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Newton polytopes
and irreducible components of complete intersections

A. G. Khovanskii

Abstract. We calculate the number of irreducible components of varieties

in (C∗)n determined by generic systems of equations with given Newton

polytopes. Every such component can in its turn be given by a generic

system of equations whose Newton polytopes are found explicitly. It is

known that many discrete invariants of a variety can be found in terms of

the Newton polytopes. Our results enable one to calculate such invariants

for each irreducible component of the variety.
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To the memory of Andrey Andreevich Bolibrukh

§ 1. Introduction

1.1. Prehistory. Being a deep mathematician renowned by the whole mathe-
matical community for his solution of Hilbert’s 21st problem, Andrey Andreevich
Bolibrukh was also a ready communicator with a profound knowledge of human
nature, a benevolent and unusually honest person. He willingly helped many people.

Andrey also played a significant role in my life. Let me explain this in more detail.
In the early 1970s, when a pupil of Vladimir Igorevich Arnold, I had constructed
a new version of Galois theory, which formed the basis of my PhD thesis. I was told
to publish this theory in ‘Izvestiya of the Academy of Sciences of the USSR’. In
those days I knew neither ordinary nor differential Galois theory and was absolutely
ignorant of the intricate history of the subject. Therefore I decided to learn a little
before writing the paper. However, life goes on. Soon I obtained new results in the
theory of Newton polytopes and then developed my theory of fewnomials. Being
preoccupied with all this, I forgot about topological Galois theory. The related
plans were deferred sine die.

Andrey became a co-editor of the new ‘Journal of Dynamical and Control Sys-
tems’, whose first issue was to appear in January 1995. In February 1994 (21 years
since the defence of my PhD thesis) Andrey briefly visited us in Toronto. He
thought about the journal and remembered my theory in this connection. Andrey
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persuaded me to separate the question of its connections with known mathematics
and concentrate on arranging the text. His idea of publishing the paper in the first
issue seemed absolutely unrealistic. We were in Canada, and the text was left in
our Moscow flat. Somebody had to reach and edit it, translate it into English, and
prepare it for publication. Back in Moscow, Andrey got hold of the text, made
a photocopy and sent it to us. He infected me with his enthusiasm. I restored all
the details and edited the text, our old friend Smilka Zdrawkowska translated it
into English, and the paper did indeed appear in the first issue.1

As a result, I returned to topological Galois theory. In the thesis, it was devel-
oped only for functions of one variable. I was able to construct a multi-dimensional
version, make clear the connections with the algebraic and differential Galois the-
ories, and learn the history of the question. A book on this theme was published
in 2008.2 An expanded English version appeared recently.3

Nothing of this would probably have happened without Andrey’s influence. My
paper would have remained unpublished and then completely forgotten.

In connection with this story I would like to dedicate to A. A. Bolibrukh one of my
old unpublished results, of which I am proud. Probably the oldest of such results is
an affine version of the Bernstein–Kushnirenko theorem. It counts the number and
multiplicities of isolated roots in Cn of a generic system of n polynomial equations
with given Newton polytopes (the original theorem counts the number of roots of
such a system in (C∗)n). There had been a number of papers on this theme, all
without definitive results. While preparing the affine version for publication, I had
found a generalization of it, which counts the number and multiplicities of (n− k)-
dimensional components of a variety determined in Cn by a generic system of k
polynomial equations with given Newton polytopes. The first thing required for
this generalization is to find the number of irreducible components of such a variety
in (C∗)n. When a thorough computation of this number was written down, it
became clear that this was a natural place to stop.

1.2. Content of the paper. We calculate the number of irreducible components
of a variety determined in (C∗)n by a generic system of k equations with given New-
ton polytopes. When k = n our result coincides with the Bernstein–Kushnirenko
theorem. When k < n its proof generalizes the version of the proof of this theorem
in [1]. The more complicated affine version of the problem will be treated elsewhere.

Let (C∗)n be a complex torus with fixed coordinates z1, . . . , zn, and let Rn

be the real character space with coordinates x1, . . . , xn. Each integer point k =
(k1, . . . , kn) ∈ Rn determines a character of the torus (or monomial) zk = zk1

1 · · · zkn
n .

A Laurent polynomial is a finite linear combination P =
∑

ckzk of characters.
The support supp(P ) of a Laurent polynomial P is a finite set supp(P ) ⊂ Zn ⊂ Rn

defined by the condition k ∈ supp(P ) ⇐⇒ ck 6= 0. The Newton polytope ∆(P ) ⊂
Rn of a Laurent polynomial P is the convex hull of supp(P ).

1A. G. Khovanskii, “Topological obstructions for representability of functions by quadratures”,
J. Dyn. Control Syst., 1:1 (1995), 91–123.

2A. G. Khovanskii, Topological Galois theory, MCCME, Moscow 2008. (Russian)
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terms, Springer Monographs in Math., Springer, Berlin 2014.
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In this paper we deal with an algebraic variety X defined in (C∗)n by a system
of equations

P1 = · · · = Pk = 0, (1)

where P1, . . . , Pk is a sufficiently general tuple of Laurent polynomials with given
supports A1, . . . , Ak ⊂ Zn and Newton polytopes ∆1, . . . ,∆k ⊂ Rn. Such an alge-
braic variety is the main object of study in the theory of Newton polytopes. It is well
known (see [1], [2]) that X is a non-singular variety and the discrete invariants of X
depend only on the tuple of polytopes ∆1, . . . ,∆k (so they are independent of both
the tuple of the supports A1, . . . , An whose convex hulls are equal to ∆1, . . . ,∆k,
and the choice of a sufficiently general system of Laurent polynomials with these
supports). In what follows, when speaking of a generic system of equations (1),
we shall sometimes omit any mention of the set of supports A1, . . . , Ak and indi-
cate only the Newton polytopes ∆1, . . . ,∆k. In this case we always have in mind
a certain tuple of supports and do not mention it explicitly only to avoid a flood of
easily recoverable details.

A common assumption in the study of (1) is that all the polytopes ∆i have full
dimension n. We do not make this assumption. For us, an important role is played
by the notion of the defect of a set of indices J ⊂ {1, . . . , k} labelling a tuple of
convex bodies ∆1, . . . ,∆k. For every non-empty J we define a body ∆J =

∑
i∈J ∆i

(the sum is understood in the Minkowski sense; see § 2.1). We denote the number
of elements in J by |J |. When J = ∅, we put ∆J = {0} and |J | = 0.

Definition. The defect of a set J ⊂ {1, . . . , k} for a tuple ∆1, . . . ,∆k is the number
dim ∆J − |J |. In particular, the defect of the empty set is equal to zero. A tuple
of bodies is said to be independent if the defect of every set J for this tuple is
non-negative.

Here are some results related to the notion of defect.

Theorem (Minkowski). A tuple of bodies ∆1, . . . ,∆n has mixed volume zero if and
only if it is dependent.

The notion of mixed volume (see § 2.1) and Minkowski’s theorem are important in
the present paper. A detailed proof of this theorem is given in § 2.2. It follows from
Minkowski’s theorem combined with the Bernstein–Kushnirenko theorem (see § 3)
that a sufficiently general system (1) is incompatible if and only if the polytopes
∆1, . . . ,∆k are dependent (see § 3, Theorem 11).

By the reduction theorem (§ 5.1, Theorem 15), when a generic system (1) is
compatible but there is a set of indices J with zero defect, the system can be reduced
to some number of generic systems of equations in a smaller number of variables
(the number of systems is determined by J and the tuple of Newton polytopes).
By the irreducibility theorem (§ 5.2, Theorem 17), if such a reduction is impossible,
then the variety given by the system (1) is irreducible.

The reduction theorem and the irreducibility theorem enable us to find the num-
ber of irreducible components of X and compute their discrete invariants. The com-
putation of discrete invariants (as well as a major part of the results in the theory
of Newton polytopes) is based on a connection (discovered in [1], [2]) between this
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theory and the geometry of toric varieties. However, there are elementary results
for which this technique is unnecessary. We start the paper with these results. One
of them says that X is smooth. We complement it by proving that X is transversal
to any given subvariety (see § 1.3).

Let hp(M) be the dimension of the space of holomorphic p-forms on a smooth
compact complex algebraic variety M . This number is a birational invariant of M .
Hence for all (non-compact smooth) algebraic varieties Y one can define hp(Y ) to be
the number hp(M), where M is any smooth compact variety birationally equivalent
to Y . The alternating sum χ(Y ) =

∑
(−1)php(Y ) of the numbers hp(Y ) is called

the arithmetic genus of an algebraic variety Y .
There is an explicit formula for the arithmetic genus χ(X) of a variety X deter-

mined by a sufficiently general system (1) (see Theorem 29 and subsequent remarks
in § 8). We complement this formula by the following results.

1) If a number j > 0 is not equal to the defect of a non-empty set of indices J for
an independent tuple of Newton polytopes of the system (1), then hj(X) is equal
to zero (§ 8, Theorem 31).

2) But if j is equal to the defect of some non-empty set of indices J , then under
certain additional assumptions the number hj(X) is positive (Theorem 20, § 5.2).

The assertion on the positivity of hj(X) follows from an explicit construction of
holomorphic j-forms on the closure of X in an appropriate toric compactification.
It uses no cohomology calculations and is completely elementary. The cohomology
of toric varieties with coefficients in sheaves of sections of one-dimensional invariant
holomorphic bundles was used in the theory of Newton polytopes for the first time
in [1], [2]. Our present results might have appeared there (much more refined
calculations using the theory of mixed Hodge structures appeared later, starting
with [3]).

Before describing the main content of the paper, we show that the variety X ⊂
(C∗)n determined by a sufficiently general system of equations (1) is smooth and
transversal to any fixed semi-algebraic set Y ⊂ (C∗)n.

1.3. Smoothness and transversality. Let Y ⊂ (C∗)n be a semi-algebraic set.
Suppose that Y is stratified, that is, represented as a finite union Y =

⋃
Yi of

disjoint smooth (generally speaking, non-closed) algebraic varieties Yi.

Theorem 1. For almost all tuples of coefficients of the system (1), the variety
X ⊂ (C∗)n determined by this system is non-singular and transversal to all strata Yi

of the semi-algebraic set Y .

Proof. Enumerate the monomials in the support of each of the Laurent polynomials
Pi =

∑
ci,jx

mi,j in an arbitrary way, take the first monomial xmi,1 and write Pi

in the form Pi = ci,1x
mi,1 + P̃i, where P̃i =

∑
j>1 ci,jx

mi,j . One can rewrite the
system (1) in the form −c1,1 = P̃1 · x−m1,1 , . . . ,−ck,1 = P̃k · x−mk,1 . In other
words, X is the pre-image of the point c = (−c1,1, . . . ,−c1,k) ∈ Ck under the map
(P̃1, . . . , P̃k) : (C∗)n → Ck. By the Sard–Bertini theorem, X is non-singular for
almost all points c ∈ Ck. Using the same theorem for the restriction of the map
to Yi, we see that X is transversal to Yi for almost all points c ∈ Ck. �



Newton polytopes 267

Corollary 2. For every semi-algebraic set Y ⊂ (C∗)n and every variety X deter-
mined by a system (1) with sufficiently general coefficients, the set Y ∩X is dense
in X if and only if Y is dense in (C∗)n.

Proof. It is known that every semi-algebraic set can be stratified. Hence Corollary 2
follows from Theorem 1. �

The author is grateful to A. Esterov for useful discussions and for pointing out
the references [4], [5], which are closely related to the present paper. The author
thanks the referee for careful and kindly editing that helped us to make substantial
improvements in the text.

§ 2. Mixed volume and Minkowski’s theorem

2.1. Mixed volume. One of the first results in the theory of Newton polytopes is
the Bernstein–Kushnirenko theorem. Below we recall the statement of this famous
theorem. To do this, we need some notions from convex geometry.

A subset A of a real vector space M can be multiplied by λ ∈ R: the set λA is
defined by putting

c ∈ λA ⇐⇒ ∃ a ∈ A | c = λa.

Subsets A,B ⊂ M can be added: the set A + B is defined by putting

c ∈ A + B ⇐⇒ ∃ a ∈ A, ∃ b ∈ B | c = a + b

and is called the Minkowski sum of A and B. If A and B are convex bodies (that is,
convex bounded closed sets), then so are the sets λA and A + B.

We endow an n-dimensional space M with a fixed translation-invariant Lebesgue
measure µ (such a measure is unique up to a positive multiplier). The volume V (∆)
of a convex body ∆ ⊂ M is its measure µ(∆).

Definition. The mixed volume of n convex bodies ∆1, . . . ,∆n is a number
V (∆1, . . . ,∆n) defined by the following polarization formula:

n!V (∆1, . . . ,∆n) = (−1)n−1
∑

16i6n

V (∆i) + (−1)n−2
∑

16i1<i26n

V (∆i1 + ∆i2)

+ · · ·+ V (∆1 + · · ·+ ∆n).

The notion of mixed volume was introduced by Minkowski, who showed that it
is the unique function of n convex bodies which is

1) symmetric (that is, invariant under permutations of the arguments);
2) multilinear (linearity with respect to the first argument means that

V (λ1∆′
1 + λ2∆′′

1 , . . . ,∆n) = λ1V (∆′
1, . . . ,∆n) + λ2V (∆′′

1 , . . . ,∆n)

for all λ1 > 0 and λ2 > 0);
3) equal to the volume on the diagonal, that is, V (∆, . . . ,∆) = ∆.
We easily see that the mixed volume is monotone: if ∆′

1 ⊂ ∆1, . . . , ∆′
n ⊂ ∆n,

then V (∆′
1, . . . ,∆

′
n) 6 V (∆1, . . . ,∆n). It is also non-negative. This follows from

monotonicity and the equality V (∆′
1, . . . ,∆

′
n) = 0, where the ∆′

i ∈ ∆i are points.
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Lemma 3. Let I1, . . . , In be closed intervals and let Π = I1 + · · · + In be the
parallelepiped equal to their sum. Then

V (I1, . . . , In) =
1
n!

Vol(Π). (2)

Proof. The equality (2) follows immediately from the polarization formula for the
mixed volume. �

In § 2.4 we prove Minkowski’s theorem (see § 1.2), which gives a criterion for the
vanishing of the mixed volume.

2.2. A criterion for the vanishing of the mixed volume. The proof of the
criterion uses simple linear algebra.

Definition. A tuple of affine subspaces L1, . . . , Lm in a vector space M is said to
be non-degenerate if for every non-empty set of indices J ⊂ {1, . . . ,m} we have
dim

∑
i∈J Li > |J |, where |J | is the number of elements in J . A tuple L1, . . . , Lm

is said to be degenerate otherwise.

For every convex body ∆ ⊂ L we denote by L(∆) the minimal affine subspace
that contains ∆. We easily see that a tuple of convex bodies ∆1, . . . ,∆m ⊂ L is
dependent (see § 1.2) if the tuple of affine subspaces L(∆1), . . . , L(∆m) is degenerate.

2.3. A theorem of linear algebra. Let M1, . . . ,Mn be vector subspaces of an
ambient space M .

Theorem 4. The tuple of spaces M1, . . . ,Mn is non-degenerate if and only if one
can choose independent vectors {vi}, 1 6 i 6 n, in M1, . . . ,Mn in such a way that
v1 ∈ M1, . . . , vn ∈ Mn.

Before proving Theorem 4, we establish Lemmas 5–7 (of which only Lemma 6 is
not completely obvious).

Lemma 5. If there are independent vectors v1 ∈ M1, . . . , vn ∈ Mn, then the tuple
of spaces M1, . . . ,Mn is non-degenerate.

Proof. For every subtuple Mi1 , . . . ,Mik
we have dim(Mi1 + · · · + Mik

) > k since
the vectors vi1 ∈ Mi1 , . . . , vik

∈ Mik
are linearly independent. �

Lemma 6. If the tuple of spaces M1, . . . ,Mn is non-degenerate, then there is
a space Vn ⊂ Mn such that dim Vn = 1 and the tuple of spaces M1, . . . ,Mn−1, Vn

is non-degenerate.

Proof. By hypothesis, for every non-empty J ⊂ {1, . . . , n} we have dim MJ > |J |.
Let J∗ be a non-empty subset of {1, . . . , n− 1}. We say that J∗ is of the first type
if MJ∗ ∩Mn 6= Mn. But if MJ∗ ∩Mn = Mn, then we say that J∗ is of the second
type. If J∗ is of the second type, then dim MJ∗ > (|J∗|+ 1). Indeed, if Mn ⊂ MJ∗ ,
then MJ∗ ∪ Mn = MJ∗ . But MJ∗ ∪ Mn = MJ , where J = J∗ ∪ {n} and, by
hypothesis, dim MJ is not less than |J | = |J∗|+ 1.

The union D of all sets of the form MJ∗ ∩Mn, where J∗ is a set of the first type,
cannot be equal to Mn (the union of finitely many proper subspaces cannot cover



Newton polytopes 269

the whole space). We claim that the linear span of any non-zero vector v ∈ Mn \D
can be taken as Vn.

Indeed, let us show that the tuple of spaces T1, . . . , Tn is independent, where
Ti = Mi for 1 6 i 6 n−1 and Tn = Vn is spanned by a non-zero vector v ∈ Mn \D.
For every non-empty set J∗ ⊂ {1, . . . , n − 1} we have TJ∗ = MJ∗ and dim TJ∗ =
dim MJ∗ > |J∗|. Consider the set J = J∗ ∪ {n}. If J∗ is of the first type, then
the space Tn = Vn is not contained in TJ∗ = MJ∗ and dim TJ > dim TJ∗ + 1 >
|J∗|+ 1 = |J |. If J∗ is of the second type, then Tn ⊂ TJ∗ and dim TJ = dim TJ∗ =
dim MJ∗ > |J∗|+ 1 = |J |. �

Lemma 7. If the tuple of spaces M1, . . . ,Mn is non-degenerate, then there is
a non-degenerate tuple of one-dimensional spaces V1, . . . , Vn such that V1 ⊂ M1, . . .
. . . , Vn ⊂ Mn.

Proof. By Lemma 6, the space Mn in the tuple M1, . . . ,Mn can be replaced by
a one-dimensional space Vn in such a way that the tuple M1, . . . ,Mn−1, Vn remains
independent. Relabelling the spaces and using Lemma 6, one can replace Mn−1

by a one-dimensional subspace Vn−1 in such a way that the tuple M1, . . . ,Mn−2,
Vn−1, Vn remains independent, and so on. �

Theorem 4 follows from Lemmas 5 and 7.

2.4. Minkowski’s theorem. We use Theorem 4 to prove Minkowski’s theorem,
which will be split into Theorems 8 and 9.

Theorem 8. If the tuple of affine spaces L(∆1), . . . , L(∆n) is non-degenerate, then
V (∆1, . . . ,∆n) > 0.

Proof. Let M1, . . . ,Mn be vector spaces parallel to the affine spaces L(∆1), . . .
. . . , L(∆n). Since the tuple M1, . . . ,Mn is independent, Theorem 4 enables us
to choose independent vectors v1 ∈ M1, . . . , vn ∈ Mn. Let I1 ⊂ ∆1, . . . , In ⊂ ∆n

be closed intervals parallel to the lines spanned by the vectors v1, . . . , vn.
Then V (I1, . . . , In) > 0 by (2). Since the mixed volume is monotone, we have
V (∆1, . . . ,∆n) > V (I1, . . . , In) > 0. �

Theorem 9. Suppose that the tuple of affine subspaces L(∆1), . . . , L(∆n) is degen-
erate. Then V (∆1, . . . ,∆n) = 0.

We first prove the following lemma.

Lemma 10. Theorem 9 holds if we also know that each of the bodies ∆1, . . . ,∆n

is a parallelepiped.

Proof. The mixed volume is translation-invariant. Therefore we can assume that
the point 0 is a vertex of each of the parallelepipeds ∆i. Let I1

i , . . . , Imi
i be the

edges incident to 0 in the parallelepiped ∆i, where i = 1, . . . , n. For every i we
have ∆i = I1

i + · · ·+ Imi
i . Since the mixed volume is multilinear,

V (∆1, . . . ,∆n) =
∑

16j16m1,...,16jn6mn

V (Ij1
1 , . . . , Ijn

n ).

By Theorem 4 and formula (2) we have V (Ij1
1 , . . . , Ijn

n ) = 0. �
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Proof of Theorem 9. For each of the bodies ∆i we choose an arbitrary paral-
lelepiped ∆′

i which contains ∆i and lies in L(∆i). Then V (∆′
1, . . . ,∆

′
n) = 0

by Lemma 10. Since the mixed volume is monotone and non-negative, we have
V (∆′

1, . . . ,∆
′
n) > V (∆1, . . . ,∆n) > 0. This completes the proof of Theorem 9

and, therefore, of Minkowski’s theorem. �

§ 3. The Bernstein–Kushnirenko theorem and related results

If we fix a discrete lattice Λ of full rank in an n-dimensional vector space M ,
then M becomes endowed with a translation-invariant integer volume.

Definition. An integer volume on a space M ⊃ Λ is the volume associated with
a translation-invariant measure µ normalized by the condition µ(Π) = 1, where
Π is the parallelepiped spanned by some vectors e1, . . . , en that generate Λ.

In this section we consider an integer volume on the space Rn containing the
lattice Zn in which the supports of Laurent polynomials lie.

What is the number of roots in (C∗)n of a generic system (1) of k = n equations
with supports A1, . . . , An ⊂ Zn whose convex hulls are equal to ∆1, . . . ,∆n? The
answer is given by the following famous theorem.

Theorem (Bernstein–Kushnirenko). A generic system (1) of k = n equations has
only non-multiple roots in (C∗)n, and their number is equal to n!V (∆1, . . . ,∆n).

To date there are many proofs of this remarkable theorem. The scheme of one
of them is given in § 8 after Theorem 29. Bernstein found a criterion for the com-
patibility of a generic system (1).

Theorem 11. A sufficiently general system (1) is incompatible if and only if the
polytopes ∆1, . . . ,∆k are dependent.

Proof. It is easy to prove that a sufficiently general system (1) either determines
a smooth (n − k)-dimensional variety or is inconsistent. Therefore if k > n, then
(1) is incompatible. The polytopes ∆1, . . . ,∆k ⊂ Rn are automatically dependent
when k > n, and this completes the proof for k > n. When k = n, the theorem
follows immediately from the Bernstein–Kushnirenko theorem and Minkowski’s the-
orem. Suppose that k < n. Then we complement the system (1) by generic linear
equations

Pn−k+1 = · · · = Pn = 0 (3)

of the form Pi =
∑

ai,jzj + bi = 0, where zj are the coordinates on the torus
(C∗)n and ai,j , bi are sufficiently general complex numbers. The Newton poly-
topes ∆n−k+1, . . . ,∆n of the linear polynomials Pn−k+1, . . . , Pn are all equal to the
standard n-dimensional unit simplex ∆. A sufficiently general system formed by
the equations (1) and (3) is compatible if and only if the set of solutions of (1)
is non-empty. This again reduces the case k < n to the Bernstein–Kushnirenko
theorem and Minkowski’s theorem since the tuples of polytopes ∆1, . . . ,∆k and
∆1, . . . ,∆k,∆n−k+1, . . . ,∆n are either both dependent or both independent. �

We restate Theorem 11.
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Theorem 11′. A sufficiently general system (1) is incompatible if and only if the
defect of some set J for the tuple of polytopes ∆1, . . . ,∆k is negative.

How to describe in geometric terms those tuples of supports A1, . . . , An⊂Zn for
which a generic system (1) of k =n equations has exactly one root? In other words,
we ask for a description of those tuples of integer polytopes ∆1, . . . ,∆n whose
mixed volume is equal to 1/n!. Theorem 12, which was obtained in [5], answers this
question by reducing it to the corresponding question in a lower-dimensional space.
To state Theorem 12, we need some general definitions that will be used throughout.

The Newton polytopes ∆i lie in an n-dimensional vector space M endowed with
a lattice Λ ≈ Zn. For each non-empty set of indices J let L(∆J) be the affine space
spanned by the polytope ∆J and let M(∆J) be the vector space parallel to L(∆J).
We denote the quotient space of M with respect to M(∆J) by M⊥(∆J).

The space M(∆J) contains a lattice ΛJ = Λ ∩ M(∆J) of full rank. Hence an
integer volume is defined in M(∆J). Its polarization (the integer mixed volume
in the sense of M(∆J)) is defined for all dim M(∆J)-tuples of polytopes ∆i such
that every space L(∆i) can be moved to M(∆J) by a shift. (This notion of mixed
volume is used in the statements of Theorems 15 and 19 below.)

The space M⊥(∆J) contains the quotient lattice Λ⊥ = Λ/ΛJ of full rank and
the (k − |J |)-tuple of polytopes {πJ⊥∆i}, where i ∈ J⊥ = {1, . . . , k} \ J . By defi-
nition, the polytope πJ⊥∆i ⊂ M⊥(∆J) is the image of the polytope ∆i ⊂ M(∆J)
under the factorization map M(∆J) → M⊥(∆J). The polytope πJ⊥∆i ⊂ M⊥(∆J)
is integer, that is, its vertices lie in the lattice Λ⊥.

Here is another definition. An integer k-dimensional simplex ∆ with vertices
T0, . . . , Tk is said to be primitive if the vectors ei = Ti − T0, i = 1, . . . , k, generate
the lattice Λ ∩M(∆). The integer volume of a primitive simplex is equal to 1/k!.

Theorem 12 (see [5]). Integer polytopes ∆1, . . . ,∆n have integer mixed volume
1/n! if and only if the following conditions hold.

1) The polytopes in the tuple are independent.
2) There is a subtuple of k > 0 polytopes which lie (up to a shift) in some

primitive k-dimensional simplex ∆ such that the images of the other n−k polytopes
in M/M(∆) have integer mixed volume 1/(n− k)!.

§ 4. Auxiliary results

4.1. Decreasing the number of unknowns. Let the Newton polytopes
∆1, . . . ,∆k of the Laurent polynomials in (1) be such that the polytope ∆ =∑

16i6k ∆i has dimension m < n. Then the system (1) can be reduced to a system
with m unknowns. We recall how to do this.

Let M(∆) be the vector space parallel to the affine space L(∆) that contains
the polytope ∆. Then M(∆) has dimension m and contains a lattice Λ∆ of
full rank. The lattice Λ∆ can be identified with the character lattice Zm of the
m-dimensional torus (C∗)m. The embedding Λ∆ ⊂ Λ ≈ Zn is dual to the homo-
morphism π∆ : (C∗)n → (C∗)m of the torus (C∗)n onto the torus (C∗)m. Note that
(C∗)n can be written as a direct product (C∗)n = (C∗)m × (C∗)n−m in such a way
that the map π∆ coincides with the projection π1 of (C∗)n to the first factor.
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Multiplying the Laurent polynomial Pi by an appropriate monomial zqi , we can
ensure that the support Ai + qi of the Laurent polynomial zqiPi lies in M(∆).
The variety X remains unchanged because the equations Pi = 0 and zqiPi = 0 are
equivalent to each other on the torus (C∗)n. Since Λ∆ is isomorphic to the character
lattice Zm of the torus (C∗)m, we can assume that the supports Bi =Ai + qi lie in Zm

and the Laurent polynomial zqiPi may be regarded as a Laurent polynomial Qi

on (C∗)m. Moreover, we have zqiPi = π∗∆Qi.
Thus the system (1) on (C∗)n induces a system of equations

Q1 = · · · = Qk = 0 (4)

on (C∗)m. This system depends on the smaller number m < n of variables. The
relation between the variety X̃ determined by (4) and the variety X determined
by (1) is given by the formula X = π−1

∆ (X̃). Since π∆ is equivalent to the projection
π1 of the torus (C∗)n = (C∗)m× (C∗)n−m onto the first factor, we obtain that X is
isomorphic to X̃ × (C∗)n−m. Thus the study of X reduces to a study of the variety
X̃ determined by a system depending on a smaller number of variables.

4.2. Varieties determined by the system (1) and its subsystems. Let
J = {i1, . . . , il} and J⊥ = {j1, . . . , jk−l} be non-empty complementary subsets of
the set {1, . . . , k} indexing the equations in (1). We consider two systems of the
form (1) on (C∗)n:

Pi1 = · · · = Pil
= 0, (5)

Pj1 = · · · = Pjk−l
= 0. (6)

Suppose that the polytope ∆J =
∑

i∈J ∆i has dimension m < n. There is no loss
of generality in assuming that the Newton polytopes ∆i1 , . . . ,∆il

lie in the vector
space M(∆J). The system (5) is related to a system of equations

Qi1 = · · · = Qil
= 0 (7)

on (C∗)m such that Pi = π∗∆J
Qi for i ∈ J and π∆J

: (C∗)n → (C∗)m is the homo-
morphism described in the previous subsection.

Let X1, X2 and X = X1 ∩X2 be the varieties in (C∗)n determined by (5), (6),
and the system of the form (1) containing all equations in (5) and (6). Let X̃1 be
the variety in (C∗)m determined by the system (7). Which tuples ∆1, . . . ,∆k of
Newton polytopes are such that the image π∆J

(X) of X under the homomorphism
π∆J

: (C∗)n → (C∗)m is dense in X̃1? The following theorem gives an answer.

Theorem 13. The image π∆J
(X) of X under the homomorphism

π∆J
: (C∗)n → (C∗)m

is dense in X̃1 if and only if the defect of J for the tuple ∆1, . . . ,∆k is not greater
than the defect of any set of indices J̃ containing J .

We postpone the proof until the end of this subsection.
Let us now find conditions under which the image of a full intersection under

a homomorphism is dense in the quotient torus.
Consider a homomorphism π : (C∗)n → (C∗)m of (C∗)n onto (C∗)m. Let X ⊂

(C∗)n be the algebraic variety determined by a generic system of equations (1).
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We consider the restriction π : X → (C∗)m of π to X and pose the following ques-
tion. Which tuples A1, . . . , Ak of supports are such that the image π(X) is dense
in (C∗)m ? The answer depends on the homomorphism π and on the convex hulls
∆1, . . . ,∆k of the supports A1, . . . , Ak.

One might think that since the system (1) is generic, the density of the image is
guaranteed already by the assumption that n−k > m. If the polytopes ∆1, . . . ,∆k

have full dimension n, then this is indeed the case. But the general answer is more
complicated.

The homomorphism π induces an embedding π∗: Rm→Rn of the vector space Rm

spanned by the character lattice of (C∗)m in the vector space Rn spanned by the
character lattice of (C∗)n.

For brevity we put M = π∗(Rm) and denote the factorization map Rn →
Rn/M = M⊥ by πM⊥ .

Theorem 14. The image π(X) is dense in (C∗)m if and only if the polytopes
πM⊥(∆1), . . . , πM⊥(∆k) ⊂ M⊥ are independent.

Proof. Consider the system of equations Q1 = · · · =Qm =0 on the torus (C∗)m,
where Q1, . . . , Qm is a generic tuple of linear polynomials in the coordinates
z1, . . . , zm of (C∗)m. The polynomials Q1, . . . , Qm have the same Newton poly-
tope: the standard unit simplex ∆ ⊂ Rm, which is defined by saying that x ∈ ∆
if and only if all coordinates of x are non-negative and

∑
xi 6 1. Let z ∈ (C∗)m

be a solution of this system. The image π(X) contains z if and only if the system
P1 = · · · = Pk = π∗(Q1) = · · · = π∗(Qm) = 0 is compatible on (C∗)n. The Newton
polytopes of the Laurent polynomials π∗(Qj) are equal to π∗(∆). Such a system
is compatible if and only if the polytopes ∆1, . . . ,∆k, π∗(∆), . . . , π∗(∆) are inde-
pendent in Rn. This condition is equivalent to the independence of the polytopes
πM⊥(∆1), . . . , πM⊥(∆k) in M⊥. �

Proof of Theorem 13. We apply Theorem 14 to the variety X ⊂ (C∗)n and the homo-
morphism π∆J

that occur in this theorem. The image of the variety X =X1 ∩X2

under the homomorphism π∆J
lies in X̃1. Which tuples ∆1, . . . ,∆k of polytopes

are such that π∆J
(X) is dense in X̃1? Here is the answer: π∆J

(X) is dense in X̃1

if and only if π∆J
(X2) is dense in (C∗)m. Indeed, π∆J

(X) = π∆J
(X1 ∩ X2) =

X̃1 ∩ π∆J
(X2) (the last equality holds because X1 = π−1

∆J
(X̃1)). Hence the desired

assertion follows from Corollary 2, where the role of the semi-algebraic set Y is
played by π∆J

(X2), the role of the system (1) by (7), and the role of X by X̃1.
Theorem 14 yields that the set π∆J

(X2)∩X̃1 is dense in X̃1 if and only if the tuple
of polytopes {π∆J

(∆j)} for j ∈ J⊥ is independent in M⊥(∆J).
It remains to restate the answer. The independence of the tuple of polytopes

{π∆J
(∆j)} for j ∈ J⊥ means that dim π∆J

(∆J∗) − |J∗| > 0 for every subset
J∗ ⊂ J⊥. Put J̃ = J ∪ J∗. We have

dim ∆J̃ = dim(∆J) + dim π∆J
(∆J∗), |J̃ | = |J |+ |J∗|,

whence

|dim ∆J̃ | − |J̃ | = (|dim ∆J | − |J |) + (|dim ∆J∗ | − |J∗|) > |dim ∆J | − |J |. �
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§ 5. Main results

5.1. The reduction theorem. We claim that if the generic system (1) is com-
patible and admits a set of indices J with zero defects, then it may be reduced to
generic systems in a smaller number of variables.

Consider the algebraic variety X ⊂ (C∗)n determined by a generic system of
equations (1) with Newton polytopes ∆1, . . . ,∆k. Suppose that the following con-
ditions hold.

1) The tuple of polytopes ∆1, . . . ,∆k is independent.
2) The defect of the set J = {i1, . . . , im} for this tuple is equal to zero.

Theorem 15 (the reduction theorem). Under the conditions 1), 2) there is a par-
tition of X into q = m!V (∆i1 , . . . ,∆im

) disjoint subvarieties Xi, where:
1) V is the polarization of the integer volume in M(∆J);
2) each subvariety Xi is isomorphic to a variety determined in (C∗)n−m by

a generic system of equations with the tuple of polytopes {πJ⊥∆i) for i ranging
over J⊥.

We first prove the reduction theorem in a special case.
Write the torus (C∗)n as a product (C∗)m × (C∗)n−m of the tori (C∗)m and

(C∗)n−m and let π1 : (C∗)n → (C∗)m, π2 : (C∗)n → (C∗)n−m be the projections
onto the factors. Let Rn = Rm ×Rn−m be the corresponding representation of the
vector space Rn of characters of (C∗)n as a product of the corresponding spaces
Rm and Rn−m for the tori (C∗)m and (C∗)n−m, and let π̃1, π̃2 be the projections
onto the factors: π̃1 : Rn → Rm, π̃2 : Rn → Rn−m.

Consider an algebraic variety X ⊂ (C∗)n = (C∗)m × (C∗)n−m determined by
a generic system of equations (1) with Newton polytopes ∆1, . . . ,∆k ⊂ Rn =
Rm × Rn−m. Suppose that the following conditions hold.

1) The tuple of polytopes ∆1, . . . ,∆k is independent.
2) The defect of the set Jm = {1, . . . ,m} for this tuple is equal to zero.
3) We have ∆i ⊂ Rm × {0} for 1 6 i 6 m, where 0 ∈ Rn−m.

Theorem 16. Under the conditions 1)–3) there is a partition of X into q =
m!V (∆1, . . . ,∆m) disjoint subvarieties Xi, where:

1) V is the polarization of the integer volume in Rm × 0;
2) each subvariety Xi is isomorphic to a variety determined in (C∗)n−m by

a generic system of equations with polytopes π̃2(∆m+1), . . . , π̃2(∆k).

Proof. Since the Newton polytopes ∆1, . . . ,∆m lie in Rm × {0}, the first m equa-
tions P1 = · · · = Pm = 0 of the system (1) may be regarded as equations on the
torus (C∗)m × 1, where 1 is the identity of the torus (C∗)n−m. By the Bernstein–
Kushnirenko theorem, the set {(ui × 1)} of solutions of this system contains q =
m!V (∆1, . . . ,∆m) elements. The subsystem P1 = · · · = Pm = 0 of (1), regarded as
a system of equations on (C∗)m×(C∗)n−m, determines q shifted tori {ui×(C∗)n−m},
which are biregularly isomorphic to (C∗)n−m. On each of them, the remaining
equations Pm+1 = · · · = Pk = 0 of the system (1) determine a subvariety Xi.
The isomorphism ui × (C∗)n−m → (C∗)n−m transforms the system of equations
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Pm+1 = · · · = Pk = 0 on the shifted torus ui × (C∗)n−m to a sufficiently general
system of equations on the torus (C∗)n−m with polytopes π̃2(∆m+1), . . . , π̃2(∆k),
and the variety Xi is mapped onto the variety of solutions of this system. �

Proof of the reduction theorem. The reduction theorem reduces to Theorem 16.
Indeed, for every i ∈ J , we can multiply the Laurent polynomial Pi by an appropri-
ate monomial zqi in such a way that the Newton polytope ∆i of the polynomial zqiPi

lies in M(∆J). The variety X remains unchanged since the equations Pi = 0 and
zqiPi = 0 on the torus (C∗)n are equivalent. Permuting the equations in the system
if necessary, we can assume that J = Jm. By means of an automorphism of the
torus (C∗)n, we can send all characters in M(∆J) to characters lying in the coordi-
nate subspace Rm ⊂ Rn on which all the coordinates with numbers (m + 1), . . . , n
vanish. This reduces the reduction theorem to Theorem 16. �

5.2. Theorems on the number of components. The following theorem is
important for us.

Theorem 17 (the irreducibility theorem). If the defect of every non-empty set J
for the tuple of polytopes ∆1, . . . ,∆k is positive, then the variety X ⊂ (C∗)n defined
by a sufficiently general system (1) is irreducible.

In the rest of the paper we give a proof of this theorem and various sharpened
versions of it. Now let us show that combining it with the reduction theorem enables
us to compute the number of irreducible components of any variety determined by
a system (1).

Definition. A subset J ⊂ {1, . . . , k} is said to be characteristic for an independent
tuple of bodies ∆1, . . . ,∆k if the defect of J for this tuple is equal to zero and the
defect of any larger set J ′ ⊃ J is positive.

Lemma 18. For every independent tuple of bodies there exists a characteristic
set J .

Proof. By definition, the defect of every set for an independent tuple of bodies is
non-negative. There are sets with defect zero (for example, the empty set). Take
the largest (with respect to inclusion) set with defect zero. A larger set can have
neither negative nor zero defect. Hence its defect is positive. �

Theorem 19. If J is characteristic for ∆1, . . . ,∆k under the hypotheses of the
reduction theorem, then the varieties Xi are irreducible components of X (and
their number is equal to m!V (∆i1 , . . . ,∆im

)).

Proof. We claim that the hypotheses of Theorem 17 hold for the tuple of polytopes
{πJ⊥(∆i)}, i ∈ J⊥. Indeed, by hypothesis, the defect of J is equal to zero, that is,
dim ∆J = |J |. For every non-empty subset J∗ ⊂ {1, . . . , k} \ J we put J̃ = J ∪ J∗.
Since J ⊂ J̃ and J is characteristic, the defect of J̃ for the tuple ∆1, . . . ,∆k is posi-
tive, that is, dim ∆J̃ −|J̃ | > 0 or (dim ∆J̃ −dim ∆J)− (|J̃ |− |J |) > 0. It remains to
note that the polytope

∑
i∈J∗ πJ⊥(∆i) has dimension dim ∆J̃ −dim ∆J . Therefore

J∗ has positive defect for the tuple of polytopes {πJ⊥(∆i)}. By Theorem 17, the
varieties Xi are irreducible. �
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§ 6. The numbers hp of complete intersections

6.1. Holomorphic forms on compact complex varieties. Let M be a smooth
compact n-dimensional complex algebraic variety. For every p > 0 we have a finite-
dimensional space of holomorphic p-forms on M . Its dimension is denoted by hp(M).
The arithmetic genus of M is defined as the number

χ(M) =
∑
p>0

(−1)php(M).

(We use the definition in [6], formula (2). Note that a slightly different invariant of
the variety is sometimes referred to as the arithmetic genus.) The number h0(M)
is equal to the number of connected components of M . When p > n we have
hp(M) = 0 since every holomorphic p-form on a complex n-dimensional manifold
with p > n is identically equal to zero.

Given a rational map π : M1 → M2 between compact varieties M1 and M2,
we see that the pullback π∗ω of a holomorphic form ω on M2 is a holomorphic
form on M1. Hence the dimension hp(M) of the space of holomorphic p-forms
and the arithmetic genus of a compact variety M are invariant under birational
isomorphisms.

One can also define hp(M) for non-compact smooth algebraic varieties. This is
done by declaring hp(M) to be equal to hp(M) for any smooth compactification
M of M which is birationally equivalent to M . Such a compactification exists for
every smooth M by Hironaka’s theorem on the resolution of singularities.

For sufficiently general complete intersections X with fixed supports in a com-
plex torus, the Newton polytopes yield an explicit construction of top-order forms
holomorphic on some (and hence on any) smooth compactification X of X (see [1]).
Exactly the same construction sometimes enables us to construct holomorphic forms
on X of certain intermediate orders.

We recall the following definition (see [1], [2]). Let ∆ be a convex integer poly-
tope. Then B+(∆) is the number of integer points lying strictly inside ∆ in the
topology of the minimal affine space L(∆) containing ∆.

The following theorem uses the notation of § 4.2: the varieties X̃1, X1, X2, X,
the polytopes ∆1, . . . ,∆k, the sets J , J⊥ and the number l = |J | are as in § 4.2.

Theorem 20. Suppose that
1) dim ∆J = m;
2) B+(∆J) > 0;
3) dim ∆J̃ − |J̃ | > dim ∆J − |J | for every set of indices J̃ ⊂ {1, . . . , k} that

contains J .
Then hm−l(X) > 0.

Proof. Let X̃1 be the variety determined in (C∗)m by the system (7). We define
a form ωm−l on X̃1 by the formula

ωm−l = zq dz1

z1
∧ · · · ∧ dzm

zm
/dQi1 ∧ · · · ∧ dQil

, (8)

where q is any integer point lying strictly inside the polytope π∆J
(∆J) (such

a point exists since B+(∆J) > 0). By § 2 in [1], ωm−l is holomorphic on some
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(and hence on any) smooth compactification of X̃1. The variety X1 is equiva-
lent to the product X̃1 × (C∗)n−m, and this equivalence transforms the projection
π∆j : X1 → X̃1 to the projection onto the first factor. The form π∗∆j

ωm−l is holo-
morphic on the compactification of X1 equal to the product of any smooth com-
pactifications of X̃1 and (C∗)n−m. Hence the form π∗∆j

ωm−l is holomorphic on any
smooth compactification of X1.

Let M be a sufficiently complete toric compactification of (C∗)n for the tuple of
polytopes ∆1, . . . ,∆k (see [2] and § 7 below). By [2], the closures X1 and X2 of X1

and X2 in M are smooth varieties intersecting each other transversally, and their
intersection X1 ∩ X2 is a smooth closure of the variety X = X1 ∩ X2. The form
π∗∆j

ωm−l is holomorphic on X1 and hence on X ⊂ X1. We see from (8) that ωm−l

never vanishes on X̃1. By Theorem 13, π∆j
(X) is dense in X̃1 and, therefore, the

form π∗∆j
ωm−l is not identically equal to zero on X. Since this form is holomorphic

on the closure X of X in M , it follows that hm−l(X) > 0. �

6.2. Cohomology and the numbers hp. For every divisor D on a non-singular
projective variety M we have a sheaf Ω(M,D) of germs of meromorphic functions f
on M such that (f) + D > 0. If D 6 0, then the germs of sections of this sheaf are
germs of regular functions. We need only sheaves of this kind. The cohomology
of M with coefficients in Ω(M,D) is denoted by H∗(M,D). Omitting the zero
divisor from the notation, we shall write H∗(M) for the cohomology of M with
coefficients in the sheaf of germs of regular functions. The cohomology H∗(M) is
responsible for the dimensions hp(M) of the spaces of holomorphic p-forms on M ,
namely, hp(M) = dim Hp(M). In particular, dim H0(M) is equal to the number of
components of M and we have Hp(M) = 0 for p > dim M .

We shall use the following notation. Vector subspaces L1, . . . , Lk are said to be
mutually transversal in the ambient space L if the codimension in L of the intersec-
tion of any subtuple of these spaces is equal to the sum over this subtuple of their
codimensions in L (in particular, if the sum of the codimensions of all subspaces is
greater than the dimension of L, then the subspaces cannot be mutually transver-
sal). Subvarieties M1, . . . ,Mk are said to be mutually transversal in the ambient
variety M if at every common point of any subtuple of these subvarieties their
tangent spaces are mutually transversal in the tangent space to M at this point.

Let M be endowed with a fixed divisor M∞ which is a union of smooth mutu-
ally transversal divisors M∞

j . Consider the ring R of meromorphic functions on M
whose restrictions to M \M∞ are regular. We are interested in complete intersec-
tions in M \ M∞ given by systems of equations of the form f1 = · · · = fk = 0,
where fi ∈ R. Every divisor D on M can be expanded into a sum D0 +D∞, where
D0 has no components with supports in M∞ and the support of D∞ lies in M∞.

Let (f) = D0 +D∞ be such an expansion of the divisor (f) of a function f ∈ R.
The support of D0 lies in the closure of the hypersurface which is defined in M \M∞

by the equation f = 0. The divisor D∞ is linearly equivalent to 4 −D0. For our
purposes it suffices to consider only those equations f = 0 for which the divisor D∞

4Here and in what follows we use notation somewhat different from that in our references [1], [2].
The main difference is in the signs. The divisors and cohomology which we denote by D∞, ∆∞

and H∗(M, ∆∞), are denoted in [1], [2] by −D∞, −{∆} and H∗(M, {−∆}) respectively.
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in the expansion of (f) is negative. In what follows we always assume that this
condition holds.

Consider a complete intersection in M \M∞ given by a system f1 = · · · = fk = 0,
fi ∈ R, and let (fi) = D0

i +D∞
i be the expansions of the divisors of the functions fi.

Suppose that D0
1, . . . , D

0
k are non-singular divisors in M and their intersection is

non-empty. We also assume that all the divisors D0
i and M∞

j (where M∞
j are

the components of M∞) are mutually transversal. Substantial information on the
numbers hp of the complete intersection can be obtained if we know the dimensions
of the cohomology groups H∗(M,n1D

∞
1 + · · ·+ nkD∞

k ), ni = {0, 1}, of the ambient
manifold M . We recall how to do this [6].

6.3. Exact sequences. For every m, 1 6 m 6 k, we put Mm = D0
1 ∩ · · · ∩D0

m.
Each variety in the sequence M = M0 ⊃ · · · ⊃ Mk is a hypersurface in the previous
variety. For every divisor D∞ 6 0 and every m, 1 6 m 6 k, we consider the exact
sequence of sheaves

0 → Ω(Mm−1, D
∞ −D0

m) i→ Ω(Mm−1, D
∞)

j→ Ω̂(Mm−1, D
∞) → 0. (9)

Here Ω(Mm−1, D
∞ − D0

m) is the sheaf on Mm−1 associated with the divisor cut
out on Mm−1 by the divisor D∞ −D0

m (it follows from our assumptions that the
variety Mm−1, the support of D0

m and the components M∞
j of the support of D∞

are mutually transversal). The sheaves Ω(Mm−1, D
∞) and Ω(Mm, D∞) are defined

in a similar way. The sheaf Ω̂(Mm−1, D
∞) is the trivial extension of Ω(Mm, D∞) to

a sheaf on Mm−1. The homomorphism i is an embedding and the homomorphism j
is trivial at every point a ∈ Mm−1\Mm and sends each germ of a function on Mm−1

to its restriction to Mm at every point a ∈ Mm. The corresponding cohomology
exact sequence can be written in the form

0 → H0(Mm−1, D
∞ + D∞

m ) → H0(Mm−1, D
∞) → H0(Mm, D∞) → · · · (10)

(since the cohomology groups of the sheaves Ω(Mm−1, D
∞ − D0

m) and Ω(Mm−1,
D∞ + D∞

m ), as well as of Ω̂(Mm, D∞) and Ω(Mm−1, D
∞), are canonically isomor-

phic). Given any variety M and any divisor D on M, we write χ(M,D) for the
Euler characteristic of M with coefficients in Ω(M,D). The Euler characteristic of
a variety with coefficients in a sheaf is equal to the sum of its Euler characteristics
with coefficients in a subsheaf and the quotient sheaf. The exact sequences (10)
enable us to find the numbers χ(Mk, D∞). Here is the answer in the case when
D∞ = 0 (we are interested only in the number χ(Mk)).

Theorem 21. The arithmetic genus χ(Mk) of the variety Mk is equal to

χ(M)−
∑

i

χ(M,D∞
i ) +

∑
i<j

χ(M,D∞
i + D∞

j )− · · ·+ (−1)kχ

(
M,

∑
16i6k

D∞
i

)
.

For every non-empty set J ⊂ {1, . . . , k} we put D∞
J =

∑
i∈J D∞

i .

Theorem 22. The following bound holds :

hi(Mk) 6 hi(M) +
∑
J 6=∅

dim Hi+|J|(M,D∞
J ).
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Proof. We rewrite this bound, generalize it, and prove the generalized bound. When
J = ∅ we put D∞

J = 0. Then the bound in the theorem may be rewritten in the
form hi(Mk) 6

∑
J dim Hi+|J|(M,D∞

J ) (the sum is taken over all subsets J , includ-
ing J = ∅) since dim Hi(M, 0) = hi(M). The following more general inequality
coincides with the desired one when D∞ = 0: for every divisor D∞ 6 0 we have

dim Hi(Mk, D∞) 6
∑

J

dim Hi+|J|(M,D∞ + D∞
J ).

Let us prove this inequality by induction on k. For every divisor D∞ 6 0 and any
integers j > 0 and m, 1 6 m 6 k, the part

→ Hj(Mm−1, D
∞) → Hj(Mm, D∞) → Hj+1(Mm−1, D

∞ + D∞
m ) → · · ·

of the exact sequence (10) yields that

dim Hj(Mm, D∞) 6 dim Hj(Mm−1, D
∞) + dim Hj+1(Mm−1, D

∞ + D∞
m ). (11)

When k = 1, the desired assertion coincides with (11) with j = i and m = 1.
Suppose that the theorem is true for k − 1.

For every J ⊂ {1, . . . , k} put J∗ = J ∩ {1, . . . , k − 1}. Then either J = J∗, or
J = J∗ ∪ {k}. In the first case,

|J | = |J∗|, D∞ + D∞
J = D∞ + D∞

J∗ . (12)

In the second case,

|J | = |J∗|+ 1, D∞ + D∞
J = D∞ + D∞

J∗ + D∞
k . (13)

By the inductive hypothesis for the non-negative divisor D∞ and every i > 0 we
have

dim Hi(Mk−1, D
∞) 6

∑
Hi+|J∗|(M,D∞ + D∞

J∗), (14)

where the sum is taken over all subsets J∗ ⊂ {1, . . . , k − 1}.
By the inductive hypothesis for every divisor D∞ + D∞

k 6 0 and the number
i + 1 we have

dim Hi+1(Mk−1, D
∞ + D∞

k ) 6
∑

dim H |J∗|+i+1(M,D∞
J∗ + D∞

k + D∞), (15)

where the sum is taken over all subsets J∗ ⊂ {1, . . . , k − 1}.
Substituting the right-hand sides of (14) and (15) for dim Hi(Mk−1, D

∞) and
dim Hi+1(Mk−1, D

∞ +D∞
k ) in (11) and using (12) and (13), we obtain the desired

inequality for the parameters k, i and the divisor D∞ 6 0. �

Corollary 23. Let i be such that for every J 6= ∅ we have Hi+|J|(M,D∞
J ) = 0.

Then hi(Mk) 6 hi(M).
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§ 7. Toric compactifications

We recall some results on toric compactifications (see [7]) and their applications
to the theory of Newton polytopes (see [1], [2]). The torus (C∗)n induces not
only the character space Rn, but also the space of one-parameter semigroups (Rn)∗

endowed with a lattice (Zn)∗⊂ (Rn)∗. Each integer point m = (m1, . . . ,mn) ∈
(Zn)∗ determines a one-parameter group, namely, the homomorphism tm : C∗ →
(C∗)n sending every point t ∈ C∗ to the point (tm1 , . . . , tmn) ∈ (C∗)n. The com-
posite of the homomorphism tm : C∗ → (C∗)n and a character zk : (C∗)n → C∗,
where zk = zk1

1 · · · zkn
n , is a homomorphism t〈k,m〉 : C∗ → C∗, where 〈k,m〉 =

k1m1 + · · ·+knmn. The pairing 〈k, m〉 extends by continuity to the character space
and the space of one-parameter groups and establishes a duality between them.

A finite rational cone in (Rn)∗ is a subset of (Rn)∗ determined by finitely many
linear inequalities {〈x,mj〉 6 0}, where the mj ∈ Zn are integer points of the dual
space Rn. Each face of a finite rational cone is also a finite rational cone.

A complete fan in (Rn)∗ is a finite set F = {σi} of finite rational cones σi with
the following properties.

1)
⋃

σi = (Rn)∗.
2) The cones σi ∈ F contain no vector subspaces of positive dimension.
3) For every pair of cones σi, σj ∈ F their intersection σi ∩ σj lies in F and is

a face of σi and a face of σj .
A toric compactification is a normal complete algebraic variety M containing

the torus (C∗)n such that the group action of (C∗)n on itself extends algebraically
to M . The action of (C∗)n decomposes every toric compactification M into finitely
many orbits {Oi}, exactly one of which is n-dimensional (the torus (C∗)n).

For every toric compactification M one can define a complete fan FM in the space
of one-parameter groups and establish a one-to-one correspondence ρ : FM → {Oi}
between FM and the set of orbits {Oi} in M in such a way that the following
conditions hold.

1) dimR σ = n− dimC ρ(σ).
2) If m ∈ σ is an integer point lying inside σ (in the topology of the minimal

affine space containing σ), then limt→0 tm ∈ ρ(σ).
The map M → FM establishes a one-to-one correspondence between toric com-

pactifications and complete fans.
One-dimensional cones in FM correspond under the map ρ to (n−1)-dimensional

orbits in M . Each one-dimensional cone is generated by a primitive integer vec-
tor m. Hence the primitive integer vector m(O) corresponding to an (n − 1)-
dimensional orbit O is well defined in the space of one-parameter groups. The
order of the character zk on an (n− 1)-dimensional orbit O is equal to 〈k,m(O)〉.

The support supp(P ) of a Laurent polynomial P lies in the character lattice
and its Newton polytope ∆(P ) lies in the character space. On the dual space
of one-parameter groups we have a function HP sending each covector m to the
number mink∈supp(P )〈m, k〉. The function HP coincides with the support function of
the polytope ∆ = ∆(P ), which is defined by the formula H∆(m) = mink∈∆〈m, k〉.
The order ord P |O of the Laurent polynomial P on an (n − 1)-orbit O is equal
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to HP (m(O)) and depends only on the polytope ∆ = ∆(P ). We write O for the
divisor which is the closure of an orbit O of dimension (n− 1).

With every Laurent polynomial P we associate a divisor P∞ on M by the formula
P∞ =

∑
ordP |OO, where the sum is taken over all (n− 1)-dimensional orbits O.

The divisor P∞ is invariant under the toric action on M and depends only on the
polytope ∆ = ∆(P ). In what follows we denote the divisor by ∆∞.

Remark. The equations P = 0 and zqP = 0 on the torus (C∗)n are equivalent.
If−q ∈∆(P ), then 0∈∆(zqP ). Hence for our purposes it suffices to consider only
those polytopes ∆ which contain the point 0. For such polytopes, the support
function ∆(zqP ) is less than or equal to zero and we have ∆∞ 6 0 (see footnote 4).

Definition. A complete fan F is said to be sufficiently complete for a polytope ∆
if the support function H∆ is linear on each cone σi ∈ F .

A polytope ∆ induces a decomposition of the dual space into equivalence classes,
where two covectors are equivalent if the restrictions of the linear functions deter-
mined by them attain their minimum values at the same face of ∆. With each
integer polytope ∆ we associate the fan ∆⊥ whose cones are the closures of these
equivalence classes. A fan F is sufficiently complete for ∆ if and only if it is a sub-
division of ∆⊥.

Since the divisor ∆∞ is invariant under the torus action, the theory of toric vari-
eties enables us to compute the dimensions of the cohomology groups H∗(M,∆∞)
(see, for example, [7]). The answer is especially simple in the case when the fan FM

is sufficiently complete for the polytope ∆.
We recall that B+(∆) is the number of integer points lying strictly inside ∆ in

the topology of the minimal affine space L(∆) containing ∆. The following theorem
holds (see the theorem in § 4 of [1] and footnote 4).

Theorem 24. Suppose that FM is sufficiently complete for∆. Then Hi(M,∆∞)=0
when i 6= d, where d = dim ∆, and dim Hd(M,∆∞) = B+(∆).

If the fan FM is sufficiently complete for T = ∆1 + · · ·+∆k, then it is sufficiently
complete for every polytope n1∆1 + · · ·+ nk∆k with ni > 0.

Corollary 25. If FM is sufficiently complete for T , then for every polytope ∆ =
n1∆1+· · ·+nk∆k with ni > 0 the dimensions of the cohomology groups H∗(M,∆∞)
are those calculated in Theorem 24.

Corollary 26. Suppose that FM is sufficiently complete for ∆. Then the Euler
characteristic of M with coefficients in Ω(M,∆∞) is equal to B(∆), where by
definition B(∆) = (−1)dim ∆B+(∆).

Corollary 27. For every smooth projective toric variety M we have h0(M) = 1
and the numbers hi(M), i > 0, are equal to zero.

Proof. The numbers hi are birational invariants. All n-dimensional toric varieties
are birationally equivalent to CPn, for which the corollary obviously holds. Let us
also deduce the corollary directly from Theorem 24. Let ∆ = {0} be the polytope
consisting of the point 0. Then dim ∆ = 0 and B+(∆) = 1. The complete fan FM
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of any toric variety M is sufficiently complete for ∆ = {0}, and the divisor ∆∞

on M is equal to zero in this case. It remains to use Theorem 24 with ∆ = {0}. �

It is known (see, for example, [7]) that a toric compactification M is a smooth
projective variety if and only if its fan FM possesses the following properties.

1) Every cone σ ∈ FM is a simplicial cone.
2) For every σ ∈ FM the primitive integer vectors lying on the edges of σ generate

the lattice Zn ∩ L(σ), where L(σ) is the minimal vector space containing σ.
3) The fan FM is dual to some integer polytope ∆ (that is, FM = ∆⊥).
It is known that every complete fan F can be subdivided (in infinitely many

ways) to obtain the fan of a smooth projective variety (see, for example, [7]).

§ 8. Proof of the irreducibility theorem

Here we use the results of §§ 6 and 7 to prove the irreducibility theorem. We also
make some calculations related to the numbers hp(X) of an algebraic variety X
determined by the system (1).

Let ∆1, . . . ,∆k be the Newton polytopes of the Laurent polynomials P1, . . . , Pk

occurring in the system (1). We shall assume that this tuple of polytopes is inde-
pendent (otherwise a generic system of equations (1) is incompatible). In this
section M stands for any (fixed) smooth projective toric compactification of (C∗)n

such that FM is a subdivision of ∆⊥, where ∆ = ∆1 + · · · + ∆k. The union of
the closures of the (n − 1)-dimensional orbits in M is denoted by M∞. Since M
is a smooth toric variety, M∞ is a divisor with normal crossings (see, for example,
[7]). The open variety M \M∞ is the torus (C∗)n, and the ring R of meromorphic
functions on M whose restrictions to the torus are regular coincides with the ring of
Laurent polynomials. We preserve the notation of § 6, having in mind the varieties
M , M∞ and R introduced above. To use the results of §§ 6 and 7 for the variety X
determined by a sufficiently general system (1), we need the following lemma.

Lemma 28. Let Pi be any of the Laurent polynomials occurring in a sufficiently
general system (1). Then the closure D0

i of the hypersurface Pi = 0 in M is
a smooth hypersurface in M . Moreover, the divisors D0

i and the closures of all
(n− 1)-dimensional orbits are mutually transversal in M .

Proof. For every non-empty subset J = {i1, . . . , il} of the set {1, . . . , k} we consider
the corresponding subsystem (5) of the system (1). The following conditions on the
tuple of polynomials P1, . . . , Pk are sufficient (and necessary) for the conclusion
of Lemma 28 to hold. For every J the subsystem (5) must be ∆-non-degenerate
(see [2]) for its tuple of Newton polytopes ∆i1 , . . . ,∆il

. This assertion follows
automatically from the theorem in § 2 of [2]. �

Suppose that the system (1) is compatible and sufficiently general for Lemma 28
to hold. Then the closure in M of the variety X of solutions of (1) is an intersection
of smooth divisors D0

1, . . . , D
0
k such that the corresponding divisors D∞

1 , . . . , D∞
k

are equal to ∆∞
1 , . . . ,∆∞

k . Hence the results of § 6 are applicable to this closure.
To apply them, we need some information on the dimensions of the cohomology
groups H∗(M,n1∆∞

1 + · · ·+ nk∆∞
k ), ni = {0, 1}. This information is contained in

Corollary 25 of Theorem 24.
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Theorem 29. If X is given by the system (1), then the arithmetic genus χ(X)
satisfies

χ(X) = 1−
∑

i

B(∆i) +
∑
i<j

B(∆i + ∆j)−
∑

i<j<l

B(∆i + ∆j + ∆l) + · · · . (16)

Proof. This follows automatically from Theorem 21 and Corollary 26. �

When k = n, the right-hand side of (16) is equal to n!V (∆1, . . . ,∆n) (see [1]).
This proves the Bernstein–Kushnirenko theorem (if dim X = 0, then χ(X) is the
number of points in X).

Remark. The formula for χ(X) and the deduction of the Bernstein–Kushnirenko
theorem from it were given in [1].

Theorem 30. For every non-negative integer i we have

hi(X) 6
∑

{J| dim ∆J−|J|=i}

B+(∆J) + δi
0,

where δi
0 = 0 for i 6= 0 and δ0

0 = 1, and the sum is taken over all J 6= ∅.

Proof. This follows automatically from Theorems 22, 24 and the equality hi(M) = δi
0

(see Corollary 27). �

Definition. We say that an integer i > 0 is critical for a tuple ∆1, . . . ,∆k of
independent integer polytopes in Rn if there is a non-empty subset J ⊂ {1, . . . , k}
such that B+(∆J) > 0 and dim ∆J − |J | = i.

Suppose that X is given by a sufficiently general system (1) with independent
Newton polytopes ∆1, . . . ,∆k.

Theorem 31. Let i be non-critical for ∆1, . . . ,∆k. If i = 0, then X is irreducible.
But if i > 0, then hi(X) = 0.

Proof. For non-critical i, the inequality in Theorem 30 takes the form hi(X) 6 δi
0.

But the number h0(X), which coincides with the number of components of X,
is strictly positive and the numbers hi(X) are non-negative. �

Theorem 17 (the irreducibility theorem) follows from Theorem 31. Theorem 30
yields the following strengthening of a result in [1].

Corollary 32. If all numbers i with 0 6 i < n−k are non-critical for ∆1, . . . ,∆k,
then h0(X) = 1, h(n−k)(X) = (−1)(n−k)(χ(X) − 1) and hp(X) = 0 for p 6= 0,
p 6= n− k.

Proof. By Theorem 30 we have h0(X) = 1 and hp = 0 for 0 < p < n− k. Since the
dimension of X is equal to n− k, we also have hp = 0 for n− k < p. �
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