Функциональный анализ и его приложения 2011, т. 45, вып. 4, с. 82–94

УДК 512.761+515.171.3

Теория пересечений и функция Гильберта*

© 2011. A. Г. Хованский

Памяти Владимира Игоревича Арнольда

Бирационально-инвариантная теория пересечений является далеким обобщением и развитием теоремы Бернштейна—Кушниренко. В статье приводятся прозрачные доказательства теоремы Гильберта о степени проективного многообразия и ряда близких утверждений, играющих важную роль в этой теории. Статью можно читать независимо — в ней напоминаются все необходимые определения и результаты.

Введение. Теорема Гильберта (см. разд. 7) связывает степень проективного многообразия с асимптотикой его функции Гильберта. В статье даются элементарные доказательства этой теоремы над полем комплексных чисел и ряда близких утверждений, некоторые из которых (теорема 10) не очевидны с точки зрения алгебраической геометрии.

Зачем снова доказывать классическую теорему, входящую в учебники по алгебраической геометрии? Эта фундаментальная теорема играет ключевую роль для недавно появившейся и находящейся в процессе построения бирационально-инвариантной теории пересечений, как для ее комплексно-аналитической версии, так и версии, справедливой над любым алгебраически замкнутым полем. Для алгебраической версии нужна теорема Гильберта в ее стандартной форме. Для аналитической версии естественно иметь аналитическое доказательство. Оно дает новое видение предмета и подсказывает новые алгебраические результаты.

0.1. Бирационально-инвариантная теория пересечений. В 1975 г. была найдена знаменитая теорема Бернштейна—Кушниренко о числе решений в $(\mathbb{C}^*)^n$ общей системы из n уравнений с заданными многогранниками Ньютона (доказательство, основанное на теореме Гильберта, можно найти в [1], [2]). Ее появлению способствовал богатый эмпирический материал, накопленный Владимиром Игоревичем Арнольдом при исследовании критических точек функций. Она послужила началом теории многогранников Ньютона, которая в рамках геометрии торических многообразий связала выпуклую геометрию с алгебраической геометрией и с теорией особенностей ([3], [4]). Эта теория интенсивно разрабатывалась (в частности, на семинаре Арнольда), ей посвящены сотни публикаций.

Теорема Бернштейна–Кушниренко не укладывается в рамки обычной теории пересечений: в ней идет речь о числе решений системы уравнений на неполном многообразии $(\mathbb{C}^*)^n$, левые части уравнений которой — достаточно общие функции из специальных конечномерных пространств. Ответ выражается в терминах многогранников Ньютона, само определение которых использует специфику этих пространств и многообразия $(\mathbb{C}^*)^n$.

^{*}Работа выполнена при частичной поддержке Канадского гранта по. 0GP0156833.

В бирационально-инвариантной теории пересечений вместо $(\mathbb{C}^*)^n$ берется любое (не обязательно полное) неприводимое n-мерное алгебраическое многообразие X и рассматриваются системы, левые части уравнений которых — общие функции из произвольных конечномерных пространств рациональных функций на X. Эти конечномерные пространства образуют полугруппу (по умножению) $\mathcal{K}(X)$. Индекс пересечения n элементов из $\mathcal{K}(X)$ — это (правильно интерпретированное) число решений системы, левые части уравнений которой — общие функции из этих n пространств. Индекс пересечения автоматически переносится на группу Гротендика полугруппы $\mathcal{K}(X)$. Каждому пространству $L \in \mathcal{K}(X)$ сопоставляется его meло Hbromoha—Oкунькова $\Delta(L) \subset \mathbb{R}^n$ таким образом, что $\Delta(L_1) + \Delta(L_2) \subset \Delta(L_1L_2)$ и что индекс самопересечения пространства L равен (как в теореме Кушниренко) умноженному на n! объему тела $\Delta(L)$ (конструкция тела $\Delta(L)$ неоднозначна и содержит функциональные параметры, которые можно выбирать произвольно). Развиваемая теория связывает алгебру и геометрию вне рамок торической геометрии (см. [5], а также [6]).

Эта связь полезна в различных направлениях. Для алгебраической геометрии она доставляет элементарные доказательства аналогов геометрических неравенств Александрова-Фенхеля в теории пересечений ([5], [8]) и далекое обобщение теоремы об аппроксимации Фуджиты ([6], [8]). Для теории инвариантов она доставляет аналоги теоремы Бернштейна-Кушниренко для оросферических многообразий [9] и некоторых других многообразий, снабженных действием редуктивной группы ([10], [11]), и позволяет вычислить группу Гротендика полугруппы представлений редуктивной группы [10] (рассматриваемых с точностью до спектральной эквивалентности). В абстрактной алгебре она позволяет выделить широкий класс градуированных алгебр, функции Гильберта которых не совпадают при больших значениях аргумента с полиномом, но имеют полиномиальную асимптотику, а константы, характеризующие асимптотику, удовлетворяют аналогу геометрического неравенства Брунна-Минковского [8]. Для геометрии найденная связь доставляет прозрачное доказательство неравенства Александрова-Фенхеля и его многочисленных следствий ([5], [8]). Связь основана на геометрической теории полугрупп целых точек [8].

Опубликована часть комплексно-аналитической версии теории, содержащая ее глобальный вариант и вариант, связанный с действием редуктивных групп (см. список литературы). Мы с К. Каве записываем локальный вариант, доставляющий новые неравенства (аналогичные неравенству Александрова—Фенхеля) для кратностей примарных идеалов в локальном кольце. Соображения из настоящей статьи применяются для топологического доказательства формулы Самюэля для кратности корня системы уравнений в особой точке многообразия.

Мы записываем также версию теории, справедливую над любым алгебраически замкнутым полем (здесь мы пользуемся теоремой Гильберта в стандартной форме). Мы получаем абстрактные аналоги всех результатов, включая аналог для абстрактных локальных колец наших новых неравенств для кратностей примарных идеалов.

0.2. Содержание статьи. Пусть X — неприводимое n-мерное комплексное алгебраическое многообразие и $\mathcal{K}(X)$ — полугруппа по умножению ненулевых конечномерных подпространств над $\mathbb C$ поля рациональных функций $\mathbb C(X)$ на X. Функция Гильберта H_L и нормализованная функция Гильберта \overline{H}_L пространства $L \in \mathcal{K}(X)$ определяются равенствами $H_L(k) = \dim_{\mathbb C} L^k$ и $\overline{H}_L(k) =$

 $\dim_{\mathbb{C}} \overline{L^k}$, где $\overline{L^k}$ — целое замыкание пространства L^k в поле $\mathbb{C}(X)$ (см. разд. 2 и 6). Асимптотики функций $H_L \leqslant \overline{H}_L$ связаны с индексом самопересечения d пространства L.

Ситуация наиболее проста, если пространство L разделяет общие точки в X. В этом случае существуют верхние и нижние оценки функций $H_L \leqslant \overline{H}_L$, имеющие одинаковые асимптотики при $k \to \infty$ и зависящие лишь от n и d (а не от X и L). Доказательства основаны на свойствах индексов пересечения на алгебраических многообразиях и на несложных рассуждениях, справедливых для любых аналитических многообразий.

Из оценок вытекает, что

$$n! \lim_{k \to \infty} \frac{H_L(k)}{n^k} = d \quad \text{if} \quad n! \lim_{k \to \infty} \frac{\overline{H}_L(k)}{n^k} = d.$$

Первое из этих равенств эквивалентно теореме Гильберта для неприводимого проективного многообразия над полем $\mathbb C$ и дает самое простое из известных мне доказательств этой теоремы. Для приводимых проективных многообразий не существует двусторонних оценок функции Гильберта, зависящих лишь от n и d и имеющих правильные асимптотики.

Если пространство $L \in \mathcal{K}(X)$ не разделяет общие точки в X, то равенство $n! \lim_{k \to \infty} H_L(k)/n^k = d$ не выполняется. Если d>0, то, во-первых, существует верхняя оценка функции \overline{H}_L , зависящая лишь от n и d и имеющая нужную асимптотику, и, во-вторых, справедливо равенство $d=n! \lim \overline{H}_L(k)/n^k$ (нижней оценки подобного вида для функции \overline{H}_L не существует). В общем случае, без предположения d>0, не существует и верхней оценки подобного вида для функции \overline{H}_L , но равенство $d=n! \lim \overline{H}_L(k)/n^k$ по-прежнему справедливо. Оно и доставляет связь асимптотики нормализованной функции Гильберта \overline{H}_L и индекса самопересечения пространства L.

- **0.3.** Расположение материала. Мы напоминаем нужные положения бирационально-инвариантной теории пересечений в разд. 1 и 2. В разд. 3 вводятся обозначения, используемые в разд. 4 и 5 при оценке размерностей некоторых пространств аналитических функций. В разд. 6 напоминаются свойства целого замыкания и дается простое доказательство того, что $\dim_{\mathbb{C}} \overline{L} < \infty$ при $L \in \mathcal{K}(X)$. В разд. 7 разбирается случай, когда L разделяет общие точки в X, в разд. 8 случай, когда d>0. В разд. 9 в общем случае доказывается связь асимптотики функции \overline{H}_L и индекса самопересечения.
- **1.** Индекс пересечения в полугруппе $\mathcal{K}(X)$. Пусть X неприводимое n-мерное алгебраическое многообразие (в статье под алгебраическим многообразием мы подразумеваем квазипроективное алгебраическое многообразие) над полем \mathbb{C} . Пусть $\mathcal{K}(X)$ множество, состоящее из ненулевых конечномерных подпространств над \mathbb{C} поля $\mathbb{C}(X)$ рациональных функций на X. Множество $\mathcal{K}(X)$ наделено структурой коммутативной полугруппы относительно следующей операции умножения: произведением пространстве $L, M \in \mathcal{K}(X)$ называется пространство $LM \in \mathcal{K}(X)$, натянутое на все функции вида fg, где $f \in L$, $g \in M$.

Для всякого набора $L_1, \ldots, L_n \in \mathcal{K}(X)$ определен (см. [7]) индекс пересечения $[L_1, \ldots, L_n]$: число $[L_1, \ldots, L_n]$ равно числу решений в X системы уравнений

 $f_1 = \cdots = f_n = 0$, где $f_1 \in L_1, \ldots, f_n \in L_n$ — общий набор функций из пространств L_1, \ldots, L_n . При подсчете числа решений не учитываются решения, в которых обращаются в нуль все функции из некоторого пространства L_i , где $1 \leqslant i \leqslant n$, т. е. такие решения $a \in X$, что f(a) = 0, если $f \in L_i$. Не учитываются также решения, в которых хотя бы одна функция g из одного из пространств L_j имеет полюс. Напомним основные свойства индекса пересечения (см. [7]).

- 1) Индекс пересечения определен корректно. Скажем, что некоторым свойством обладает общий элемент линейного пространства M над \mathbb{C} , если существует комплексное полуалгебраическое множество $\Sigma \subset M$, такое, что этим свойством обладают элементы множества $M \setminus \Sigma$ и dim $\Sigma <$ dim M. Пусть $L_1, \ldots, L_n \in \mathcal{K}(X)$ любой набор пространств и $O \subset X$ любое комплексное полуалгебраическое подмножество, такое, что
 - (a) O содержит все особые точки многообразия X,
- (b) для $1 \le i \le n$ справедливо включение $O_i \subset O$, где O_i множество точек, в которых обращаются в нуль все функции из пространства L_i ,
- (c) O содержит объединение дивизоров полюсов всех функций из пространств L_1, \ldots, L_n ,
 - (d) выполнено неравенство $\dim O < \dim X$.

Под корректностью определения индекса пересечения мы понимаем следующее утверждение: для общего элемента $(f_1,\ldots,f_n)\in L_1\times\cdots\times L_n$ все корни системы уравнений $f_1=\cdots=f_n=0$, лежащие в множестве $X\setminus O$, невырожденны (т.е. дифференциалы df_i линейно независимы в каждом корне) и их число не зависит от выбора множества O, удовлетворяющего условиям (a)–(d), и равно $[L_1,\ldots,L_n]$.

- 2) Индекс пересечения симметричен, т. е. не меняется при перестановке пространств. Это свойство непосредственно вытекает из определения.
- 3) Индекс пересечения полилинеен. Линейность индекса по первому аргументу означает, что для любых пространств $L'_1, L''_1, L_2, \ldots, L_n \in \mathcal{K}(X)$ справедливо равенство $[L'_1L''_1, L_2, \ldots, L_n] = [L'_1, L_2, \ldots, L_n] + [L''_1, L_2, \ldots, L_n]$. Линейность по остальным аргументам определяется аналогично.
- **2.** Группа Гротендика полугруппы $\mathcal{K}(X)$. Как и для всякой коммутативной полугруппы, для полугруппы $\mathcal{K}(X)$ определены ее полугруппа Гротендика и ее группа Гротендика.

Определение 1. Два элемента a,b коммутативной полугруппы S называются эквивалентными, $a \sim b$, если существует элемент $c \in S$, такой, что ac = bc. Множество классов эквивалентности с индуцированной операцией умножения образует коммутативную полугруппу c сокращением (т. е. полугруппу, в которой из равенства AC = BC вытекает, что A = B), называемую полугруппы C0 мы будем обозначать через C1.

Определение 2. С коммутативной полугруппой S связано множество G(S) пар (a,b) элементов a,b ее полугруппы Гротендика, в котором введено отождествление $(a,b)\sim (c,d)\iff ad=bc$. Множество G(S) с операцией умножения (a,b)(c,d)=(ac,bd) и операцией обращения $(a,b)^{-1}=(b,a)$ является группой, которая называется группой Гротендика полугруппы S. Группу Гротендика полугруппы $\mathcal{K}(X)$ будем обозначать через G(X).

Всякий гомоморфизм $\tau\colon S\to G$ коммутативной полугруппы S в коммутативную группу G однозначно пропускается через естественное отображение

 $\rho\colon S\to G(S)$ полугруппы S в ее группу Гротендика, т. е. существует единственный гомоморфизм $\tilde{\tau}\colon G(S)\to G$, такой, что $\tau=\tilde{\tau}\circ \rho$.

Утверждение 1. Пусть $L_1, \ldots, L_n \in \mathcal{K}(X)$ и $L'_1, \ldots, L'_n \in \mathcal{K}(X)$, причем $L_1 \sim L'_1, \ldots, L_n \sim L'_n$. Тогда $[L_1, \ldots, L_n] = [L'_1, \ldots, L'_n]$.

Доказательство. Покажем, что $[L_1,L_2,\ldots,L_n]=[L'_1,L_2,\ldots,L_n]$. Действительно, по линейности индекса пересечения отображение $\mathcal{K}(X)\mapsto \mathbb{Z}$, сопоставляющее элементу $L\in\mathcal{K}(X)$ число $[L,L_2,\ldots,L_n]\in\mathbb{Z}$, является гомоморфизмом полугруппы $\mathcal{K}(X)$ в группу \mathbb{Z} . Этот гомоморфизм продолжается на группу Гротендика, откуда и вытекает нужное равенство. В силу симметрии индекса пересечения все остальные пространства тоже можно заменить на эквивалентные, не меняя индекса пересечения.

Обсудим очевидные свойства соотношения эквивалентности $L_1 \sim L_2$ в полугруппе $\mathcal{K}(X)$:

Утверждение 2. (i) Если $L_1 \sim L_2$, то $L_1 + L_2 \sim L_1 \sim L_2$.

(ii) $\mathit{Ecлu}\ L_1 \sim L_2\ \mathit{u}\ \mathit{выполняются}\ \mathit{включения}\ L_1 \subset L \subset L_2,\ \mathit{mo}\ L_1 \sim L \sim L_2$.

Доказательство. (i) Если $L_1M=L_2M$, то $(L_1+L_2)M=L_1M+L_2M=L_1M=L_2M$.

(ii) Если $L_1\subset L\subset L_2$ и $L_1M=L_2M$, то $L_1M\subset LM\subset L_2M$. Поэтому $L_1M=LM=L_2M$.

Скажем, что функция $f \in \mathbb{C}(X)$ тривиальна над $L \in \mathcal{K}(X)$, если $L \sim L(f)$, где L(f) — пространство, порожденное функциями из L и функцией f.

Утверждение 3. (i) Если $L \subset M$, $L \sim M$ u $f \in M$, mo $L(f) \sim L$.

- (ii) Тривиальные над $L \in \mathcal{K}(X)$ функции образуют линейное пространство над \mathbb{C} .
 - (iii) Если $L(f) \sim L$ и g тривиальна над L(f), то $L(g) \sim L$.
- (iv) Eсли f тривиальна над L^k и g тривиальна над L^m , то fg тривиальна над L^{k+m} .

Доказательство. (i) Имеем $L \subset L(f) \subset M$. Так как $L \sim M$, то $L(f) \sim L$.

- (ii) Пусть $L(f) \sim L$ и $L(g) \sim L$. Тогда $L(f) + L(g) \sim L$. Для $\lambda, \mu \in \mathbb{C}$ имеем $L \subset L(\lambda f + \mu g) \subset L(f) + L(g)$. Поэтому $L(\lambda f + \mu g) \sim L$.
- (iii) Положим L'=L(f). Имеем $L'\sim L$ и $L'(g)\sim L'$, откуда $L'(g)\sim L$ и, следовательно, $L(g)\sim L$.
- (iv) Если $L^k(f) \sim L^k$ и $L^m(g) \sim L^m$, то $L^k(f)L^m(g) \sim L^{k+m}$. Далее $L^{k+m} \subset L^k(f)L^m(g)$ и $fg \in L^k(f)L^m(g)$, поэтому $L^{k+m}(fg) \sim L^{k+m}$.

Тривиальность функции f над пространством L можно описать совершенно в других терминах (см. [7], [12]).

Определение 3. Функция $f\in\mathbb{C}(X)$ называется *целой функцией над* $L\in\mathcal{K}(X),$ если она удовлетворяет некоторому уравнению

$$f^d + a_1 f^{d-1} + \dots + a_d = 0, (1)$$

коэффициенты a_i которого лежат в пространствах L^i .

Утверждение 4. $L(f) \sim L$, если и только если f — целая функция над L.

Доказательство. Если f удовлетворяет уравнению (1), то $L(f)(L(f))^d = L(L(f))^d$. Это доказывает, что целая функция над L тривиальна над L.

Пусть $L(f) \sim L$. Тогда есть $M \in \mathcal{K}(X)$, такое, что LM = L(f)M. Пусть e_1, \ldots, e_d — базис пространства M над полем \mathbb{C} . Равенство LM = L(f)M означает, что выполняются тождества $fe_i = \sum b_{i,j}e_j$, где $b_{i,j}$ — некоторые элементы пространства L. Поэтому f является корнем характеристического полинома $\det(B-fI) = 0 \pmod{d \times d}$ -матрицы $B = \{b_{i,j}\}$. Это доказывает, что если $L(f) \sim L$, то f — целая функция над L.

Следствие 5. Пусть $L(f) \sim L$ и все функции из $L \in \mathcal{K}(X)$ регулярны в области $U \subset X$. Тогда f регулярна в U.

- **3.** Обозначения. Ниже, в пп. 3.1 и 3.2, определяются специальные целочисленные функции, в терминах которых формулируются оценки из разд. 4 и 5. В п. 3.3 вводятся общие для этих пунктов обозначения.
- **3.1.** Пусть Q(n,l) размерность пространства полиномов степени $\leqslant l$ от n переменных. Число Q(n,l) равно числу целых точек в n-мерном симплексе Δ , заданном неравенствами $0 \leqslant u_1, \ldots, 0 \leqslant u_n, \ u_1 + \cdots + u_n \leqslant l$. Объем симплекса Δ равен $l^n/n!$. Поэтому при заданном n и $l \to \infty$ имеем $Q(n,l) \approx l^n/n!$. Легко видеть, что $Q(n,l) = C_{l+n}^n$.

Пространство однородных полиномов степени k от n+1 переменных изоморфно пространству полиномов степени $\leqslant k$ от n переменных. Поэтому Q(n+1,k)-Q(n+1,k-1)=Q(n,k). Отсюда получаем равенство

$$Q(n+1,k) - Q(n+1,k-d) = Q(n,k) + Q(n,k-1) + \dots + Q(n,k-d+1).$$

3.2. В разд. 5 нам понадобится следующее определение.

Определение 4. Пусть N = kd + r, где r, $0 \le r < d$, — остаток от деления числа N на число d. Определим функцию F от (n,d,N) формулой

$$F(n, d, N) = rQ(n, k) + (d - r)Q(n, k - 1).$$

При заданных n, d и $N \to \infty$ имеем $F(n, d, N) \approx dk^n/n!$, где $k = \lfloor N/d \rfloor$.

3.3. В разд. 4 и 5 мы будем использовать следующие обозначения:

 $X^* - n$ -мерное комплексно-аналитическое многообразие;

L — конечномерное пространство аналитических функций на X^* , содержащее константы; мы будем предполагать, что L содержит набор функций x_1,\ldots,x_n , такой, что в множестве решений системы уравнений $x_1=\cdots=x_n=0$ на X^* найдется подмножество $Y=\{y_1,\ldots,y_d\}$, состоящее из невырожденных решений (т. е. в точках множества Y дифференциалы dx_i функций x_i для $i=1,\ldots,n$ линейно независимы);

 $\mathbf{x}: X^* \to \mathbb{C}^n$ — отображение, заданное формулой $\mathbf{x}(q) = (x_1(q), \dots, x_n(q));$ $\mathbf{x}_i^{-1}: U \to V_i$ — локальное обращение отображения \mathbf{x} , такое, что $\mathbf{x}_i^{-1}(0) = y_i$,

 $\mathbf{x}_{i}^{-1} \colon U \to V_{i}$ — локальное обращение отображения \mathbf{x} , такое, что $\mathbf{x}_{i}^{-1}(0) = y_{i}$, V_{i} — окрестность точки y_{i} и U — окрестность точки 0 (общая для всех i, $1 \leqslant i \leqslant d$).

4. Оценка размерности снизу. В следующей простой лемме 6 мы пользуемся обозначениями, введенными в разд. 3.

Лемма 6. 1. Пусть функция $f \in L$ принимает в точках y_1, \ldots, y_d различные значения. Тогда f не удовлетворяет никакому уравнению

$$a_1(\mathbf{x})f^{d-1} + \dots + a_d(\mathbf{x}) = 0,$$

в котором a_1, \ldots, a_d — полиномы на \mathbb{C}^n (не равные нулю одновременно).

2. Пусть существует функция $f \in L$, принимающая в точках y_1, \ldots, y_d различные значения. Тогда

$$\dim_{\mathbb{C}} L^{k} \geqslant Q(n+1,k) - Q(n+1,k-d) = Q(n,k) + Q(n,k-1) + \dots + Q(n,k-d+1).$$

Доказательство. 1. Пусть f_i — функция в области U, заданная формулой $f_i = f(\mathbf{x}_i^{-1})$. При разных i, j функции f_i, f_j в окрестности U не совпадают и удовлетворяют уравнению $a_1 y^{d-1} + \cdots + a_d = 0$. Но уравнение степени d-1 имеет не более d-1 корней. Противоречие доказывает п. 1.

2. Пространство L^k содержит функции $a_1(\mathbf{x})f^{d-1}+\cdots+a_d(\mathbf{x})$, в которых a_i — полиномы от x_1,\ldots,x_n степени, меньшей или равной k-d+i. По п. 1 эти функции линейно независимы. Лемма 6 доказана.

Скажем, что пространство $L \in \mathcal{K}(X)$ разделяет общие точки в алгебраическом многообразии X, если существует полуалгебраическое множество $O(L) \subset X$, такое, что: (i) dim O(L) < dim X; (ii) O(L) содержит дивизор полюсов функций из L; (iii) для любых различных точек $a,b \in X \setminus O(L)$ существует функция $g \in L$, такая, что $g(a) \neq g(b)$.

Лемма 7. Пусть $L \in \mathcal{K}(X)$ разделяет общие точки в X и $Y \subset X$ — конечное множество, не пересекающееся с O(L). Тогда существует функция $f \in L$, принимающая разные значения в различных точках множества Y.

Доказательство. Множество функций из L, принимающих равные значения в паре различных точек из Y, является собственным подпространством в L. Объединение конечного числа собственных подпространств не может совпадать с L.

Теорема 8. Пусть $L \in \mathcal{K}(X)$ разделяет общие точки на неприводимом n-мерном алгебраическом многообразии X и $[L,\ldots,L]=d>0$. Тогда

$$\dim_{\mathbb{C}} L^{k} \geqslant Q(n+1,k) - Q(n+1,k-d) = Q(n,k) + Q(n,k-1) + \dots + Q(n,k-d+1).$$

Доказательство. Положим $X^* = X \setminus (D \cup O)$, где D — дивизор полюсов функций из пространства L и O — объединение множества особых точек многообразия X с множеством точек, на которых обращаются в нуль все функции из пространства L. По лемме 7 найдется функция $f \in L$, принимающая в точках y_1, \ldots, y_d различные значения. Для завершения доказательства осталось воспользоваться п. 2 леммы 6.

5. Оценка размерности сверху. В формулировке леммы 9 мы используем обозначения из разд. 3 и npednoлaraem, что многообразие X^* связно.

Лемма 9. Пусть M — линейное пространство аналитических функций на X^* , содержащее константы и такое, что $\dim_{\mathbb{C}} M > F(d,n,N)$. Тогда есть функции $l_1,\ldots,l_{n-1}\in L$ и $\varphi\in M$, такие, что система уравнений $l_1=\cdots=l_{n-1}=\varphi=0$ имеет не меньше чем N невырожденных решений в X^* .

Доказательство. Выделим r точек y_1,\ldots,y_r из множества Y. Пусть $\Omega_{k,Y}$ — линейное пространство, точка которого — это набор k-струй гладких функций в точках y_1,\ldots,y_r и набор (k-1)-струй гладких функций в точках y_{r+1},\ldots,y_d . Ясно, что $\dim_{\mathbb{C}}\Omega_{k,Y}=F(n,d,N)<\dim_{\mathbb{C}}M$. Поэтому существует ненулевая функция $g\in M$, которая переходит в нуль при отображении $\tau\colon M\to\Omega_{k,Y}$, сопоставляющем функции набор ее k-струй в точках y_1,\ldots,y_r и набор ее (k-1)-струй в точках y_{r+1},\ldots,y_d .

Если h — однородная линейная функция на \mathbb{C}^n , то функция $h(\mathbf{x})$ лежит в L. Рассмотрим однородную систему линейных уравнений $h_1=\dots=h_{n-1}=0$ в \mathbb{C}^n . Ей соответствует система уравнений $l_1=\dots=l_{n-1}=0$ в X^* , где $l_i=h_i(\mathbf{x})$, которая определяет гладкие кривые Γ_1,\dots,Γ_d в областях V_1,\dots,V_d , проходящие через точки y_1,\dots,y_d .

Если уравнения $h_1=\dots=h_{n-1}=0$ достаточно общие, то ограничения функции g на кривые Γ_1,\dots,Γ_d не равны тождественно нулю и имеют нули кратностей $\geqslant k+1$ в точках y_1,\dots,y_r и нули кратности $\geqslant k$ в точках y_{r+1},\dots,y_d . Действительно, отображение $\mathbf x$ отождествляет окрестности $V_i\subset X^*$ точек y_i с окрестностью $U\subset \mathbb C^n$ точки 0. При этом отождествлении каждая из кривых Γ_1,\dots,Γ_d переходит в часть прямой $h_1=\dots=h_{n-1}=0$, лежащую в области U. Ограничение функции g на область V_i переходит в функцию $g_i=g(\mathbf x_i^{-1})$ на области U, не равную тождественному нулю (в противном случае в силу аналитичности функции g и связности многообразия X^* функция g тоже тождественно равна нулю, что не так). Раз функции g_1,\dots,g_d не равны тождественному нулю в области U, то для почти всякой прямой $h_1=\dots=h_{n-1}=0$ ограничение каждой из функций g_i на эту прямую не обращается в тождественный нуль.

Поэтому система уравнений $l_1=\cdots=l_{n-1}=\varphi=0$, где $\varphi=g-\varepsilon=0$, при малом ε будет иметь не меньше чем N невырожденных корней: не меньше чем по k+1 невырожденных корней на кривых Γ_1,\ldots,Γ_r и не меньше чем по k невырожденных корней на кривых $\Gamma_{r+1},\ldots,\Gamma_d$. Лемма 9 доказана, так как (k+1)r+k(d-r)=kd+r=N.

Теорема 10. Пусть X — неприводимое n-мерное алгебраическое многообразие, $L \in \mathcal{K}(X)$ и $[L, \ldots, L] = d > 0$. Тогда если $M \in \mathcal{K}(X)$ и $[L, \ldots, L, M] \leqslant N$, то $\dim_{\mathbb{C}} M \leqslant F(n, d, N + 1)$.

Доказательство. Положим $X^* = X \setminus (D \cup O)$, где D — дивизор полюсов функций из пространств L и M и O — объединение множества особых точек многообразия X с множествами точек O_1 и O_2 , на которых обращаются в нуль соответственно все функции из пространств L и M. Если $\dim M > F(n,d,N+1)$, то по лемме 9 найдутся функции $l_1,\ldots,l_{n-1} \in L$ и $\phi \in M$, такие, что система $l_1 = \cdots = l_{n-1} = \phi = 0$ имеет не менее чем N+1 невырожденных корней в X^* , что противоречит неравенству $[L,\ldots,L,M] \leqslant N$. Теорема 10 доказана.

Следствие 11. В условиях теоремы 10

- (i) $ecnu\ M \sim L$, $mo\ dim_{\mathbb{C}}\ M \leqslant n+d$;
- (ii) ecnu $M \sim L^k$, mo dim $\mathbb{C} M \leq Q(n, k+1) + (d-1)Q(n, k)$.

Доказательство. Пункт (ii) вытекает из теоремы 10, так как $[L,\ldots,L,L^k]=kd$ и F(n,d,kd+1)=Q(n,k)+(d-1)Q(n,k-1). Пункт (i) вытекает из п. (ii), так как Q(n,1)=n+1 и Q(n,0)=1.

6. Целое замыкание подпространства. Вернемся к эквивалентности, превращающей полугруппу $\mathcal{K}(X)$ в ее полугруппу Гротендика $\mathcal{K}_G(X)$.

Определение 5. Для всякого пространства $L \in \mathcal{K}(X)$ определим его *целое* замыкание \overline{L} как множество всех функций $f \in \mathbb{C}(X)$, целых над L.

Из утверждений 3 и 4 видно, что множество \overline{L} является линейным пространством. Если $L,M\in\mathcal{K}(X)$ и $L\subset M$, то $\overline{L}\subset\overline{M}$.

Утверждение 12. Пусть X — неприводимое n-мерное алгебраическое многообразие, $L \in \mathcal{K}(X)$ и $[L, \ldots, L] = d > 0$. Тогда $\dim_{\mathbb{C}} \overline{L} \leqslant d + n$.

Доказательство вытекает из следствия 11, п. (ii).

Следствие 13. (i) *Если* $L \in \mathcal{K}(X)$, то \overline{L} имеет конечную размерность, m.e. $\overline{L} \in \mathcal{K}(X)$.

(ii) Для $M \in \mathcal{K}(X)$ имеем $M \sim L \iff \overline{M} = \overline{L}$.

Доказательство. Пункт (i) в случае $[L,\ldots,L]>0$ доказан в утверждении 12. Если $[L,\ldots,L]=0$, то вместо L возьмем любое большее пространство $L\subset M$, такое, что $[M,\ldots,M]>0$. Согласно утверждению 12, $\dim_{\mathbb{C}}\overline{M}<\infty$. Пункт (i) доказан, так как $\overline{L}\subset\overline{M}$.

(ii) Согласно п. (i), среди всех пространств, эквивалентных заданному пространству L, есть наибольшее пространство \overline{L} . Отсюда вытекает п. (ii).

Следствие 13 вытекает также из теоремы Нётер о целом замыкании ([7], [12]). Но наши оценки и здесь позволяют избежать ссылок на алгебраическую геометрию. Пример 1 показывает, что оценка из утверждения 12 неулучшаема.

Пример 1. Пусть $X = \mathbb{C}^n$, x_1, \ldots, x_n — координаты в \mathbb{C}^n . Возьмем в качестве L пространство, порожденное функциями $1, x_1, \ldots, x_1^d$ и функциями x_2, \ldots, x_n . Тогда $[L, \ldots, L] = d$ и $\dim_{\mathbb{C}} L = d + n$.

Определение 6. Для пространства $L\in\mathcal{K}(X)$ функция Гильберта H_L и нормализованная функция Гильберта \overline{H}_L определяются равенствами

$$H_L(k) = \dim_{\mathbb{C}} L^k, \qquad \overline{H}_L(k) = \dim_{\mathbb{C}} \overline{L^k}.$$

7. Случай, когда пространство функций разделяет точки.

Теорема 14. Пусть $L \in \mathcal{K}(X)$ разделяет общие точки неприводимого n-мерного алгебраического многообразия X. Пусть $[L,\ldots,L]=d>0$. Тогда

$$\sum_{k-d < i \leqslant k} Q(n,i) \leqslant H_L(k) \leqslant \overline{H}_L(k) \leqslant F(n,d,kd+1), \tag{2}$$

$$[L, \dots, L] = \lim_{k \to \infty} \frac{n! H_L(k)}{k^n} = \lim_{k \to \infty} \frac{n! \overline{H}_L(k)}{k^n}.$$
 (3)

Доказательство. Соотношение (2) вытекает из теорем 8 и 10. Имеем $\sum_{k-d < i \leqslant k} Q(n,i) \approx F(n,d,kd+1) \approx dk^n/n!$. Поэтому (3) вытекает из (2).

Пример 2. Оценка снизу $H_L(k)\geqslant \sum_{k-d< i\leqslant k}Q(n,i)$ точна для алгебраической гиперповерхности $X\subset \mathbb{C}^{n+1}$ степени d и пространства L, порожденного координатными функциями в \mathbb{C}^{n+1} и константами.

Пример 3. Пусть X — неприводимая плоская алгебраическая кривая степени d, а L — пространство, порожденное константами и координатными функциями. В этом случае нижняя оценка размерности $\dim_{\mathbb{C}} L^k$ точна (см. пример 2). Верхняя оценка $\overline{H}_L(k) \leqslant kd+1$ для кривой X рода нуль точна, т.е. $\overline{H}_L(k) = kd+1$. При $k \gg 0$ для любого m, такого, что $1-(d-1)(d-2)/2 \leqslant m \leqslant 1$, можно построить плоскую кривую, для которой нижняя оценка точна, а верхняя оценка есть $\dim_{\mathbb{C}} \overline{L^k} = kd+m$.

Пример 4. Если $[L,\ldots,L]=1$ и если $[L,\ldots,L]=2$, то верхняя оценка функции $\overline{H}_L(k)$ совпадает с нижней оценкой функции $H_L(k)$. В этом случае теорема дает формулу для функций $\overline{H}_L(k)=H_L(k)$.

Cтепенью d(X) проективного n-мерного многообразия $X\subset \mathbb{C}P^N$ называется число точек его пересечения с общим проективным подпространством коразмерности n. С многообразием $X\subset \mathbb{C}P^N$ связан идеал $I_X\subset \mathbb{C}[x_0,\dots,x_N],$ состоящий из полиномов от однородных координат $(x_0:\dots:x_N)$ на $\mathbb{C}P^N,$ обращающихся в нуль на X, и кольцо $A_X=\mathbb{C}[x_0,\dots,x_N]/I_X.$ Кольцо A_X разлагается в прямую сумму однородных компонент $A_X=A_0+A_1+\dots$. Функцией Γ ильберта $H_{[X]}$ многообразия $X\subset \mathbb{C}P^N$ называется функция на неотрицательных целых числах, определенная формулой $H_{[X]}(k)=\dim_{\mathbb{C}}A_k.$

Теорема Гильберта. Для любого неприводимого n-мерного проективного многообразия $X \subset \mathbb{C}P^N$ существует предел $l(X) = \lim_{k \to \infty} H_{[X]}(k)/k^n$. Более того, степень d(X) многообразия X равна $n!\,l(X)$.

Замечание. В формулировку теоремы Гильберта обычно добавляется утверждение о полиномиальности функции H_X при достаточно больших значениях аргумента. Это свойство функций Гильберта справедливо для любых конечно порожденных градуированных модулей над кольцом полиномов и не связано со степенью проективного многообразия. В теореме Гильберта можно не предполагать, что многообразие X неприводимо (общий случай сводится к случаю неприводимого многообразия).

Доказательство теоремы Гильберта. Теорема 14 не только содержит теорему Гильберта, но и доставляет явные оценки функции Гильберта для любого значения аргумента. Действительно, пусть D — общее гиперплоское сечение. Представим $\mathbb{C}P^N$ в виде объединения пространства \mathbb{C}^N и «бесконечно удаленного» пространства $\mathbb{C}P^{N-1}$ и будем считать, что D — пересечение многообразия X с $\mathbb{C}P^{N-1}$.

Рассмотрим аффинное многообразие $X_{\rm af}=X\setminus D\subset \mathbb{C}^N$. На нем есть выделенное конечномерное пространство функций L, состоящее из ограничений на $X_{\rm af}$ полиномов первой степени. Непосредственно из определения видно, что $H_L=H_{[X]}$. Степень d(X) многообразия X равна числу решений общей системы линейных уравнений $l_1=\dots=l_n=0$ на $X_{\rm af}$, т.е. $d(X)=[L,\dots,L]$.

Многообразие $X_{\rm af}$ с пространством функций L удовлетворяют всем условиям теоремы 14. Действительно, $X_{\rm af} \subset \mathbb{C}^N$ и L содержит ограничения на $X_{\rm af}$ всех координатных функции на \mathbb{C}^N . Поэтому пространство L разделяет точки на $X_{\rm af}$. Покажем, что $[L,\ldots,L]>0$. Возьмем любое аффинное пространство M коразмерности n, проходящее через какую-либо гладкую точку $a\in X_{\rm af}$ трансверсально к $X_{\rm af}$. Пространство M задается системой уравнений $l_1=\cdots=l_n=0$, в которой l_i — полиномы первой степени. Эта система на $X_{\rm af}$ имеет невырожденный корень a. Общая система уравнений $l_1=\cdots=l_n=0$ на $X_{\rm af}$, где $l_i\in L$, имеет не меньше невырожденных корней на $X_{\rm af}$. Поэтому $[L,\ldots,L]>0$. Теперь двусторонние оценки функции $H_{[X]}$ и теорема Гильберта вытекают из теоремы 14.

8. Случай, когда самопересечение положительно.

Утверждение 15. Пусть X — неприводимое n-мерное алгебраическое многообразие, $L \in \mathcal{K}(X)$ и $[L,\ldots,L]=d>0$. Рассмотрим отображение $\mathbf{x}\colon X \to \mathbb{C}^n$, в котором $\mathbf{x}=(x_1,\ldots,x_n)$ — общий набор функций из пространства L. Тогда всякая функция $f\in \mathbb{C}(X)$ удовлетворяет уравнению $f^d+a_1(\mathbf{x})f^{d-1}+\cdots+a_0(\mathbf{x})=0$, в котором a_1,\ldots,a_d — некоторые рациональные функции на \mathbb{C}^n .

Доказательство. Так как $[L,\ldots,L]=d$, то в \mathbb{C}^n существует полуалгебраическое множество $\Sigma\subset\mathbb{C}^n$, такое, что $\dim\Sigma< n$ и каждая точка $z\in\mathbb{C}^n\backslash\Sigma$ имеет ровно d невырожденных прообразов $y_i=\mathbf{x}_i^{-1}(z)$ при отображении $\mathbf{x}\colon X\to\mathbb{C}^n$. Для $\phi\in\mathbb{C}(X)$ функция $\mathrm{Trace}_{\mathbf{x}}\,\phi$ на области $\mathbb{C}^n\setminus\Sigma$, определенная формулой $\mathrm{Trace}_{\mathbf{x}}\,\phi=\sum_i\phi(\mathbf{x}_i^{-1})$, продолжается до рациональной функции на \mathbb{C}^n . Это продолжение мы будем обозначать тем же символом $\mathrm{Trace}_{\mathbf{x}}\,\phi$. Для $k=0,\ldots,d-1$ рассмотрим симметрические функции Ньютона $N_k=\sum_i f^k(\mathbf{x}_i^{-1})=\mathrm{Trace}_{\mathbf{x}}\,f^k$ от ветвей $f(\mathbf{x}_i^{-1})$ многозначной функции $f(\mathbf{x}^{-1})$. Пусть $S_k=P_k(N_1,\ldots,N_k)$ — выражение базисной симметрической функции от ветвей $f(\mathbf{x}_i^{-1})$ через симметрические функции Ньютона этих ветвей. Тогда $f^d-S_1f^{d-1}+\cdots+(-1)^dS_d=0$.

Следствие 16. В условиях утверждения 15 существует число m, такое, что пространство $\overline{L^m}$ содержит функцию g, разделяющую точки y_1, \ldots, y_d .

Доказательство. Пусть z — точка области $\mathbb{C}^n\setminus \Sigma$ и $f\in \mathbb{C}(X)$ — функция, регулярная в точках множества $Y=(\mathbf{x})^{-1}(z)$ и принимающая разные значения в различных точках этого множества. Функция f удовлетворяет уравнению $f^d-S_1f^{d-1}+\cdots+(-1)^dS_d=0$, в котором S_i — рациональные функции, регулярные в точке z. Функция g=fQ, где Q — наименьшее общее кратное знаменателей рациональных функций S_1,\ldots,S_d , удовлетворяет уравнению $g^d-QS_1g^{d-1}+\cdots+(-1)^dQ^dS_d=0$ с полиномиальными коэффициентами $(-1)^iQ^iS_i$. Функция g разделяет точки множества Y, так как $Q(z)\neq 0$, и функция f разделяет точки множества Y. Осталось отметить, что функция g лежит в пространстве $\overline{L^m}$, где m — любое число, большее всех чисел $\deg(Q^iS_i)/i$ при $i=1,\ldots,d$.

Теорема 17. Пусть X — неприводимое n-мерное алгебраическое многообразие, $L \in \mathcal{K}(X)$ и $[L,\ldots,L]=d>0$. Тогда

$$\overline{H}_L(k) \leqslant F(n, d, kd + 1), \tag{4}$$

$$[L, \dots, L] = \lim_{k \to \infty} \frac{n! \, \overline{H}_L(k)}{k^n} \,. \tag{5}$$

Доказательство. Неравенство (4) вытекает из теоремы 10. По следствию 16 при некотором m пространство $\overline{L^m}$ разделяет общие точки в X. Имеем $[\overline{L^m},\dots,\overline{L^m}]=dm^n$. Положим p=[k/m]. Так как $(\overline{L^m})^p\subset \overline{L^k}$, то из нижней оценки в (2) получаем $\dim_{\mathbb{C}}\overline{L^k}\geqslant \dim_{\mathbb{C}}(\overline{L^m})^p\geqslant \sum_{p-dn^m< i\leqslant p}Q(n,i)\approx dm^np^n/n!\approx dk^n/n!$. Для доказательства равенства (5) достаточно воспользоваться неравенством (4), так как $F(n,d,kd+1)\approx dk^n/n!$.

9. Общий случай. Со всяким пространством $L \in \mathbb{C}(X)$ связано рациональное обобщенное отображение Веронезе $\rho_L \colon X \to L^*$, определенное формулой $\langle \rho_L(x), f \rangle = f(x)$ для $f \in L$. Обозначим через X_L замыкание по Зарисскому образа многообразия X при отображении ρ_L .

Утверждение 18. Пусть X — неприводимое n-мерное алгебраическое многообразие u $L \in \mathcal{K}(X)$. Тогда $[L, \ldots, L] > 0$, если u только если $\dim X_L = n$.

Доказательство. Если $\dim X_L < n$, то почти любое аффинное подпространство в L^* коразмерности n не пересекает многообразия X_L . Поэтому почти любая система уравнений $l_1 = \dots = l_n = 0$, где $l_i \in L$, не имеет решений в X, т. е. $[L,\dots,L]=0$.

Пусть $\dim X_L = n$. Положим $X^* = X \setminus O$, где O — объединение множества особых точек многообразия X с дивизором полюсов функций из L. Образ многообразия X^* при обобщенном отображении Веронезе имеет размерность n. Поэтому найдется аффинное подпространство коразмерности n, трансверсально пересекающее этот образ. Соответствующая этому подпространству система уравнений $l_1 = \cdots = l_n = 0$, где $l_i \in L$, имеет невырожденные решения в X^* , поэтому $[L, \ldots, L] > 0$.

С отображением $\rho_L \colon X \to X_L$ можно связать алгебраическое многообразие \widetilde{X}_L , определенное с точностью до бирационального изоморфизма. Перейдем к его определению. Определим поле $\mathbb{C}(\widetilde{X}_L)$ как подполе поля $\mathbb{C}(X)$ рациональных функций на многообразии X, постоянных на каждой неприводимой компоненте слоя $\rho^{-1}(z) \subset X$ над каждой точкой $z \in X_L$.

Отображение $\rho_L^*\colon \mathbb{C}(X_L)\to \mathbb{C}(X)$ задает вложение поля $\mathbb{C}(X_L)$ в поле $\mathbb{C}(\widetilde{X}_L)\subset \mathbb{C}(X)$. Поле $\mathbb{C}(\widetilde{X}_L)$ является конечным расширением своего подполя $\rho_L^*(\mathbb{C}(X_L))$, так как число неприводимых компонент в слое $\rho^{-1}(z)\subset X$ ограничено общей константой (не зависящей от точки $z\in X_L$).

Определение 7. Определим \widetilde{X}_L как алгебраическое многообразие, поле рациональных функций которого изоморфно полю $\mathbb{C}(\widetilde{X}_L)$.

Вложения $\mathbb{C}(\widetilde{X}_L)\subset \mathbb{C}(X)$ и $\rho_L^*\colon \mathbb{C}(X_L)\to \mathbb{C}(\widetilde{X}_L)$ индуцируют отображения, которые мы будем обозначать через $\widetilde{\pi}_L\colon X\to \widetilde{X}_L$ и $\widetilde{\rho}_L\colon \widetilde{X}_L\to X_L$. Из определения видно, что отображение $\widetilde{\rho}_L$ имеет конечную степень и что $\dim X_L=\dim \widetilde{X}_L$. Если отображение $\rho_L\colon X\to X_L$ имеет конечную степень, то многообразия \widetilde{X}_L и X бирационально изоморфны.

Утверждение 19. Если функция $f \in \mathbb{C}(X)$ удовлетворяет алгебраическому уравнению над подполем $\rho_L^*(\mathbb{C}(X_L)) \subset \mathbb{C}(X)$, то $f \in \mathbb{C}(\widetilde{X}_L)$.

Доказательство. Если $f^k + \rho_L^*(a_1)f^{k-1} + \dots + \rho_L^*(a_k) = 0$, где $a_i \in \mathbb{C}(X_L)$, то функция f постоянна на каждой неприводимой компоненте прообраза $\rho^{-1}(z) \subset X$ каждой точки $z \in X_L$.

Теорема 20. Пусть X — неприводимое алгебраическое многообразие, $L \in \mathcal{K}(X)$, $\dim X_L = p$, $\widetilde{L} = \rho_L^*(L) \in \mathcal{K}(\widetilde{X}_L)$ и $[\widetilde{L}, \ldots, \widetilde{L}] = d$. Тогда

- (i) d > 0;
- (ii) $\overline{H}_L(k) \leqslant F(p, d, kd + 1)$;
- (iii) если $\widetilde{\rho}_L \colon \widetilde{X}_L \to X_L$ бирациональный изоморфизм, то

$$\sum_{k-d < i \leqslant k} Q(p,i) \leqslant H_L(k) \quad u \quad [\widetilde{L}, \dots, \widetilde{L}] = \lim_{k \to \infty} \frac{p! \, H_L(k)}{k^p} = \lim_{k \to \infty} \frac{p! \, \overline{H}_L(k)}{k^p};$$

(iv) для любого $L \in \mathcal{K}(X)$ имеем $[\widetilde{L}, \ldots, \widetilde{L}] = \lim_{k \to \infty} p! \overline{H}_L(k)/k^p$.

Доказательство. В условиях теоремы $H_L(k) = \dim_{\mathbb{C}}(\widetilde{L})^k$ и $\overline{H}_L(k) = \dim_{\mathbb{C}}(\widetilde{L}^k)$. Поэтому теорема сводится к вопросу об индексе самопересечения пространства \widetilde{L} на многообразии \widetilde{X}_L .

(i) Положительность индекса самопересечения d вытекает из равенства размерностей $\dim \widetilde{X}_L = \dim X_L$ и утверждения 18.

- (ii) вытекает из неравенства (4) в теореме 17, примененной к многообразию \widetilde{X}_L и пространству \widetilde{L} .
- (iii) В условиях п. (iii) пространство \widetilde{L} разделяет общие точки многообразия \widetilde{X}_L . Поэтому п. (iii) вытекает из теоремы 14. Пункт (iv) вытекает из теоремы 17.

Литература

- [1] А. Г. Хованский, *Многогранник Ньютона*, *полином Гильберта и суммы конечных множесть*, Функц. анализ и его прил., **26**:4 (1992), 57–63.
- [2] В. А. Тиморин, А. Г. Хованский, *Многогранники и уравнения*, в кн.: Математическое просвещение, сер. 3, вып. 14, 2010, 30–57.
- [3] А. Г. Хованский, *Многогранники Ньютона и торические многообразия*, Функц. анализ и его прил., **11**:4 (1977), 56–64.
- [4] А. Г. Хованский, *Многогранники Ньютона и род полных пересечений*, Функц. анализ и его прил., **12**:1 (1978), 51–61.
- [5] K. Kaveh, A. G. Khovanskii, Convex bodies and algebraic equations on affine varieties, http://arxiv.org/abs/0804.4095v1; краткий вариант с названием Algebraic equations and convex bodies, in: Perspectives in Analysis, Topology and Geometry, Progress in Math., Birkhäuser (в печати).
- [6] R. Lazarsfeld, M. Mustata, Convex bodies associated to linear series, Ann. Sci. Ec. Norm., 42:5 (2009), 783–835.
- [7] K. Kaveh, A. G. Khovanskii, Mixed volume and an extension of intersection theory of divisors, Mosc. Math. J., 10:2 (2010), 343–375.
- [8] K. Kaveh, A. G. Khovanskii, Newton-Okounkov convex bodies, semigroups of integral points, graded algebras and intersection theory, http://arxiv.org/abs/0904.3350v1; представлено в Ann. of Math.
- [9] K. Kaveh, A. G. Khovanskii, Newton polytopes for horospherical spaces, Mosc. Math. J., 11:2 (2011), 265–283.
- [10] K. Kaveh, A. G. Khovanskii, Moment polytopes, semigroup of representations and Kazarnovskii's theorem, J. Fixed Point Theory Appl., 7:2 (2010), 401–417.
- [11] K. Kaveh, A. G. Khovanskii, Convex bodies associated to actions of reductive groups, http://arxiv.org/abs/1001.4830; представлено в Mosc. Math. J.
- [12] О. Зарисский, П. Самюэль, Коммутативная алгебра, Т. 2, ИЛ, М., 1963, доп. 4.

Институт системного анализа РАН Независимый московский университет The University of Toronto, Canada e-mail: askold@math.toronto.edu Поступило в редакцию 7 декабря 2010 г.