs from the orientation of the Grothendieck cycle: the form d(arg P1)∧
· · ·∧d(arg Pn)∧d|P1|∧· · ·∧d|Pn| yields an orientation of the complex variety, which
in general differs from the standard one. To obtain the standard orientation of the
complex variety, this form should be multiplied by (−1)n(n+1)/2. ¤

3.2. The combinatorial coefficient of a covering of the boundary of
a cone. An n-dimensional convex polyhedral cone X in Rn is called sharpened if
it does not contain any affine subspace of positive dimension in Rn. A sharpened
cone has the unique vertice which we denote by A.

By a combinatorial covering Y1, . . . , Yn of the boundary Y of a cone X let us
call an ordered n-tuple of closed sets Yi such that:

1) each set Yi is a union of faces of the cone X;
2) the union

⋃
Yi of the sets Yi coincides with the boundary Y of the cone X;

3) the intersection
⋂

Yi of the sets Yi coincides with the vertex A of the cone X.
The interior X \ Y of the cone X is a smooth manifold which inherits the

standard orientation of the space Rn.
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Definition. The combinatorial coefficient of a combinatorial covering Y1, . . . , Yn

of the boundary of the cone X is the degree of the local characteristic class of this
covering (see 2.1).

Note that the combinatorial coefficient F can be defined using only combina-
torics of the covering Y1, . . . , Yn, thus explaining the name for this number.

Let ∆1, . . . , ∆n be convex polytopes in Rn, ∆ = ∆1 + · · · + ∆n, and A be a
critical vertex of the polytope ∆ (see 1.1). In 1.1 we have defined the combinatorial
coefficient kA at the critical vertex A. This combinatorial coefficient amounts to
the combinatorial coefficient of a covering of the boundary of a cone. Indeed, near
its vertex A the polytope ∆ is a cone ∆A. Let us assign a covering of the boundary
of this cone ∆A to the polytopes ∆1, . . . , ∆n. Each face P of the cone ∆A in a
neighborhood of the vertex A coincides with the unique face Γ of the polytope ∆.
The face Γ can be uniquely represented as the Minkowski sum Γ = Γ1 + · · ·+Γn of
faces Γi of the polytopes ∆i. Define the subset Yi of the boundary of the cone ∆A as
follows: a face P is included into Yi if and only if the summand Γi in the Minkowski
sum for the face Γ of ∆ corresponding to P is a vertex of the polytope ∆i. The
intersection of the sets Yi contains only the vertex A. The union of the subsets Yi

near the point A coincides with the boundary of the cone ∆A since the vertex A
of ∆ is critical.

Statement. The combinatorial coefficient of the above covering of the bound-
ary of the cone ∆A coincides with the combinatorial coefficient of the vertex A
defined in 1.1.

The proof of the statement follows from comparing the definitions.

3.3. The local characteristic classes on affine toric varietes. Let X be
an n-dimensional (singular) affine toric variety having a fixed point a with respect to
the action of the group (C\0)n. Let Y be the union of all orbits of X whose complex
dimension is less than n. Let Y1, . . . , Yn be an n-tuple of closed sets invariant
with respect to the action of the group (C \ 0)n and such that

⋃n
i=1 Yi = Y and⋂n

i=1 Yi = a. In the present subsection the local characteristic class of the covering
Y1, . . . , Yn of Y near a is calculated. The set X \Y is a complex torus (C\0)n. The
point a has arbitrarily small neighborhoods Ua such that the sets (X \ Y )∩Ua are
homeomorphic to (C\0)n. The n-dimensional homology group of the complex torus
(C\0)n is one-dimensional and has a unique generator; as this generator one can take
the real torus Tn defined by the equalities |z1| = · · · = |zn| = 1 whose orientation
is given by the form ω = 1

(2πi)n
dz1
z1
∧ · · · ∧ dzn

zn
. The local characteristic class of the

covering Y1, . . . , Yn can be represented as c(Y1, . . . , Yn)Tn
a where c(Y1, . . . , Yn) is an

integer and Tn
a is the cycle Tn moved to the neighborhood of the point a by the

action of the group (C \ 0)n. It remains to calculate the integer c(Y1, . . . , Yn).
For statement of the answer we need some facts from theory of toric varietes [8],

[9]. An affine toric variety X corresponds to an n-dimansional sharpened cone in
the real vector space spanned by the characters of the group (C \ 0)n. Denote this
cone by Xσ. The faces of the cone Xσ are in one-to-one correspondence with the
orbits of the toric variety X, so that a k-dimensional face corresponds to an orbit
of complex dimension k. The cone is sharpened, because the affine toric variety X
contains the zero dimensional orbit a.

By assumption each of the closed sets Y1, . . . , Yn is a union of orbits. Hence
the set Yi corresponds to certain union of faces of Xσ which we denote by Y σ

i .
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By assumption the sets Y1, . . . , Yn are closed and their union coincides with the
set of all orbits of dimension less than n. Hence the union of the sets Y σ

1 , . . . , Y σ
n

coincides with the boundary of the cone Xσ. The equality
⋂

i Yi = a implies that⋂
i Y σ

i equals the vertex A of the cone Xσ.
The order of the independent variables z1, . . . , zn in the torus (C \ 0)n fixes the

sign of the form w =
(

1
2πi

)n dz1
z1
∧ · · · ∧ dzn

zn
responsible for the orientation of the

torus Tn
a . The order of the independent variables z1, . . . , zn also yields orientation

in the space Rn spanned by the characters zm1
1 . . . zmn

n of the group (C \ 0)n, and
orientation of the cone Xσ lying in this Rn. So after fixing the form ω the cone Xσ

is endowed with an orientation.

Theorem. The local characteristic class corresponding to an invariant covering
Y1, . . . , Yn of the set Y in the affine toric variety X equals (−1)n(n+1)/2kATn

a where
kA is the combinatorial coefficient of the covering Y σ

1 , . . . , Y σ
n of the boundary Y σ

of the cone Xσ.

Proof. The group (C \ 0)n is the product of its subgroups Tn and Π, where
Tn is the real torus and the subgroup Π consists of the points (z1, . . . , zn) whose all
coordinates zi are real. The group (C \ 0)n is embedded into the toric variety X.
Denote by XΠ the closure of the subgroup Π in X. Denote by Y Π

1 , . . . , Y Π
n , Y Π

respectively the intersections of XΠ with the sets Y1, . . . , Yn, Y , i.e., Y Π
i = Yi∩XΠ,

Y Π = Y ∩XΠ. From theory of toric varietes it is known that the closure XΠ of the
group Π intersects any orbit of the variety X, in particular, it intersects the orbit
consisting of the point a. Hence

⋂
Y Π

i = a. The complement XΠ \ Y Π coincides
with the group Π and hence is a connected n-dimensional real manifold. Let us fix
the orientation of this manifold by means of the form dz1

z1
∧ · · · ∧ dzn

zn
.

We will need the following lemma.

Lemma. The local characteristic class of an invariant covering Y1, . . . , Yn of
the set Y in the affine toric variety X equals (−1)n(n+1)/2kaTn

a where ka is the
degree of the local characteristic class of the covering Y Π

1 , . . . , Y Π
n of the set Y Π

inside XΠ.

Proof. Consider a lining map F : X → Rn
+ for the sets Y1, . . . , Yn whose

restriction to the group (C \ 0)n is smooth. Let us average this map by means of
the action of the compact group Tn ⊂ (C \ 0)n on the algebraic variety X. We will
obtain a new lining map G : X → Rn

+ invariant with respect to the group Tn.
The restriction Gπ of the map G to the set XΠ is a lining map for the n-tuple

of sets Y Π
1 , . . . , Y Π

n . Consider an interior point ε in the positive octant Rn
+ whose

all coordinates are sufficiently small, which is a regular value as for the map G, as
for the map GΠ. The preimage of the point ε under the map GΠ consists of several
points pi. The set G−1(ε) consists of orbits Tnpi of these points under the action
of the froup Tn. The points pi taken with signs of the corresponding Jacobians
represent the local characteristic class of the covering Y Π

1 , . . . , Y Π
n of the set Y Π in

XΠ. The tori Tnpi taken with the corresponding orientations represent the local
characteristic class of the covering Y1, . . . , Yn of the set Y in X. Let a point pi

come into the local characteristic class of the covering Y Π
1 , . . . , Y Π

n of the set Y Π in
XΠ with the plus sign. Then the form giving an orientation of the shifted standard
torus Tnpi yields an orientation of the torus Tnpi as a connected component of
the characteristic cycle of the covering Y1, . . . , Yn of the set Y , constructed via the
map G and the point ε, after multiplication by (−1)n(n+1)/2. Indeed, on the group Π
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the orientation given by the form dz1
z1
∧ · · · ∧ dzn

zn
coincides with the orientation

given by the form d|z1| ∧ · · · ∧ d|zn|. On the torus Tnpi the orientation given by
the form

(
1

2πi

)n dz1
z1
∧ · · · ∧ dzn

zn
coincides with the orientation given by the form

d(arg z1) ∧ · · · ∧ d(arg zn). But the orientation on (C \ 0)n given by the form
d(arg z1) ∧ · · · ∧ d(arg zn) ∧ d|z1| ∧ · · · ∧ d|zn| differs by the sign (−1)n(n+1)/2 from
the form giving the usual orientation of the complex manifold (C \0)n. The lemma
is proved. ¤

Let us return to the proof of the theorem. We will need some facts from
toric geometry. The affine toric variety X can be embedded into a projective toric
variety M . This can be done as follows. Let Xσ be the cone with the vertex A
corresponding to the affine variety X. One can choose in different ways a polytope
∆ ⊂ Rn with integral vertices such that: 1) one of the vertices of the polytope ∆
is the point A, 2) near the vertex A the polytope ∆ coincides with the cone Xσ.
The polytope ∆ corresponds in the standard way to a toric variety M∆ (see [2],
[9]). This variety contains the affine toric variety X. To each polytope of the type
k∆, where k is a natural number, one can assign a map from the variety M∆ to
the projective space. If the number k is sufficiently large, then the corresponding
map will be an embedding. Changing, if necessary, the polytope ∆ by k∆, one can
assume that the map from M∆ to the projective space corresponding to ∆ is an
embedding.

There is the remarkable moment map Q : M∆ → ∆ which maps the projective
variety M∆ onto the polytope ∆ (see [10]).

The image under the moment map of an orbit O of the toric variety M∆ is the
interior Γ \ ∂Γ of some face Γ of the polytope ∆ (here the boundary ∂Γ is taken
in the topology of the minimal affine space containing the face Γ). Moreover, the
restriction of the moment map Q to the intersection O ∩Π of the orbit O with the
closure Π of the group Π in M∆ yields a one-to-one smooth map from the manifold
O ∩ Π to the interior Γ \ ∂Γ of the face Γ. The arising correspondence between
the orbits of the variety M∆ and the faces of the polytope ∆ is one-to-one and
preserves closures: if an orbit O1 belongs to the closure of an orbit O2, then the
face Γ1 corresponding to the orbit O1 belongs to the face Γ2 corresponding to the
orbit O2.

The image under the moment map of the affine toric variety X coincides with
the union of all faces of the polytope ∆ containing the vertex A (the polytope ∆
itself is one of such faces). Denote by LA the union of all faces of ∆ which do
not contain the vertex A. The set X̃σ = ∆ \ LA is an open neighborhood of the
vertex A in the cone Xσ. On the other hand, the set ∆ \ LA is the image of the
affine variety X under the map Q.

The covering Y σ
1 , . . . , Y σ

n of the boundary Y σ of the cone Xσ induces the cov-
ering Ỹ σ

1 , . . . , Ỹ σ
n of the subset Ỹ σ = Y ∩ X̃σ of the set X̃σ, where Ỹ σ

i = Yi ∩ X̃σ.
The degrees of the local characteristic classes of the covering Y σ

1 , . . . , Y σ
n of the

set Y and the covering Ỹ σ
1 , . . . , Ỹ σ

n of the set Ỹ σ coincide by definition: the local
characteristic class of a covering depends only on the germs of the sets arising in its
definition. The restriction of the moment map Q to the set XΠ yields a one-to-one
map from this set to the set X̃σ. Under this map the set Y Π

i goes to the set Ỹ σ
i .

The restriction of the moment map to the group Π ⊂ XΠ is smooth and preserves
the orientation. Hence the degree of the local characteristic class of the covering
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Y Π
1 , . . . , Y Π

n of the set Y Π in XΠ equals the degree of the local characteristic class
of the covering Ỹ σ

1 , . . . , Ỹ σ
n of the set Ỹ σ in X̃σ which in its turn equals the combi-

natorial coefficient of the covering Y σ
1 , . . . , Y σ

n of the boundary Y σ of the cone Xσ.
Now the theorem follows from the lemma. ¤

4. Proof of the theorems

4.1. Construction. Let ∆1, . . . , ∆n be an unfolded n-tuple of Newton poly-
topes in Rn and ∆ = ∆1 + · · · + ∆n be their Minkowski sum. Each face Γ of the
polytope ∆ is representable as the sum Γ = Γ1 + · · · + Γn of faces Γi of the poly-
topes ∆i. Denote by Wσ

i the union of all faces Γ of the polytope ∆ for which the
i-th summand Γi is some vertex of the polytope ∆i. Since the Newton polytopes
are unfolded, the union

⋃n
i=1 Wσ

i of the sets Wσ
i covers all the boundary ∂∆ of the

polytope ∆. Let P1 = · · · = Pn = 0 be a system of equations in (C \ 0)n where Pi

is a Laurent polynomial with the Newton polytope ∆i.
Denote by M∆ the toric compactification of the group (C \ 0)n constructed

for the polytope ∆. Let Z1, . . . , Zn be the n-tuple of hypersurfaces in M∆ where
Zi is the closure in M∆ of the hypersurface in (C \ 0)n given by the equation
Pi = 0. The unfoldedness condition for ∆1, . . . , ∆n implies that the intersection
of the hypersurfaces

⋂n
i=1 Zi lies in (C \ 0)n and contains only a finite number of

points. In other words, each singular point z for the n-tuple of sets Z1, . . . , Zn is a
root in (C \ 0)n of the system of equations P1 = · · · = Pn = 0.

Denote by Wi the union of orbits of the toric variety M∆ corresponding to
the faces of the polytope ∆ belonging to the set Wσ

i . Since
⋃

Wσ
i = ∂∆, the

union of sets Wi coincides with the union of all orbits of the toric variety M∆ with
dimension less than n. The intersection

⋂n
i=1 Wi of the sets Wi coincides with

the set of fixed points w of the toric variety M∆. The set of the fixed points of
the toric variwty M∆ is in one-to-one correspondence with the set of vertices A of
the polytope ∆. In other words, the singular points of the n-tuple of closed sets
W1, . . . , Wn are numbered by the vertices of the polytope ∆.

Two n-tuples of constructed closed sets Z1, . . . , Zn and W1, . . . , Wn in the toric
variety M∆ are mutually normal. Indeed, it is easy to see from the definition that
the sets Zi and Wi do not intersect each other.

4.2. Proof of the topological theorem from 1.10. Let us apply theorem 2
from 2.2 to the situation described in 4.1.

Consider the complement U of the complex torus (C \ 0)n to the hypersur-
face Γ given by the equation P1 . . . Pn = 0. By theorem 2 from 2.2, the sum of
local characteristic cycles Cz over the singular points z of the n-tuple Z1, . . . Zn

is homologous in U to the sum of local characteristic cycles Cw over the singular
points w of the n-tuple W1, . . . , Wn multiplied by (−1)n.

(1)
∑

Cz ∼ (−1)n
∑

Cw.

According to 3.1 the characteristic cycle Cz equals the Grothendieck cycle γz of the
system P1 = · · · = Pn = 0 at the root z multiplied by (−1)n(n+1)/2.

Consider a singular point w of the n-tuple W1, . . . , Wn corresponding to a
vertex A of the polytope ∆. Near the vertex A the polytope ∆ coincides with
the cone ∆A. Near the point A the sets Wσ

1 , . . . , Wσ
n cover the boundary of this

cone ∆A. Denote by lA the combinatorial coefficient of this covering (see 3.2).
According to the theorem from § 3 the characteristic cycle Cw equals the cycle lATA
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multiplied by (−1)n(n+1)/2. By the statement from 3.2 the number lA coincides with
the combinatorial coefficient kA of the polytopes ∆1, . . . , ∆n at he vertex A.

Substituting these quantities into the equivalence (∗), we obtain
∑

γz ∼ (−1)n
∑

kATA,

Q.E.D.

4.3. Proof of the main theorem from 1.5. Consider the n-form

ω =
Q

P

dz1

z1
∧ · · · ∧ dzn

zn

on the variety M∆. This form is holomorphic on the complement U of the group
(C \ 0)n to the hypersurface P = P1 . . . Pn = 0. Hence the form ω is closed
in U . But according to the topological theorem from 1.10 the sum

∑
γz of the

Grothendieck cycles over all roots in (C \ 0)n of the system of equations P1 =
· · · = Pn = 0 is homologous in U to the cycle (−1)n

∑
kATA. Hence

∑
resz ω =

(−1)n
∑

kA
1

(2πi)n

∫
TA

ω, where the summation in the left-hand side is taken over
all roots z of the system of equations P1 = · · · = Pn = 0 in (C \ 0)n and the
summation in the right hand side is taken over all vertices A of ∆. It remains to
calculate

∫
TA

ω.
Each vertex A of the Newton polytope ∆ yields a formal Laurent series de-

composition of the rational function Q
P =

∑
qm1,...,mnzm1

1 . . . zmn
n . This series is

described in 1.4. Near the fixed point of the toric variety M∆ corresponding to the
vertex A this series absolutely converges. Hence in the neighborhood of this point
we have

ω =
∑

qm1,...,mnzm1
1 . . . zmn

n

dz1

z1
∧ · · · ∧ dzn

zn
.

It remains to calculate the integral∫

TA

zm1
1 . . . zmn

n

dz1

z1
∧ · · · ∧ dzn

zn
.

This integral is easily calculated explicitly. It vanishes for all m = (m1, . . . , mn)
except m = (0, 0, . . . , 0). The integral for m = (0, 0, . . . , 0) equals (2πi)n. This
implies the main theorem.
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