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Abstract—The paper discusses the existence of a continuous extension of functions that are defined
on subsets of R

n and whose values are convex bodies in R
n. This problem arose in convex geometry

in connection with the notion, recently introduced in algebraic geometry, of convex Newton–
Okounkov bodies.
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The exponential defined at the rational points x = p/q by the formula exp x = q
√

ep can be extended
to the entire real line by continuity. This is the simplest example of the phenomenon dealt with in the
present paper. Let there be a compact convex body Δm ⊂ R

k assigned to each integer point m in the
positive octant R

n
≥0, and assume that the mapping m → Δm has the following properties:

1) The body Δm1+m2 contains the Minkowski sum Δm1 + Δm2 of Δm1 and Δm1 .

2) One has Δqm = qΔm for q ≥ 0 and m ∈ R
n
≥0.

3) There exists a continuous function φ homogeneous of degree k on R
n
≥0 and positive on R

n
≥0 \ {0}

such that the k-volume of Δm is φ(m). (A function φ with this property will be called a volume
function.)

We ask whether the mapping that takes each integer point m ∈ R
k
≥0 to the body Δm can under

these conditions be extended by continuity to the entire octant R
n
≥0. More precisely, does there exist

a closed convex cone K ⊂ R
n + R

k such that Δm = π−1(m) ∩ K for each integer point m ∈ R
n
+,

where π : (Rn + R
k) → R

n is the natural projection?

We show that the answer is “yes” (see Section 8). Here the auxiliary property (3) is important;
without this property, the answer is “no.” We also obtain a similar but more cumbersome description of
the mappings m → Δm satisfying properties (1) and (2) alone.

The question is motivated by algebraic geometry and related to the recently introduced notion of
convex Newton–Okounkov bodies. (See the paper [1], where the construction of Newton–Okounkov
bodies and references to other papers on the topic can be found.) The present paper is neither based on
algebraic geometry nor uses it in any way. To make the picture complete, the next paragraph, which the
readers may well skip without any consequences for their understanding of the paper, briefly comments
on the algebraic-geometric setting in which the question arises.

Let X be an arbitrary k-dimensional irreducible complex algebraic variety, let C(X) be the field of
rational functions on X, and let Krat(X) be the set of all nontrivial finite-dimensional spaces over C

of rational functions on X. The set Krat(X) is supplied with a natural multiplication that makes is
a commutative semigroup. Take an arbitrary Z

k-valued valuation v on C(X) such that every point
q ∈ Z

k can be represented in the form q = v(f), where f ∈ C(X) is a nonzero function. The paper [1]
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describes a construction that takes each space L ∈ Krat(X) to the corresponding convex Newton–
Okounkov body Δ(L) ⊂ R

k. (The body Δ(L) depends on the valuation v.) The volume V (Δ(L))
of Δ(L) multiplied by k! gives the asymptotics of the dimension over C of powers of L; i.e.,

lim
N→∞

dimC LN

Nk
= k!V (Δ(L)).

Moreover, the following conditions hold:

1) Δ(L1L2) ⊃ Δ(L1) + Δ(L2);

2) Δ(Lq) = qΔ(L) for q ≥ 0.

Let L1, . . . , Ln ∈ Krat(X) be arbitrary elements, let m = (m1, . . . , ,mn) ∈ R
n
≥0 be an integer point,

and let L(m) = Lm1 · · ·Lmn . Then the mapping m → Δ(m) = Δ(L(m)) satisfies conditions (1) and
(2) in the first paragraph of the present paper. Moreover, one can see from [1] that the function
φ(m) = V (Δ(L(m)) on the set of integer points of R

n
≥0 is a homogeneous polynomial of degree k. There

arises a natural problem: what can one say about the body Δ(m) as a function of the point m? It is this
problem that motivated the question discussed in the present paper.

The paper develops a technique related to the question considered. We introduce the notion of
convexity of a family of convex bodies located on a given family of parallel affine spaces in R

N . Let
V ⊂ R

N be a vector subspace, and let {Vα} be a set of affine spaces parallel to V . It is convenient
to describe {Vα} as follows. Let R

N = R
n + V , and let π : R

N → R
n be the projection along V . To

describe {Vα}, it suffices to specify the projection π(M) ⊂ R
n of the set M = ∪Vα. It is this description

that will be used throughout the paper. Given a convex (possibly empty) set Δα in each Vα, we say that
{Δα} is a convex family of convex sets if there exists a convex set Δ ⊂ R

N such that Δα = Δ ∩ Vα.

We discuss the following questions. Is a given family of convex sets Δα ⊂ Vα convex? If the answer
is “yes,” what can one say about a convex set Δ for which Δα = Δ ∩ Vα? For example, what Δ can one
choose if the fibers Δα are closed?

The outline of the paper is as follows. Section 1 presents some classical definitions and theorems of
convex geometry.

The notions of convexity, F-convexity, and Q-convexity of a set over a projection of itself, which
are versions of the notion of convexity for a family of sets, are discussed in Sections 2 and 3. The
characteristic cone, which is an invariant permitting one to distinguish bounded and unbounded convex
bodies, is discussed in Section 5.

Sections 4, 6, and 7 contain proofs of results needed for solving our problem. It is shown in Section 4
that, for a convex set Δ, the operations of closure and taking the intersection with an affine subspace V
commute if V meets the interior of Δ. Section 6 deals with sections of a convex body Δ by a family
of parallel affine spaces. The continuous dependence of the section on the secant space is discussed.
Section 7 gives a classification of all convex sets Δ whose projection is a given polytope P . (In the
present paper, by a polytope we mean a closed bounded convex polyhedron.) A sufficient condition for
the compactness of Δ in terms of the volume of its sections is given.

In Sec. 8, we solve the problem of describing semigroups of convex bodies over a semigroup T
in R

n for the cases in which T = Z
n
≥0 and T = F

n
≥0, where F is a subfield of the reals. For T = Z

n
≥0, this

problem coincides with the above-stated problem arising from algebraic geometry. The solution is based
on the results of the preceding sections.

The methods of the present paper are illustrated by yet another example in Section 9, where we define
convex functions on a set X ⊆ R

n and discuss the continuity of such functions and a construction of
their convex extension to the convex hull of X. The simplest example of the construction in Section 9 is
the continuation of the exponential function from rational to real numbers.

Each of the nine sections is supplemented by a brief introduction. The title of each assertion states
what it is about. All assertions are numbered consecutively throughout the paper.
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COMPLETIONS OF CONVEX FAMILIES OF CONVEX BODIES 417

1. GENERAL PROPERTIES OF CONVEX SETS

In this section, we present some classical definitions and theorems of convex geometry (e.g., see [2]).
A convex subset of a vector space is a set that contains a segment [A,B] whenever it contains the

points A and B. A convex subset may be nonclosed and unbounded. The intersection of convex sets is
convex. The least convex set LY containing a given set Y is called the convex hull of Y . The set Δ∗ of
interior points of a convex set Δ is defined as the set of interior points of Δ with respect to the topology
of the minimal affine space containing Δ. For example, the set I∗ for a segment I ⊂ R

n is the set of all
points of I except for the endpoints.

First separation theorem. Let Δ ⊂ R
n be a closed convex subset (possibly unbounded), and let

a ∈ R
n \Δ. Then there exists a nonzero linear function L : R

n → R such that L(x) < L(a) for each
x ∈ Δ.

Theorem on the boundary of a convex set. Every boundary point of a convex set X ⊂ R
n is

a boundary point of the set of interior points of the complement R
n \ X.

Second separation theorem. Let Δ ⊂ R
n be a convex subset (possibly unbounded and non-

closed), and let a ∈ R
n \ Δ. Then there exists a nonzero linear function L : R

n → R such that
L(x) ≤ L(a) for each x ∈ Δ.

The second separation theorem follows from the first separation theorem and the theorem on the
boundary of a convex set. We will use the second separation theorem in the form of the following
corollary.

Corollary 1 (on separation from a subspace). Let Δ ⊂ R
n be a convex subset (possibly unbounded

and nonclosed), and let M ⊂ R
n be an affine subspace that does not meet Δ. Then there exists

a nonzero linear function L : R
n → R such that L(x) ≤ L(y) for every pair of points x ∈ Δ and

y ∈ M .

Proof. Consider the quotient space R
n/M , where M is the vector subspace obtained by a parallel

translation of M . Let π : R
n → R

n/M be the natural projection, let Δ ⊂ R
n/M be the image of Δ,

and let a ∈ R
n/M be the image of M . By the second separation theorem, there exists a nonzero linear

function L : R
n/M → R such that L(x) ≤ L(a) for every x ∈ R

n/M . The function π∗L : R
n → R has

the desired property by construction.

We also need the following classical Carathéodory theorem.

Carathéodory theorem. The convex hull of a subset X ⊂ R
N is the union of tetrahedra of

dimension ≤ N whose vertices are contained in X.

2. SETS CONVEX OVER PROJECTIONS OF THEMSELVES

In this section, we define the convexity of a set over a projection of itself. This definition is equivalent
to that of the convexity of a family of sets and simplifies the latter in the spirit of the Carathéodory theorem
(see Theorem 3 on the convex hull). Theorem 5 relates the property of Δ to be dense in its convex hull
to the same property of the projection of Δ.

The first question of interest to us can be stated as follows. Let π : R
N → R

n be the standard
projection of R

N onto a coordinate space R
n, let Y ⊂ R

N , and let X = π(Y ) ⊂ R
n be the projection

of Y .

Question 1. Is it true or false that there exists a convex set R ⊂ R
N such that R ∩ π−1(X) = Y ?

To answer this question, we need the following definition.

Definition. A set Y is said to be convex over its projection X = π(Y ) if the following assertions hold:
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1) The preimage π−1(x) ∩ Y of an arbitrary point x ∈ X is convex.

2) If the projections π(a1), . . . , π(ak) of points a1, . . . , ak ∈ Y are affinely independent (i.e., are not
contained in an affine space of dimension < k − 1), then the point Γ ∩ π−1(x), where Γ is the
tetrahedron with vertices a1, . . . , ak and x ∈ X ∩ π(Γ) is arbitrary, belongs to Y .

Theorem 2 (answer to Question 1). The answer is “yes” if and only if Y is convex over the
projection of itself.

It is obvious that if there exists a desired convex body R, then Y is convex over the projection of itself.

If the desired set R exists, then for R one can take the convex hull LY of Y . Indeed, the inclusions
Y ⊂ LY ⊂ R and the relation π−1(x) ∩ Y = π−1(x) ∩ R imply that π−1(x) ∩ Y = π−1(x) ∩ LV . This
reduces Theorem 2 to the following theorem on the convex hull.

Theorem 3 (on the convex hull). Assume that a subset Y of the space R
N equipped with a pro-

jection π : R
N → R

n is convex over X = π(Y ). Then the intersection of the convex hull LY of Y
with π−1(X) coincides with Y .

To prove Theorem 3, we need a lemma on sections of convex polytopes. For a convex polytope Δ and
a point A ∈ Δ, let ΔA be the face of Δ containing A as an interior point. (It may happen that ΔA = Δ.)

Lemma 4 (on the vertices of a section of a convex polytope). Let Δ be a convex polytope in R
N , let

Γ = M ∩ Δ be the section of Δ by an affine subspace M of dimension n, and let A be a vertex of
the polytope Γ. Then the least affine space LA containing ΔA meets M only in the point A. In
particular, the dimension of LA does not exceed N − n.

Proof. If the dimension of LA ∩ M is positive, then A is an interior point of LA ∩ M , because A is
an interior point of ΔA. Consequently, A cannot be a vertex of Δ ∩ M . This is a contradiction, which
proves the lemma.

Proof of Theorem 3. By the Carathéodory theorem, to obtain the convex hull of Y , it suffices to take
the union of tetrahedra Γ of dimension ≤ N with vertices in Y . We need to show that, for each x ∈ X,
any tetrahedron Γ whose vertices lie in Y meets π−1(x) in a subset if the convex set Y ∩ π−1(x). By the
lemma on the vertices of a section of a convex polytope, every vertex A of the polytope Γ ∩ π−1(x) is the
intersection of the space π−1(x) with the face ΓA, which is mapped one-to-one onto the image of itself
by the projection π. The dimension of ΓA does not exceed n, and its vertices lie in Y . Since Y is convex
over π(Y ), it follows that each vertex A of Γ ∩ M belongs to Y . Since the set Y ∩ π−1(x) is convex, we
see that Γ ∩ π−1(x) is contained in Y , as desired.

Thus, we have proved Theorem 3 and simultaneously Theorem 2.

Theorem 5 (on the property of being dense). Assume that a subset Y of the space R
N equipped

with a projection π : R
N → R

n is convex over X = π(Y ). If X is everywhere dense in the convex
hull LX, then Y is everywhere dense in the convex hull LY .

Proof. Without loss in generality, we can assume that LX is n-dimensional. Every point of LY is
contained in some simplex Γ with vertices in Y , which is mapped one-to-one onto the image of itself
under the projection π. Since X is dense in the n-dimensional set LX, it follows that the simplex Γ is
a face of some n-dimensional simplex ˜Γ with vertices in Y , which is mapped one-to-one onto the image
of itself under the projection π. Since X is dense in LX, it follows that X ∩ π(˜Γ) is dense in π(˜Γ). Hence
˜Γ lies in the closure of Y .
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3. SETS F-CONVEX OVER PROJECTIONS OF THEMSELVES

Let F be a subfield of reals. The elements of the set F
n ⊂ R

n will be called F-points in R
n. In this

section, we simplify the definition of convexity of a set over a projection of itself for the case where the
projection is the set of all F-points of a convex set. This definition can be simplified further for F = Q.

Definition. One says that a set Y ⊂ R
N is F-convex over its projection π(Y ) if the following

assertions hold:

1) The projection π(Y ) consists of all F-points of some convex set in R
n.

2) The set Yx = π−1(x) ∩ Y is convex for every x ∈ π(Y ).

3) If two points a, b ∈ Y have distinct projections, λ ∈ F, and 0 ≤ λ ≤ 1, then λa + (1 − λ)b ∈ Y .

Theorem 6 (on F-convexity). Let Y be a subset of the space R
N equipped with a projection

π : R
N → R

n. Then the following assertions hold:

1) If Y is F-convex over the projection of itself, then Y is convex over the projection of itself.

2) If Y is convex over the projection of itself and its image π(Y ) consists of all F-points of
some convex set, then Y is F-convex over the projection of itself.

To prove the theorem, we need the following lemma.

Lemma 7 (on a simplex). Let x ∈ R
n be an F-point lying in the interior of a (k − 1)-dimensional

simplex whose vertices A1, . . . , Ak are F-points, and let k > 2. Then the edge [A1, A2] contains
an F-point B such that x is an interior point of the (k − 2)-dimensional simplex with ver-
tices B,A3, . . . , Ak .

Proof of Lemma 7. For B one should take the point of intersection of the edge [A1, A2] with the
(k − 2)-dimensional affine space spanned by x,A3, . . . , Ak.

Proof of Theorem 6. To prove (1), it suffices to verify that if the images π(a1), . . . , π(ak) of the set of k
points a1, . . . , ak ∈ Y are affinely independent, then Γ ∩ π−1(x) ∈ Y , where Γ is the tetrahedron with
vertices a1, . . . , ak and x ∈ π(Y )∩ π(Γ) is arbitrary. For k = 2, this property is included in the definition
of a set F-convex over the projection of itself. Assume that the claim has already been proved for all
sets of less than k points of Y . By assumption, the points π(a1), . . . , π(ak), as well as x, are F-points.
By Lemma 7, the segment [π(a1), π(a2)] contains an F-point B such that x is an interior point of the
simplex with vertices B,π(a3), . . . , π(ak). By the definition of a set F-convex over the projection of itself,
the unique point B of intersection of the segment [a1, a2] with the space π−1(B) lies in the convex body
Y ∩ π−1(B). By the inductive assumption, the unique point of intersection of the simplex Γ with vertices
B, a3, . . . , ak and the space π−1(x) lies in the convex set Yx = π−1(x) ∩ Y . To complete the proof of (1)
it suffices to notice that Γ is contained in Γ and that Γ ∩ π−1(x) = Γ ∩ π−1(x). Claim (2) of the theorem
is obvious.

Among the subfields F of the reals, the fields R and Q are distinguished. By Theorem 6, every convex
set in R

N is R-convex over the projection of itself. The definition of Q-convexity over the projection of
itself can be slightly simplified.

Statement 8 (on Q-convexity). For the field F = Q, property (3) in the definition of F-convexity
can be replaced by the following property:

(3′) If two points a, b ∈ Y have distinct projections and n is a positive integer, then the inclusion
a/n + (1 − 1/n)b ∈ Y holds.
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Proof. We need to show that if a, b ∈ Y have distinct projections and 0 ≤ p/q ≤ 1, then we have
pa/q + (1 − p/q)b ∈ Y . Let ci ∈ R

N , 0 ≤ i ≤ p, be the points determined by

c0 = b, cj+1 =
a

q − j
+

(

1 − 1
q − j

)

cj .

One can readily verify that

ci =
i

q
a +

(

1 − i

q

)

b.

The points ci lie in Y . Indeed, c0 = b ∈ Y . If cj ∈ Y , then cj+1 ∈ Y by the recursion relation. Hence
cp ∈ Y . The proof is complete.

4. CLOSURE OF A SECTION OF A CONVEX SET

Here we show that, for a convex set Δ, the operations of intersection with an affine subspace and
taking the closure commute if the affine subspace meets the interior of Δ (see Theorem 9).

Let Y be a subset of the space R
N equipped with the standard projection π : R

N → R
n, and let

X ⊂ R
n be the image of Y under π. We are interested in the following version of Question 1 in Section 2.

Question 2. Is it true or false that there exists a closed convex set V ⊂ R
N such that V ∩ π−1(X) = Y ?

It is required in Question 2 that V be closed. In Question 1, R is not required to be closed.
If the answer to Question 2 for a set Y is “yes,” then, obviously, for V one can always take the set

LY , i.e., the closure of the convex hull LY of Y . If the answer to Question 2 for a set Y is “yes,” then,
in particular, so is the answer to Question 1 for the same set. Hence the answer to Question 2 can
only be positive for sets Y satisfying the following conditions:

1) The set Y is convex over the projection of itself.

2) All sets Yx = π−1(x) ∩ Y are closed.

These conditions are not sufficient for the answer to Question 2 to be “yes”: the set π−1(a) ∩ LY
may prove to be strictly larger than π−1(a) ∩ Y if a is a boundary point of the set X = π(Y ) (see
Example 1 below). However, under these conditions one has π−1(a) ∩ LY = π−1(a) ∩ Y for all
interior points a of π(Y ). This follows from Theorem 9 on the closure of a section of a convex set (see
below).

Example 1. Let R
2 → R

1 be the standard projection of the plane R
2 on the horizontal line R

1, and let
Y ⊂ R

2 be the subset defined as T \ (l1 ∩ l2) ∪ {A}, where T is the set of interior points of a trapezoid
whose bases l1 and l2 are vertical segments and A is the midpoint of l1. The set Y is convex over the
projection of itself and has closed fibers. The intersection of the line π−1(π(A)) with the closure of Y is
the base l1, and the intersection of that line with Y is the point A on l1.

Let Δ be a convex subset (possibly unbounded and nonclosed) of the space equipped with the
standard projection π : R

N → R
n. The image π(Δ) of Δ is a convex set in R

n.

Theorem 9 (on the closure of a section of a convex set)). Let x be an interior point of π(Δ). Then the
closure of the convex set Δx = π−1(x) ∩ Δ coincides with the intersection of the affine subspace
π−1(x) with the closure of Δ.

Remark 1. The theorem can be restated as follows. Assume that the section ΔM of a convex set Δ
by an affine subspace M contains an interior point of Δ. Then the closure of ΔM coincides with
the section of the closure of Δ by M .
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Remark 2. It is assumed in the theorem that x is an interior point of π(Y ). The theorem is not true
without this assumption (see Example 1 above). In Section 6, we state conditions under which the
theorem remains valid for the boundary points x ∈ ∂(π(Δ)).

Proof of Theorem 9. Let c be a point that belongs to π−1(x) and does not lie in the closure of Δx. By
the first separation theorem, there exists a hyperplane Vx ⊂ π−1(x) such that c lies on one side of Vx and
the closure of Δx lies on the other side. The affine space Vx ⊂ R

N entirely lies in π−1(x) and does not
meet Δ. By Corollary 1, there exists a hyperplane V ⊂ R

N containing Vx such that Δ lies in one of the
two closed half-spaces of R

N with common boundary V .

Let us show that V ∩ π−1(x) = Vx. Since Vx ⊂ V by assumption, we should verify that V cannot
contain π−1(x). Indeed, otherwise the image of V under π would pass through the interior point x of
the body π(Δ). By construction, π(Δ) should lie on one side of this section, but x is an interior point
of π(Δ) by assumption. This is a contradiction, which shows that π−1(x) ∩ V = Vx.

The point c cannot lie in the closure of Δ. Indeed, it belongs to the interior of a half-space with
boundary V , while Δ lies in the closure of the other half-space. The proof of the theorem is complete.

5. THE CHARACTERISTIC CONE OF A NONCOMPACT CONVEX BODY

Here we define the characteristic cone, which is a simple invariant of convex bodies permitting one to
distinguish bounded and unbounded bodies. To each point x of a convex body Δ (unbounded in general),
we assign the following set K(x,Δ): a vector v belongs to K(x,Δ) if x + λv ∈ Δ for each λ ≥ 0. The
following assertion is a straightforward consequence of the convexity of Δ.

Statement 10 (on the characteristic cone). If Δ is a convex set, then K(x,Δ) is a convex cone for
each x ∈ Δ. The cones K(x1,Δ) and K(x2,Δ) of distinct interior points x1, x2 ∈ Δ∗ coincide.

The characteristic cone of a convex body Δ is defined as the cone K(Δ) = K(x,Δ) of its arbitrary
interior point x.

Statement 11 (criterion for boundedness). The cone K(Δ) does not coincide with the point 0 if and
only if the set Δ is unbounded. The cone K(Δ) of a convex set is always closed.

Proof. Without loss in generality, we can assume that Δ is of full dimension. For an interior point
x ∈ Δ∗, there exists a ball Br centered at x and contained in Δ. If Δ is unbounded, then there exists
a sequence yi ∈ Δ such that ‖yi‖ → ∞ and the sequence (yi − x)/‖(yi − x)‖ of unit vectors converges
to some vector v. One has v ∈ K(x,Δ). Indeed, Δ contains the convex hull Yi of the union Br ∩ {yi}.
Let li be the intersection of Yi with the ray l formed by the points x + λv, λ ≥ 0. The sets li lie in Δ, and
their union covers the entire l. Hence v ∈ K(x,Δ).

Let v be a limit point of unit vectors vi ∈ K(x,Δ). The body Δ contains the cylindrical bodies
Br + Li, where Li is the ray formed by the points λv, λ ≥ 0. The union of the sets Br + Li contains
the ray x + λv, λ ≥ 0. Hence K(x,Δ) is closed.

Corollary 12 (on boundedness). Let Δ be a convex subset of the space R
N equipped with the

projection π : R
N → R

n. Let the image π(Δ) ⊂ R
n be a bounded set. The set Δ ⊂ R

N is bounded
if and only if the set Δx = Δ ∩ π−1(x) is bounded for some interior point x ∈ π(Δ).

Proof. Let us show that if Δx is bounded, then so is Δ. Indeed, if Δ is unbounded, then the cone
K(a,Δ), a ∈ (Δx)∗, contains nonzero vectors. Since the closed cone a + K(a,Δ) is contained in Δ
and π(Δ) is bounded, it follows that the cone (a + K(x,Δ)) ∩ π−1(x) contains vectors other than a.
Hence Δx is unbounded. This contradiction proves the lemma.

MATHEMATICAL NOTES Vol. 91 No. 3 2012



422 KHOVANSKII

6. CONTINUITY OF SECTIONS AS FUNCTIONS OF THE PARAMETER

Let Δ be a closed convex subset of the space R
N equipped with the standard projection π : R

N → R
n.

Consider the section Δx = π−1(x)∩Δ of Δ by the affine space π−1(x) as a function of a point x ∈ π(Δ).
In this section, we discuss the following question: is it true that Δx continuously depends on x?

First, note that the answer is negative if one does not introduce additional conditions (even if the
restriction of π to Δ is a proper mapping). The section may experience a jump near a boundary point
a ∈ ∂(π(Δ)).

Example 2. Let Δ ⊂ R
3 be a cone over the disk B2 lying on the horizontal plane R

2, and let the vertex O
of the cone lie over some point A of the boundary circle ∂B2. The image of Δ under the standard
projection π : R

3 → R
2 is the disk B2. If x ∈ ∂B2 and x �= A, then Δx = {x}. The section ΔA is the

segment [O,A]. The dependence of the sections on the point of B2 in a neighborhood of A ∈ B2 is
discontinuous.

In the example, π(Δ) is a disk. If π(Δ) is a polytope, then Δx continuously depends on x ∈ π(Δ).

Theorem 13 (on the continuity of sections as functions of the parameter). Let Δ ⊂ R
N be closed and

convex, and let π(Δ) ⊂ R
n be a polytope. Assume that the section Δx is bounded for some interior

point x ∈ π(Δ). Then the sections Δx depend continuously in the Hausdorff metric on the point
x ∈ π(Δ).

Proof. Under the assumptions of the theorem, the boundedness of Δx implies the compactness of the
closure of Δ by corollary 12. To prove that the function Δx is continuous at a point a ∈ π(Δ), we
proceed as follows. First, for each x in a neighborhood U of a, we construct a convex set Vx ⊂ Δx that
is a continuous (and even piecewise linear) function of x. Second, we show that the function x �→ Δx is
upper semicontinuous.

(1) Lower bound. Let us construct the family Vx. Take a triangulation of π(Δ) such that a is one
of the triangulation vertices, a = A1. The closure U of the star U of a with respect to this triangulation
is a union of finitely many simplices containing the vertex A1 = a. Let us define a piecewise linear
mapping F of U into the set of convex subsets of Δ such that F (x) ⊆ Δx. First, we define F at the
triangulation vertices Ai. For the vertex A1 = a, set F (A1) = Δa. For the other vertices Ai, i > 1, set
F (Ai) = Ci, where Ci is an arbitrary point in the fiber ΔAi . Next, we define F by linearity in each simplex
of the triangulation: if a point x lies in a simplex of U with vertices A1 = a, A2, . . . , Ak and

x = λ1A1 + λ1A1 + · · · + λkAk,

where
∑

λi = 1 and λi ≥ 0, then

F (x) = λ1Δa + λ2C2 + · · · + λkCk.

For x ∈ U , set Vx = F (x). The family Vx has the desired properties.

(2) Upper semicontinuity. For a positive number ρ, let B1
ρ and B2

ρ be the closed balls of radius ρ

centered at the origin in R
n and in the kernel R

N−k of the projection π : R
N → R

n, respectively. The
boundary Γε of the set Δa + B2

ε , where ε > 0, is a compact set that does not meet the closed set Δ.
Hence there exists a δ > 0 such that the set Γε + B1

δ + B2
δ does not meet Δ. For each point x in the ball

a + B1
δ of radius δ centered at a, the section Δx is contained in the set Δa + B2

δ translated into the space
π−1(x) (i.e., in the set Δa + B2

δ + (x − a)). This proves that Δx is an upper semicontinuous function of
x ∈ π(Δ).

The theorem follows from (1) and( 2).

We say that a set X ⊂ R
n is polyhedral near a point a ∈ X if there exists a polytope P and

a neighborhood U ⊂ R
n of a such that U ∩ X = U ∩ P . Any set X is polyhedral near its arbitrary

interior point a. A closed polyhedral cone is polyhedral near any of its points. Theorem 13 readily implies
the following corollary.
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Corollary 14 (on polyhedrality and continuity). Let Δ ⊂ R
N be closed and convex, and let

π(Δ) ⊂ R
n be polyhedral near some point a ∈ π(Δ). Assume that the section Δb is bounded

for some interior point b ∈ π(Δ). Then the sections Δb depend continuously in the Hausdorff
metric on the point x ∈ π(Δ) in a neighborhood of a.

7. CONVEX SETS THAT ARE PROJECTED ONTO A POLYTOPE

Here we classify all convex sets Δ projected onto a given convex polytope P and such that the
preimage in Δ of every point x ∈ P is a compacts set. The classification is given in Theorems 15 and 16
below. Corollary 18 gives a sufficient condition for the compactness of Δ in terms of the volume of its
sections.

Associated with each polytope is the set of its faces, which includes the polytope itself.

Theorem 15 (on bodies convex over a polytope). Let Δ ⊂ R
N be a convex subset, and let π(Δ) ⊂ R

n

be a polytope. Assume that the set Δx = Δ ∩ π−1(x) is closed for all x ∈ π(Δ) and bounded for
some interior point x ∈ π(Δ). Then the following assertions hold:

1) The closure ΔΓ of the preimage π−1(Γ) of a face Γ ⊂ π(Δ) is a convex compact set.

2) If a face Γ1 is contained in a face Γ2, then ΔΓ1 ⊂ ΔΓ2 .

3) If x is an interior point of a face Γ, then π−1(x) ∩ ΔΓ = Δx.

Proof. Under the assumptions of the theorem, the boundedness of Δx implies the compactness of the
closure of Δ by Corollary 12. By Theorem 9, Δx = Δ ∩ π−1(x) for every interior point x of π(Δ).
Likewise, Δx = ΔΓ ∩ π−1(x) for each interior point x of a face Γ ⊂ π(Δ). This proves the theorem.

Theorem 15 admits a converse. Let R
N be equipped with the standard projection π : R

N → R
n. The

following theorem is obvious.

Theorem 16 (converse of Theorem 15). Let P ⊂ R
n be a polytope. Assume that, for each face

Γ ⊆ P , there is given a convex compact set ΔΓ ⊂ RN such that π(ΔΓ) = Γ and if Γ1 ⊆ Γ2, then
ΔΓ1 ⊂ ΔΓ2 . Then the set Δ =

⋃

(ΔΓ ∩ π−1(Γ)∗), where Γ∗ is the set of interior points of a convex
face Γ, is convex. All fibers Δx = π−1(x) ∩ Δ are closed. If x is an interior point of a face Γ, then
Δx = π−1(x) ∩ ΔΓ.

The volume V is a continuous function of the space of bounded convex sets equipped with the
Hausdorff metric. The volume has the following property of strict monotonicity. Let Δ2 ⊃ Δ1 be distinct
closed convex bodies. If V (Δ2) > 0, then V (Δ2) > V (Δ1). (If V (Δ2) = 0, then V (Δ2) = V (Δ1).)

Under the assumptions of Theorem 15, the function φ taking each point x ∈ π(Δ) to the (N − n)-
volume φ(x) of the section Δx is defined on the polytope π(Δ). Theorem 16 implies the following
theorem.

Theorem 17 (on the volume of a fiber). The restriction φΓ∗ of the function φ to the set Γ∗ of interior
points of a face Γ ⊂ π(Δ) is a continuous function. (In particular, the restriction φΔ∗ of φΔ to the
set of interior points of Δ is continuous.) The function φΓ∗ extends to a continuous function φΓ on
the entire face Γ. If Γ1 ⊂ Γ2, then φΓ1 ≤ φΓ2 . If φΓ(a) = φ(a) for each face Γ containing a point a
and φ(a) > 0, then the function that takes each point x ∈ π(Δ) to the section Δx is continuous at
the point a.

Corollary 18 (on the continuity of the fiber and the volume). Under the assumptions of Theorem 16,
suppose that the volume function φ is continuous and positive on the entire polytope P . Then Δ
is a compact set, and the fiber Δx continuously depends on the point x ∈ P .
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Definition. A set X ⊂ P is said to be dense in a polytope P and its faces if the vertices of P belong
to X and the intersection X ∩ Γ is dense in Γ for each face Γ ⊆ P (including Γ = P ).

Example 3. Let P ⊂ R
n be a polytope all of whose vertices are F-points in R

n. Then the set X of all
F-points of P is dense in P and the faces of P .

Our immediate problem is to classify the sets Δ ⊂ R
N that are convex over a given set X ⊂ P dense

in a polytope P and its faces and have compact fibers Δx over all points x ∈ X. The theorems stated
below reduce this problem to the classification problem for X = P , which has been solved above.

Let a set Δ ⊂ R
N be convex with respect to a projection π : R

N → R
n over a set X dense in

a polytope P and its faces. To each face Γ ⊆ P , we assign the set ˜ΔΓ∗ defined as the intersection
of the closure of π−1(Γ∗ ∩ Δ) with π−1(Γ∗), where Γ∗ is the interior of Γ.

Definition. The set ∪˜ΔΓ∗ ⊂ R
N equal to the union of the sets ΔΓ∗ over all faces G ⊆ P of P (including

G = P ) is called the closure of Δ over the faces of P .

Assume that a set Δ ⊂ R
N is convex with respect to a projection π : R

N → R
n over a polytope P and

all sections Δx = Δ ∩ π−1(x), x ∈ P , are compact.

Definition. The set Δ ∩ π−1(X) is called the restriction of Δ to X.

The following theorem shows that the operation of closure over the faces of P and the operator of
restriction to X establish a one-to-one correspondence between the sets Δ convex over a set X dense
in a polytope P and its faces and the similar sets for X = P .

Theorem 19 (on the convexity over a subset of a polytope). (1) If Δ is convex over a set X dense in
a polytope P and its faces, and Δ has compact fibers, then the closure of Δ over the faces of P is
convex over P and has compact fibers.

(2) If Δ is convex over P and has compact fibers, then its restriction Δ ∩ π−1(X) to a set X
dense in a polytope P and its faces is convex over X and has compact fibers.

(3) If Δ is convex over a set X dense in a polytope P and its faces, then
(
⋃

˜ΔΓ∗

)

∩ π−1(X) = Δ.

(4) If Δ is convex over P and has compact fibers, then ∪˜ΩΓ∗ = Δ, where Ω = Δ ∩ π−1(X).

Proof. (1) Let us verify that the set
⋃

˜ΔΓ∗ is convex. To each face Γ ⊆ P , we assign the closure in R
N

of the linear span of the set π−1(Γ) ∩ Δ. By Theorem 5, this set coincides with the closure ˜ΔΓ of the set
π−1(Γ) ∩ Δ. Consequently, the closed set ˜ΔΓ is convex. If Γ1 ⊂ Γ2, then ˜ΔΓ1 ⊂ ˜ΔΓ2 . Hence the set
⋃

˜ΔΓ∗ is convex.

(2) This is obvious.

(3) The set ∪˜ΔΓ∗ coincides with the intersection of the closed convex hull of the set π−1(Γ) ∩ Δ with
the set Δ (cf. the proof of claim (1)). Now the desired assertion follows by applying the theorem on the
closure of a section to the convex hull of the set π−1(Γ) ∩ Δ.

(4) This follows from claim (3) in Theorem 15.
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8. HOMOGENEOUS SEMIGROUPS OF CONVEX BODIES

In this section, we solve the problem arisen from algebraic geometry and stated in the introduction.
We also solve the problem of describing semigroups of convex bodies over the semigroup F

n
≥0 in R

n. All
these results are a straightforward consequence of the preceding sections.

Let π : R
N → R

n be the standard projection, and let there be given an additive semigroup T ⊂ R
n

containing the point 0. The following semigroups T will be of interest to us: the semigroup Z
n
≥0 of points

with nonnegative integer coordinates; the semigroup F
n
≥0 of F-points with nonnegative coordinates

in R
n; in particular, the semigroups Q

n
≥0 and R

n
≥0.

Let G ⊂ R
N be a subset whose image under π coincides with T . For each a ∈ T , let

Ga = π−1(a) ∩ G.

We say that the set G is a homogeneous semigroup of convex bodies over the semigroup T with
respect to the projection π (or simply a semigroup over T ) if the following conditions are satisfied:

1) The set Ga is convex for each a ∈ T .

2) For the point 0 ∈ T , the set G0 consists of the point 0 ∈ R
N .

3) If a ∈ T and b = λa, where λ ≥ 0, then Gb = λGa.

4) If a, b ∈ T and a + b = c, then Ga + Gb ⊂ Gc. (In other words, the set G is a subgroup in R
N with

respect to addition.)

Our aim is to describe homogeneous semigroups of convex bodies over Z
n
≥0 and F

n
≥0 (in particular,

over Q
n
≥0 and R

n
≥0). The description of semigroups over Z

n
≥0 can be reduced to that of semigroups over

Q
n
≥0.

Definition. (1) Let a set G ⊂ R
N be a semigroup over Z

n
≥0 with respect to a projection π : R

N → R
n.

The set QG ⊂ R
N determined by the condition that y ∈ QG if and only if there exists a positive integer k

such that ky ∈ G is called the extension of G by homogeneity.
(2) Let a set G ⊂ R

N be a semigroup over Q
n
≥0 with respect to a projection π : R

N → R
n. The set

GZ ⊂ R
N equal to G ∩ π−1(Zn

≥0) is called the restriction of G to Z
n
≥0.

The following lemma shows that the operation of extension by homogeneity and the operator of
restriction to Z

n
≥0 establish a one-to-one correspondence between semigroups over Z

n
≥0 and semigroups

over Q
n
≥0.

Lemma 20 (on semigroups over Z
n
≥0 and over Q

n
≥0). (1) If G is a semigroup over Z

n
≥0, then its

extension QG by homogeneity is a semigroup over Q
n
≥0.

(2) If G is a semigroup over Q
n
≥0, then its restriction GZ to Z

n
≥0 is a semigroup over Z

n
≥0.

(3) If G is a semigroup over Z
n
≥0, then (QG)Z = G.

(4) If G is a semigroup over Q
n
≥0, then Q(GZ) = G.

The proof is by a straightforward verification, and we omit it.

Lemma 21 (semigroups over F
n
≥0 and F-convexity). A set G ⊂ R

N is a semigroup over F
n
≥0 if and

only if the following conditions hold:

1) The set G is F-convex over π(G).

2) π(G) = F
n
≥0.
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3) π−1(0) ∩ G = 0 ∈ R
N .

4) If λ ∈ F, λ ≥ 0, and x ∈ G, then λx ∈ G.

Proof. Let G ⊂ R
N be a semigroup of convex bodies over the semigroup F

n
≥0. By definition, G satisfies

(2)–(4). Let us verify that G satisfies (1). Let x, y ∈ F
n
≥0 be distinct points, and let a point z ∈ F

n
≥0 lie in

the interior of the segment [x, y]. Let A ∈ Gx and B ∈ Gy be arbitrary points, and let C be the point of
intersection of the segment [A,B] with the space π−1(z). Let us prove that C ∈ Gz . Let λ ∈ F+ be the
number defined by z = λx + (1− λ)y. By homogeneity, one has λA ∈ Gλx and (1− λ)B ∈ G(1−λ)y . By
the definition of a semigroup of convex bodies, the point C = λA + (1 − λ)B lies in Gz = Gλx+(1−λ)y .

Assume that the set G has properties (1)–(4). Let us show that G is a homogeneous semigroup of
convex bodies over F

n
≥0. We should only verify that if x, y ∈ G, then x + y ∈ G. First, let us show that

the midpoint u = (x + y)/2 of the segment [x, y] belongs to G. Indeed, if π(x) = π(y) = a, then the
desired inclusion follows from the convexity of the fiber Ga. If π(x) �= π(y), then π(u) is the midpoint
of the segment [π(x), π(y)], and u ∈ G, because G is convex over the F-points. Next, x + y = 2u, and
x + y ∈ G by homogeneity.

Corollary 22 (on semigroups over R
n
≥0). A set G ⊂ R

N is a semigroup over R
n
≥0 if and only if the

following conditions are satisfied:
(1)) G is a convex cone;
(2)) π(G) = R

n
≥0;

(3)) π−1(0) ∩ G = 0 ∈ R
N .

We say that a semigroup G of convex bodies over a semigroup T is a semigroup with compact fibers
if the set Gx = G ∩ π−1(x) is compact for each x ∈ T .

Statement 23 (on the description of semigroups over F
n
≥0). The description of semigroups G with

compact fibers over F
n
≥0 can be reduced to the description of sets Δ convex over the set of F-points

of the standard (n − 1)-dimensional simplex in R
n.

Proof. Let P ∈ R
n be the standard (n− 1)-dimensional simplex, whose vertices are the standard basis

vectors in R
n. If G is a semigroup over F

n
≥0, then the set Δ = G ∩ π−1(P ) is convex over the set of

F-points of P . Conversely, let Δ be convex over the set of F-points of P . For a nonzero a ∈ F
n, set

λ = (a1 + · · · + an) and Ga = λπ(a/λ) ∩ Δ.

Also set G0 = 0. The union G of the sets Ga is a semigroup over F
n. This follows from the homogeneity

of G by Lemma 21. Obviously, distinct sets Δ corresponding to distinct semigroups G, and vice versa.
A semigroup G is a semigroup with compact fibers if and only if all sets Δx = π−1(x) ∩ Δ, x ∈ P , are
compact.

The problem of describing semigroups with compact fibers over Z
n
≥0 and F

n
≥0 is thereby solved. Let us

give a detailed answer for the case of Z
n
≥0, because it is this case that is of interest in algebraic geometry.

To each subset J ⊂ In = {1, 2, . . . , n}, we assign the coordinate subspace Rj defined in the space
R

n with coordinates x1, . . . , xn by the equations xi = 0, i /∈ J . Let the space R
N be equipped with the

standard projection π : R
N → R

n.

Definition. Let there be a cone ΔJ ⊆ R
N assigned to each subset J ⊆ In. We say that the family {ΔJ}

of cones is compatible if the following conditions are satisfied:

1) For each J , the restriction π : ΔJ → RJ of the projection π to the cone ΔJ is a proper mapping of
ΔJ onto the coordinate subspace RJ .

2) If J1 ⊂ J2, then ΔJ1 ⊂ ΔJ2 .
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Theorem 24 (on semigroups with compact fibers over Z
n
≥0). (1) To each compatible family of cones

ΔJ , there corresponds a semigroup G with compact fibers over Z
n
≥0 by the following rule: the

fiber Gm of G over a point m ∈ Z
n
≥0 is π−1(m) ∩ ΔJ , where J is the minimum subset such that

m ∈ RJ .
(2) The rule in (1) defines a one-to-one correspondence between compatible families of cones

and semigroups with compact fibers over Z
n
≥0.

The semigroups with compact fibers over R
n
≥0 that are of interest from the viewpoint of algebraic

geometry admit a simpler description. This is because the volume of the fiber of such a semigroup over
a point m �= 0 is positive, and the function can be extended by continuity to the entire positive octant.

Definition. A semigroup G over Z
n
≥0 is said to be controlled if it has compact fibers and there exists

a continuous control function φ on R
n
≥0 such that the following conditions hold:

1) If a ∈ Z
n
≥0, then φ(a) is the (N − n)-volume of the body Ga.

2) If x ∈ R
n
≥0 and λ ≥ 0, then φ(λx) = λN−nφ(x);

3) If x ∈ R
n
≥0 and x �= 0, then φ(x) > 0.

Definition. Let φ : R
N
≥0 → R be a continuous function homogeneous of degree N − n and positive

everywhere except for the point 0. A cone Δ ⊂ R
N is said to be compatible with φ if the following

conditions are satisfied:

1) The projection π : Δ → R
n is a proper mapping onto R

n.

2) The (N − n)-volume of the fiber Δx = π−1(x), x ∈ R
N
≥0, is φ(x).

Theorem 25 (on controlled semigroups over Z
n
≥0). (1) To each cone Δ ⊂ R

N compatible with φ, there
corresponds a controlled semigroup G over Z

n
≥0 with control function φ by the following rule: the

fiber Gm of G over a point m ∈ Z
n
≥0 is π−1(m) ∩ ΔJ .

(2) The rule in (1) defines a one-to-one correspondense between families of cones compatible
with φ and controlled semigroups over Z

n
≥0 with control function φ.

9. CONVEX FUNCTIONS AND THEIR CONTINUOUS EXTENSIONS

Here we define convex functions on an arbitrary subset X ⊂ R
n and discuss issues related to the

continuity of such functions and their convex continuation to the convex hull of X.
Let X ⊂ R

n be some set, and let f : P → R be a real function on X. The epigraph Γ≥f of f is the
subset of R

n+1 = R
n + R

1 defined as follows: (x, y) ∈ Γ≥f if and only if x ∈ P and y ≥ f(x).

The space R
n+1 is equipped with the natural projection π : R

n+1 → R
n.

Definition. A function is said to be convex on a set X if the epigraph Γ≥f ⊂ R
n+1 is a convex set over

its projection X.

Let R
n+1 = R

n + R
1, and let Y ⊂ R

n+1 be a convex set whose intersection with each line π−1(x) is
closed and is either the whole line π−1(x) or some ray of the form (x, u), u ≥ u0(x).

Let X = π(Y ), and let X∗ be the set of interior points of X. Assume that Yx is a ray for at least
one point x ∈ X∗. Then the intersection of the boundary of Y with the set X∗ + R

1 is the graph of
a continuous convex function on X∗. In other words, the following theorem holds.
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Theorem 26 (on a function related to a convex set). Assume that there exists at least one point
c ∈ R

n+1 such that c /∈ Y and π(c) ∈ X∗. Then, for each x ∈ X, the set of points (x, y) ∈ Y contains
a point with minimum coordinate y = f(x). The function f defined by this relation is continuous
on X∗.

Proof. The assertion of the theorem can be reduced to Theorem 13 on the continuity of sections. That
theorem does not apply directly, for the epigraph is not bounded. We need an additional argument.

By the second separation theorem, there exists a hyperplane passing through c such that Y lies in
one of the two closed half-spaces for which this hyperplane is the common boundary. This hyperplane
cannot be vertical, because π(c) is an interior point of X0. Hence it can be viewed as the graph of a linear
function on R

n. The set Y lies above the graph of this linear function. Hence the coordinate y is bounded
below on the closed set π−1(x) ∩ Y for each x ∈ X. Consequently, the function y = f(x) is defined on
the entire set X.

Since a ∈ X∗ it follows that there exists a simplex Γ with vertices a1, . . . , an+1 ∈ X∗ such that a is
an interior point of Γ. Let C be the maximum of the numbers f(a1), . . . , f(ak). Since Y is convex, it
follows that f does not exceed C on Γ.

Define a convex set Ycom ⊂ R
n+1 by setting Ycom = Y ∩ π−1(Γ) ∩ LC , where LC is the half-space

formed by the points (x, u), u ≤ C. By construction, Ycom is a compact convex set, π(Ycom) = Γ, and the
minimum value of y at the points (x, y) ∈ π−1(x)∩ Ycom is equal to f(x) for each x ∈ Γ. By Theorem 13,
the set π−1(x) ∩ Ycom continuously depends on x ∈ Γ∗. Hence the function f is continuous.

Theorem 27 (on a continuous extension of a convex function). Let X ⊂ R
n be some set, let (LX)∗ be

the set of interior points of the convex hull LX of X, and let φ : X → R be a convex function on X.
Then there exists a continuous function f : (LX)∗ → R

1 on (LX)∗ whose restriction to X ∩ (LX)∗
coincides with φ.

Proof. If the epigraph Γ≥φ of φ contains some point (x, y), then it contains all points (x, u) with u ≥ y.
It is seen from the Carathéodory theorem that the convex hull LΓ≥φ of the epigraph Γ≥φ has this property
as well. Obviously, the closed convex hull LΓ≥φ of the epigraph has the same property. Let us apply the
preceding theorem to the set LΓ≥φ. Let f : X∗ → R

1 be the function whose existence and uniqueness
are guaranteed by the preceding theorem. By Theorem 9 on the closure of a section of a convex set,
f = φ on the set X ∩ X∗. The proof of the theorem is complete.

Theorem 27 only deals with interior points of the convex hull of X and cannot be extended to boundary
points.

Example 4. Every function on the circle X = ∂B2 is convex on X, because simplices with vertices
on X do not contain any points of X other than vertices. Fortunately, Theorem 27 does not say anything
about arbitrary functions on the circle, because the set X ∩ X∗ is empty in this case.

Corollary 28 (on the uniqueness of the extension). Let X ⊂ R
n be a set everywhere dense in its

convex hull LX, and let φ : X → R be a convex function on X. Then there exists a unique
continuous function f : (LX)∗ → R

1 that is on the interior (LX)∗ of the convex hull and whose
restriction to X ∩ (LX)∗ coincides with φ.

Theorem 29 (on the behavior of the extension on the faces of the boundary). Let φ : X → R be
a function convex on a set X dense in a polytope P and in the faces of P . Then, on each face
Γ ⊂ P (including the face Γ = P ), there exists a continuous function fΓ such that the following
conditions hold:

1) If x ∈ X is an interior point of Γ, then fΓ(x) = φ(x).

2) If a face Γ1 is contained in a face Γ2, then fΓ1 ≥ fΓ2 .
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This theorem can be derived from Theorem 19 in the same way as Theorem 26 is derived from
Theorem 13.

The definition of convexity can be simplified for functions on the set ΔF of all F-points of a convex set
Δ ⊂ R

n.

Definition. A function φ : ΔF → R
1 is said to be F-convex if

φ(λa + (1 − λ)b) ≤ λφ(a) + (1 − λ)φ(b)

for two arbitrary points a, b ∈ ΔF and an arbitrary number λ ∈ F, 0 ≤ λ ≤ 1.

Statement 30 (on F-convexity of functions). A function φ is convex of the set ΔF if and only if it is
F-convex.

Proof. The claim follows from Theorem 6.

The definition of F-convexity can be slightly simplified further for the field F = Q of rationals.

Definition. A function φ : ΔQ → R
1 is said to be Q-convex if

φ

(

a

k
+

(k − 1)b
k

)

≤ φ(a)
k

+
(k − 1)φ(b)

k

for two arbitrary points a, b ∈ XΔ and an arbitrary positive integer k.

Statement 31 (on Q-convexity of functions). A function φ is convex on ΔQ if and only if it is Q-
convex.

Proof. The claim follows from Statement 8.

Example 5. Let c > 0, and let cr be the function defined on rational numbers by the formula cr = q
√

cp,
where r = p/q. For a, b ∈ Q and integer k > 1, one has the inequality

ca/k+(k−1)b/k ≤ ca

k
+

(k − 1)cb

k
.

Indeed, by dividing by cb, we reduce the inequality to the form

c(a−b)/k ≤ ca−b − 1
k

+ 1.

Set u = (ca−b − 1)/k. Clearly, u > −1. This, we have reduced the inequality to the assertion that
(1 + u)k ≥ 1 + ku which can be verified automatically by induction over k.

Thus, the function cr is Q-convex. Hence it can be extended by continuity to the entire real line.

Remark. It is well known that the function cx is not only continuous but also differentiable. This fact
can be explained from the viewpoint of convex geometry as well. A continuous convex function of
one variable has left and right derivatives at every point and is differentiable at all but finitely
many points. This is a consequence of the following geometric fact: A convex figure on the plane
has a tangent cone at each point of the boundary, and this cone is a half-plane at all but finitely
many points. The function cx has the “same structure,” at every point, because ca+x = cacx. Hence
the function cx is differentiable everywhere.
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