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Families of Sections of Quadrics and Classical Geometries*
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To the memory of my father Georgii Sergeevich Khovanskii

In the note we describe all Riemannian metrics on nondegenerate quadrics whose geodesics are plane
curves. It is shown that any such metric is of constant curvature and hence locally defines one of the classical
geometries on the quadric. The present note is the continuation of [5], where the problem of rectification of
circles was solved. This practical problem was posed by G. S. Khovanskii in connection with his work on
the transformation of nomograms of adjusted points into compass nomograms [1–4]).

1. Quadric points of a projective surface. A point A on a germ of a real regular surface in a real
projective space is said to be quadric if there is a quadric that anomalously closely approximates the surface
at this point, i.e., the distance from a point B on the surface to the quadric is an infinitesimal of order four
with respect to the distance from A to B .

We say that an affine coordinate system x, y , z in an affine neighborhood of the projective space is
adapted to a surface at a point A if the origin coincides with this point and the plane z = 0 is tangent
to the surface at A. Suppose that a local equation of the surface in a neighborhood of A in some adapted
coordinate system has the form z = f(x, y) = B2(x, y)+K3(x, y)+ . . . , where B2 and K3 are the quadratic
and the cubic terms of the Taylor series of f at the origin, respectively.

Lemma 1. (1) The point A is a quadric point of the surface if and only if the cubic polynomial K3 is
divisible by the second-degree polynomial B2 .

(2) The condition that the polynomial K3 is divisible by the polynomial B2 is projectively invariant, i.e.,
independent of the choice of an adapted coordinate system.

(3) The point A is a quadric point of the surface if and only if there is an adapted coordinate system
for which the polynomial K3 is identically zero.

Proof. (1) Let K3 = L1B2 , where L1 is a homogeneous linear polynomial in x and y . Then the surface
is anomalously closely approximated by the quadric z = B2 + L1z . Conversely, any quadric tangent to
the plane z = 0 at zero is given by an equation of the form z = B2 + L1z + cz2 , where B2 and L1 are
homogeneous polynomials in x and y of degrees one and two, respectively, and c is a constant. Solving this
equation up to the cubic terms inclusively, we obtain z = B2 +L1B2 + . . . . Assertion (2) readily follows from
assertion (1). One of the implications in assertion (3) is also an immediate consequence of (1). To prove the
converse implication, it suffices to choose an adapted coordinate system satisfying the following additional
conditions: the plane at infinity coincides with the tangent plane of the approximating quadric at some point
of the quadric other than A, and the z axis passes through this point at infinity. In these coordinates, the
approximating quadric is given by the equation z = B2(x, y), and the polynomial K3 vanishes.

A nondegenerate quadric intersects a tangent plane to itself by a pair of lines, real or complex. We can
readily verify the following assertion.

Lemma 2. A point A of a germ of a strictly hyperbolic surface is quadric if and only if each of the
two branches of the intersection of the surface with the tangent plane at A has an inflection at this point. A
point A of a germ of a strictly elliptic surface is quadric if and only if each of the two complex branches of
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the intersection of the complexification of the 3-jet of the surface with the complex tangent plane at A has
an inflection at this point.

Remark. The definition of a quadric point can automatically be extended to complex surfaces in a
complex projective space. The following problem is of interest in my opinion: How many quadric points does
a generic surface of degree n have in a complex projective space?

2. Rectifiable families of plane sections. In a neighborhood of the zero point on the plane, we
consider a germ of a smooth function F whose Taylor series expansion up to third-order terms is F (x, y) =
µx − y + P2(x, y) + P3(x, y) + . . . , where µ is a number and P2 and P3 are homogeneous polynomials of
degrees 2 and 3, respectively. The following Lemma 3 can be verified by straightforward computation.

Lemma 3. Up to terms of order three, the solution y(x) of the equation F (x, y(x)) = 0 is given by the
formula

y(x) = µx + P2(1, µ)x2 +
[
∂P2

∂y
(1, µ)P2(1, µ) + P3(1, µ)

]
x3 + . . . .

Corollary 1. In the local coordinates x, y on the surface, the intersection of the surface z = f(x, y) =
B2(x, y) + K3(x, y) + . . . with the plane y = µx + az is given by the following formula up to terms of order
three:

y(x) = µx + aB2(1, µ)x2 +
[
a2 ∂B2

∂y
(1, µ)B2(1, µ) + aK3(1, µ)

]
x3 + . . . .

The corollary is obtained by applying Lemma 3 to the equation y = µx + af(x, y).
A family of curves on a surface is said to be (locally) rectifiable if there is a (local) diffeomorphism of the

surface onto a plane domain that takes each curve in the family to a segment of a straight line. By a pencil
of curves centered at a point A we mean an arbitrary family of curves on the surface each of which passes
through A. If a pencil of curves is locally rectifiable near the center, then different curves of this pencil have
different tangents at the center. Let us consider a pencil of curves on the plane, centered at the origin, and
denote by γµ the curve of the pencil that is tangent to the line y = µx at the origin. In a neighborhood of
the origin, the curve γµ is a graph of some function yµ(x).

Lemma 4. If a pencil of curves {y = yµ(x)} is locally rectifiable near zero, then there exist polynomials
T3 and T5 in the parameter µ of degrees 6 3 and 5, respectively, such that the Taylor series expansion of
the function yµ(x) up to terms of order three is given by the formula

yµ(x) = µx + T3(µ)x2 + T5(µ)x3 + . . . .

Moreover, the coefficient b5 of µ5 in the polynomial T5 is related to the coefficient a3 of µ3 in the polynomial
T3 by the formula b5 = 2a2

3 .
Proof. Making an affine transformation of the image if necessary, we can assume that the rectifying

diffeomorphism takes the origin into itself and has the identity differential at this point, i.e., that it is defined
by a pair of functions G1(x, y) = x + . . . , G2(x, y) = y + . . . , where the dots stand for second-order terms.
This diffeomorphism takes the curve γµ to the straight line y = µx, i.e., the function G2(x, y) − µG1(x, y)
vanishes on the curve γµ . Lemma 4 now follows by applying Lemma 3 to this function.

Theorem on seven sections. Assume that the second fundamental form of the germ of the surface at
a quadric point is nondegenerate. Let us consider some pencil of sections of the surface by planes passing
through the quadric point and transversal to the surface at this point. Assume that this pencil contains at
least seven sections. In this case, it is locally rectifiable in a neighborhood of the quadric point if and only if
all transversal planes pass through a common straight line transversal to the surface at the quadric point.

Proof. If the pencil of sections is locally rectifiable, then all transversal planes y = µx + az intersect
the tangent plane z = 0 along distinct lines. Therefore, the coefficient a in the equation of the section
is a function of the coefficient µ, a = g(µ). The function g is defined for the values of the parameter µ
corresponding to the sections in the pencil. If the pencil of sections is locally rectifiable, then, for all these
values of the parameter µ, it follows from Corollary 1 and Lemma 4 that the following relations hold:
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(1) g(µ)B2(1, µ) = T3(µ),
(2) g2(µ)(∂B2/∂y(1, µ))B2(1, µ) + g(µ)K3(1, µ) = T5(µ).
Multiplying relation (2) by B2 and using relation (1), we obtain

T 2
3 (1, µ)

∂B2

∂y
(1, µ) + T3(µ)K3(1, µ) = T5(µ)B2(1, µ). (∗)

If the number of sections is not less than seven, then the polynomials on the left- and right-hand sides of
relation (∗) must be equal identically, since two polynomials of degrees ≤ 7 with the same leading coefficients
identically coincide if they coincide at seven distinct points. Since the center of the pencil is a quadric point,
it follows that K3(1, µ) is divisible by B2(1, µ). Since the second fundamental form is nondegenerate at the
center of the pencil, it follows that the roots of B2 are simple, and hence (∂B2/∂y)(1, µ) and B2(1, µ) have
no common roots. Therefore, it follows from identity (∗) that T 2

3 is divisible by B2 . Since the roots of B2 are
simple, it follows that T3 is divisible by B2 . It follows from relation (1) that g(µ) is a linear polynomial in µ.
Therefore, all curves of the pencil are cut out on the surface by planes of the form y = µx+(pµ+q)z , where
p and q are some constants. All these transversal planes pass through a common line that is transversal to
the surface at the quadric point.

Conversely, assume that all sections pass through a common line transversal to the surface. In this case,
the parallel projection of the surface along this line rectifies the set of sections.

Theorem. Assume that a Riemannian metric on a germ of a nondegenerate quadric in a real projective
space is given and that all geodesics with respect to this metric are plane curves. Then all planes containing
the geodesics pass through a common point, and the family of all geodesics is locally rectifiable.

Proof. The pencil of geodesics issuing from a point of a Riemannian manifold is locally rectifiable,
since it is rectified by the exponential mapping. By the theorem on seven sections, the planes containing
the geodesics and passing through a point of the quadric pass through a common line. (This theorem can
be applied to geodesics that are not tangent to asymptotic directions, since such a curve cannot be cut out
by a tangent plane. For the geodesics tangent to asymptotic directions, we must also use the continuous
dependence of a geodesic on the direction.) For sufficiently close points of the quadric, such lines have a
nonempty intersection, since sufficiently close points can be joined by a geodesic. Let us choose three points
on the quadric that do not belong to the same geodesic. The three lines corresponding to these points
intersect each other, and hence pass through a common point, since, by assumption, these three lines do
not belong to a common plane. Any line corresponding to a sufficiently close point A on the quadric also
passes through this common point, since we can take two of the three chosen points in such a way that there
is no geodesic containing these two points together with the point A. On a smooth surface belonging to
three-dimensional space, the planes passing through a chosen point O of the space cut out a two-parameter
family of curves. This family is locally rectifiable about any point A distinct from O for which the line
joining A and O is transversal to the surface. Indeed, this family is rectified by the projection from O.

Thus, for a given germ of a quadric, the family of plane geodesics is determined by the point O and
hence depends on three parameters. Up to a projective transformation of three-dimensional space, there are
five such families: three for an elliptic quadric (the point O can be placed either inside the convex body
bounded by the quadric, or on its boundary, or outside the body) and two for a hyperbolic quadric (the
point O can be placed either on the quadric or outside).

3. Metrics. According to the classical Beltrami theorem (see [6, p. 296]), if the geodesics on a plane
domain with respect to a Riemannian metric are straight lines, then the metric is of constant curvature.
Such a metric is induced, under some projective transformation, by one of the following metrics: the metric
of the Klein model of the Lobachevskian geometry, the Euclidean metric of the plane, or the Riemannian
metric on the projective plane. (Here we mean the classical metrics, defined up to a positive homothety ratio,
whose Gaussian curvature can take any real value.) We thus obtain a complete description of Riemannian
metrics on a germ of a nondegenerate quadric for which all geodesics are plane curves. For a given rectifiable
family of sections, the Riemannian metric with respect to which these sections are geodesics depends on six
parameters, namely, the Gaussian curvature, which can take an arbitrary real value, and an element of the
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eight-dimensional group of the projective transformations of the plane defined modulo the right coset of the
three-dimensional subgroup of isometries of the Lobachevskian plane, the Euclidean plane, or the Riemannian
plane, respectively.

Corollary 2. (1) A pencil containing at least seven circles or lines on a plane is locally rectifiable if
and only if all its curves pass through a common point distinct from the center of the pencil (see [5]).

(2) A two-parameter family of lines and circles on a plane domain is a family of geodesics with respect
to some Riemannian metric if and only if this family is induced, under some conformal transformation
of the plane (completed by the point at infinity), by the family of geodesics of the Poincaré model of the
Lobachevskian plane, by the family of geodesics of the Euclidean plane, or by the family of geodesics of the
Riemannian plane. Moreover, a Riemannian metric on the plane domain is induced by the classical metric
defined up to a projective transformation.

Proof. Using the stereographic projection, we map the plane onto the sphere. Under this projection,
the lines and the circles are mapped into the circles of the sphere, which are plane sections of the sphere.
The corollary now follows from the facts proved above.
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