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G E N E R A L I Z E D  R O L L E  T H E O R E M  I N  ]~n A N D  C 

A. KHOVANSKII, S. YAKOVENKO 

ABSTRACT. The P~olle theorem for functions of one real variable as- 
serts that the number of zeros of f on a real connected interval can be 
at most that of f '  plus 1. The following inequality is a multidimen- 
sional generalization of the Rolle theorem: if s [0, 1] ~ R n, t ~ x(t), 
is a closed smooth spatial curve and L(l) is the length of its spherical 
projection on a unit sphere, then for the derived curve ~l [0, 1] ---* R n, 
t ~ ~(t), the following inequality holds: L(~) ~ L(~'). For the ana- 
lytic function F(z) defined in a neighborhood of a closed plane curve 
F C C ~- R 2 this inequality implies that Vr(F)  ~< Vr (F ' )  + g(F), 
where Vr  (F) is the total variation of the argument of F along F, and 
x(F) is the integral absolute curvature of F. 

As an application of this inequality, we find an upper bound for 
the number of complex isolated zeros of quasipolynomials. We also 
establish a two-sided inequality between the variation index Vr (F)  
and another quantity, called the Bernstein index, which is expressed 
in terms of the modulus growth of an analytic function. 

I.  INTRODUCTION 

The  classical Rolle theorem asserts t ha t  the  derivative of the smoo th  real 
func t ion  f mus t  vanish  somewhere be tween any  two zeros of this  funct ion.  

As a consequence,  the  n u m b e r  NK( f )  of real zeros of f on the  segment  
K C R does no t  exceed NK( f ' )  + 1, and  this inequal i ty  remains  valid if we 
count  zeros wi th  their  mult iplici t ies.  The  simplest  examples show tha t  the  
s t ra ightforward general iza t ion of this pr inciple  for complex-valued funct ions  
fails. Thus  one has to look for a proper  subs t i t u t e  for NK(.) t h a t  would be 

defined for funct ions  ana ly t ic  in  some open  doma in  U C C. To be  su i table  
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for applications, such a substitute (denote it for instance by T~u(f)) has to 
possess the following list of properties. 

1.1. A priori  r equ i remen t s  for a general ized Rolle theory .  

(1) If f is an analytic function in U, then the number of zeros of f in 
U (or eventually, in the smaller domain U ~ C U) admits an upper 
estimate in terms of Ru(f)  and some geometric characteristics of 
U (and U ~, if necessary); 

(2) If f, g are two analytic functions, then T~v(f. g) admits a two- 
sided estimate in terms of ~ g ( f )  and 7~g(g) and, eventually, the 
geometry of U; 

(3) 7~u(f) admits an upper estimate in terms of 7~u(f') and, if neces- 
sary, the geometry of U. 

If all these requirements are met, then one can build a reasonable theory 
resulting in upper bounds for the number of zeros of analytic functions 
satisfying certain types of differential equations. 

1.2. The  Voorhoeve  index and the  Be rns t e in  index as genera l ized  
Rol le  theor ies .  There were several attempts to construct a quantity sat- 
isfying the above conditions. In [7] Marc Voorhoeve observes that if f is a 
function analytic in a small neighborhood of a real interval [0, 1] and has no 
zeros on this interval then the total variation of argument of this function, 
scaled for convenience by a factor of 27r, 

1 1 

V[0,1](f) = ~ ~-~ Argf( t)  dt = 
0 0 

admits an extension by continuity for the class of meromorphic functions 
eventually having zeros on [0, 1], and 

1 (1.2) vi0,1](/) < Vlo, ll(/') + 

Being subadditive in the sense of (1.8) below, this index clearly satisfies 
the second requirement from the above list. Now for the polygonal domain 
Q c C bounded by the closed polyline F = 0Q one can define VQ(f)  as 
the total variation of the argument of f along the boundary F, and by 
the argument principle V r ( f )  majorizes the number of zeros of f in Q. 
Inequality (1.1) implies that for an n-sided closed polyline F we have 

Vr(/ ' )  + 2" V r ( f )  

Thus one has a generalized RoUe theory, and it was successfully used in [7], 
[8] for finding upper bounds for the number of complex zeros of quasipoly- 
nomials and some other similar classes of functions (see below) defined by 
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linear ordinary differential equations with constant or rational coefficients. 
At that  time these were the best known estimates. 

However, the Voorhoeve index V(.) is not convenient if one works with 
functions defined by equations with general variable coefficients. In [6] an- 
other quantity, called the Bernstein index, was introduced. To define the 
Bernstein index, one needs, in fact, not one but two nested sets, and if U 
is an open simply connected domain and K ~ U is its proper subset at  a 
positive distance from the boundary OU and with nonempty interior, then 
for any function f ,  analytic on the closure "U = U N OU, the quantity 

R K , U ( : )  = lnm  If(z)l - l n ~  If(z)[ 
zEU 

(1.3) 

is a nonnegative number by the maximum modulus principle. A simple 
generalization of the Jensen inequality shows that  the number of zeros of 
f in K can be at most 7Bg , t r ( f ) ,  where ~/= ~t(K,U) < ~ is a constant 
easily described in terms of the relative position of K inside U. This deft- 
nition, though formally dependent on the pair of sets K ~ U, is essentially 
independent of K;  if one replaces K by another subset K '  ~ U with a 
nonempty interior, then the Bernstein index with respect to this new pair 
will be equivalent to the old one as a functional on the space of functions 
analytic on U (see Sec. 4 for the precise formulation). Finally, one can make 
sure that  the other two preconditions for the Rolle theory are also satisfied. 

The main result of this paper is twofold. First we establish by geomet- 
riced means the inequality generalizing (1.2) for arbitrary curves in ]R n and 
apply this generalized Rolle inequality to get better upper bounds for the 
number of isolated zeros of complex quasipolynomials. Second, we show 
that  the Bernstein index (1.3) is, in some sense, equivalent to the properly 
generalized Voorhoeve index. The precise formulations follow. 

1.3. The  tota l  variation of  the  argument  and its propert ies .  If 
F C C is a parametrized plane curve not passing through the point a E C, 
then its rotation about that  point is defined as Arg(z(1)-a)-Arg(z(O)-a) = 

f A r g ( z ( t ) - a )  dt for any choice of a continuous branch of A r g ( z - a )  (and 
0 
any parametrization [0, 1] ~ t ~-* z(t) E 12 of r ) .  We define the totM absolute 
rotation of F around a as the total variation of the function Arg(z(t) - a), 

il . 
the integral Arg(z( t)-a)I  dr. For the (piecewise C2)-smooth curve i.e., 

F C C let x(F)  be the total absolute curvature of F defined as the absolute 
rotation of its tangent vector about the origin: if x(z) is the curvature of F 
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at the point z E F, then one can easily verify that 

f l~ ( z ) l ldz l  = (total absolute rotation of the x ( r )  tangent vector). 

F 

For the function / F  ~ C that has no zeros on F we define the index 
V r ( / )  in the same way as in (1.1), by the equivalent relations 

1 
Vr  (/)  -- ~ x (total variation of A r g /  along F) -- 

1 
= - -  x (absolute rotation of the image / (F)  about zero). 

2~r 

This definition extends by continuity to functions meromorphic in an open 
neighborhood of F in the same way as in [7]. Note that if t ~ z(t) is the 
parametrization of the curve F, then 

x ( r )  = (1.4) 

Let / (C, F) --+ C be analytic in a neighborhood of F without zeros on F and 
8t e [0, 7r] be the (geometric, i.e., nonoriented) angle between/ ' (z( t)  =).~(t) 
and f(z(t)): 

(/'(z(t)). 
8<----- Ar-~+~ f - ' ~ t ~  - ' Arg+(w) :-- arccos(Re W/]'U)]), 

where Arg+ (w) is the absolute value of the angle between w E C and the 
positive semiaxis, and/~(z) = d / ( z ) .  Obviously, 80, 81 do not depend on 
the parametrization of F provided t l~ t  the orientation remains the same, 
and 8o - 81 is preserved even by orientation-reverting parametrizations, 
being thus an invaxiant of a function analytic around a nonparametrized 
curve. 

The following result is a generalization of the Rolle theorem for complex- 
valued analytic functions. 

T h e o r e m  1 (Rolle  t h e o r e m  for ana ly t ic  funct ions) .  I/the function 
/ (C,  F) --+ C is meromorphic in some open neighborhood o/the curve F C C, 
then 

V r ( / )  < V r ( f ' )  + ~ x ( F )  + ~ ( 8 0  - 01). (1.5) 

Corollary 1. If  Y is a closed smooth curve, then 

~(r )  (1.6) V r ( / )  < V r ( f ' )  + 2----~ 

Indeed, in this case 8~ = 80. 
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Col;ol lary 2. If F is the boundary of a convex bounded plane domain, 
then 

V r ( f )  ~< V r ( f ' )  + 1. (1.7) 

Note that  this estimate is always better than that  of (1.2n), since even for 
a triangle (the smallest possible n = 3) one has in (1.7) the term 1 instead 

3 
of 2" Obviously, inequality (1.7) is sharp. 

Since the argument of a product is the sum of the arguments, Arg(fg)= 
Arg f + A r g  g (assuming a proper choice of continuous branches), the triangle 
inequality immediately implies that  

IVr(Yg) - Vr ( ] ) l  ~< Vr(g) ,  (1.8) 

V r ( / - 1 )  = v r ( / ) ,  (1.9) 

(cf. [7], and by the argument principle the number of isolated zeros of a 
function ana/y~ic in U does not exceed V r ( f ) .  Thus the correspondence 
f ~-* V r ( f )  is indeed a generalized Rolle theory in the sense described above. 

We prove Theorem 1 in Sec. 2 as a two-dimensional special case of a more 
general geometric inequality (Theorem 4) valid for curves in ~'*. 

1.4. A p p l i c a t i o n  to  zeros  of  q u a s i p o l y n o m i a l s .  As an application of 
Theorem 1, we obtain an upper bound for the number of complex isolated 
zeros of quasipolynomials, which is asymptotically better than that  from [7]. 

Def in i t ion .  Let A be a finite subset of C. A quasipo13momial with the 
spectrum h is a finite sum of the form 

/ (z )  =  p.(z)exp z, p .  e C[z]. 
~EA 

The degree of a quasipolynomial is the sum ~-~ (1 + degp~). 

For the fixed point set A all quasipolynomials of degree d with the spec- 
t rum A constitute a d-dimensional (complex) linear space. Recall that  a 
linear d-dimensional space of functions is called a Chebyshev family in the 
domain U if any function from this family has no more than d - 1 isolated 
roots in u (this definition makes sense both in real and complex settings). 
We say that  s E N is the Chebyshev excess of a d-dimensional family if the 
number of roots of any function from that  family can be at most d - l + s .  By 
s(d, U, A) we denote the Chebyshev excess for the linear space of quasipoly- 
nomials of degree d with the spectrum A in the domain U. 

For any bounded subset U C C.we denote by diamc(U) = supz,~et/]z - 
w[ the Euclidean diameter of U. Any bounded convex set U C C defines a 
seminorm in C ~- ~2 as 

][w]]~/-- Hu(w) + Hu(-w) ,  where Hv(w) = sup Im(zw). 
zEU 
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This seminorm is invariant by translation, []. [[u = [[" [[~+u for any a E C, 
and Ilwllu < Iwl diamcU. If U C R and w E R, then Ilwllu -- o. 

For the finite set A we denote by #A the number of distinct points in A 
and by s the length of the shortest plane polyline passing through all 
points of A and let s  (A) be the length of the shortest polyline with respect 
to the seminorm I] �9 IIv. Obviously, s < (#A - 1) -diamc(A), but, in 
fact, a stronger estimate can be easily proved; see Sec. 3. Our main result 
concerning complex zeros of quasipolynomials is the following inequality 
proved and discussed in Sec. 3. 

T h e o r e m  2. I f  U is a bounded convex domain, then 

s(d,A, U) <~ i. L~](A) (1.10a) 
~r 

~< l s  diamc(U) (1.10b) 
7r 

< 2 (x/'#-A + 1). diamc(h) �9 diamc(U). (1.10c) 

1.5. Compar i son  be tween  t w o  t h e o r i e s .  Finally, we compare two dif- 
ferent generalized Rolle theories and prove that they are essentially equiv- 
alent. 

T h e o r e m  3. I f  K ~ U is a pair of subsets as in the definition of the 
Bernstein index and F ~ U is a closed curve at a positive distance from the 
boundary of U, then, .for any f analytic on U, we have 

V r ( f )  ~< aBK,v( f ) ,  (1.11) 

where a = a(K, U,F) < or is a constant completely determined by the 
geometry of the sets. 

Conversely, i f  F -- OU ~ is a simple closed curve containing a simply 
connected domain U strictly inside, U ~ U t, then .for any K ~ U and for 
any f analytic on the closure U ~, we have 

BK,u(f)  ~< ~Vr ( f ) ,  (1.12) 

where/3 = j3(K, U, F) < c~ is yet another geometric constant. 

1.6. Remarks  on geomet r ic  constants .  In the above exposition we 
have already introduced some geometric constants such as the total abso- 
lute rotation of a curve, the Euclidean diameter of a set, etc., and several 
more will appear in subsequent sections. We want to emphasize that all 
these geometric constants are explicit quantities which can be computed by 
elementary methods for any reasonable domain (or pair of domains). 
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2. ROLLE THEOREMS IN ]~n AND C VIA INTEGP~AL GEOMETRY AND THE 

GAME OF PUP~SUIT 

2.1. T h e  i n e q u a l i t y  o f  t h e  l eng ths  o f  spher i ca l  p r o j e c t i o n s :  for-  
m u l a t i o n  o f  t h e  resu l t .  Consider in R n a parametrized nonsingular C 2- 
smooth curve, l t ~-* x(t) defined on the interval t E [0, 1] and not passing 
through the origin. The velocity function t ~-* • can be considered as a 
CI-smooth derived curve g', and since t is smooth and nonsingular, l '  does 
not pass through the origin either. We denote by L(g) the length of the 
spherical projection of g, i.e., the curve [0, 1] --* S n-1 C R n, t ~-* x(t)/[[x(t)][ 
(called also the spherical indicatrix of the curve t). The length L(g') of 
the spherical projection of ~' is defined in the same way. Note that  the 
(standard) sphere is a Riemannian manifold (the metric is inherited from 
Rn). The (spherical) distance will be denoted by dists,-I  (-, .) and we will 
use the same symbol for the angular distance between any two points in 
R '~ \ {0}. By d~rn-1 we denote the associated area form on S n - l ,  so that  
q n - 1  = f$, , -1 da,~-i is the area of the unit sphere. 

T h e o r e m  4 (Rol le  t h e o r e m  in R~). The spherical lengths of projec- 
tions of the smooth curve ~ t ~ x(t) and its derived curve ~' t ~-* • are 
related by the inequality 

L(e) < L(6)  + ~(0) - r (2.1) 

where q~(t) = dists~-i (x(t), • is the spherical (angular) distance between 
the projections of x(t) and ~(t). 

C o r o l l a r y  1. /.f the curve ~ is closed, i.e., x(0) = x(1), then L(l)  < 
L(g'). 

C o r o l l a r y  2. For any curve g one has L(~) ~ L(~') + ~r. 

Indeed, the spherical distance between any two points does not exceed 
7.  

The quantity L(i)  has the natural geometric meaning of integral rotation 
of the curve g about  the origin: for n --- 2 the value L(g) is the total variation 
of Arg(x(t))  on the interval [0, 1], see 2.5. 

On the other hand, from the first Frenet formula it follows that  the 
velocity vector of the derived c u rve / '  has the length Ix(t)[, where x( t )  is 
the Euclidean curvature of the original curve g at the  point x(t). Thus L(g') 
is the (absolute) integral curvature of g, and the assertion of Corollary 1 can 
be reformulated as follows. 

C o r o l l a r y  3. The Rotation of a space closed curve about any point does 
not exceed the integral curvature o] this curve. 
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The assertion of Corollary 2 admits a similar reformulation for nonclosed 
c u r v e s .  

We give two independent proofs of Theorem 4. The first one, given in 
2.2, shows intrinsic connections between this inequality and the classical 
Rolle theorem in one variable (similar ideas were used by J. Miinor in [5]). 
The second proof from 2.3 is, in fact, more general and extends to the  case 
of  curves on an arbitrary Riemazmian manifold. As a corollary, we deduce 
Theorem 1 in 2.5. 

Remark. There are other Rolle-type theorems for curves in Rn, of com- 
pletely different nature (they deal with intersections of Pfaffian varieties; 
inequality (2.3) can be considered as a trivial case of this theorem). This 
other direction is exposed in [3]. 

2.2. I n t e g r a l  g e o m e t r y .  We start  with the Rolle theorem in one variable, 
but add a certain correction term. Let f [0, 1] --* R be a smooth function 
in one variable and let N(f) stand for the number of isolated zeros of f on 
[0, 1], counted with their multiplicities. 

L e m m a  1 (A refined Rol le  theorem in one variable).  

N(/)  <~ N(/')+qo(0)-~o(1),  where ~o(t) = llsign/(t)-sign f(t)[. (2.2) 

Proof. It is sufficient to prove this inequality for functions with simple zeros; 
the general case follows from the fact that  a root of f of multiplicity k > 1 
is also a root of f '  of multiplicity k - 1. 

The common form of the Rolle theorem asserts that  between any two 
roots of f there mnst be a root of f ' ,  which immediately gives the inequality 
N(f)  ~ N(f ')  + 1. But if, say, ~o(0) = 0, then f(0) and f ' (0)  have the same 
sign, and therefore between 0 and the smallest root of f there must also be a 
root of f .  The same applies to the interval between the biggest root of f and 
1. One can easily check that  for all combinations of signs inequality (2.2) 
remains valid. [] 

Remark. Note that  (2.2) can be viewed as a special case of the general 
inequality (1.5) for a segment that  has zero curvature, and 2Trio(t) = 0t, 
t = 0 , 1 .  

Let now Hp C ]R n be a hyperplane passing through the origin and or- 
thogonal to the vector p e S n-1. We denote by N(p,s  (resp., N(p , s  
the number of intersections of the curve g (resp., s with IIp. The refined 
Rolle theorem (2.2) can be applied to the function f ( t )  = (p, x(t)) and its 
derivative f'(t) = (p, • yielding the inequality 

Vp e S '~-1 g ( p ,  g) ~< g ( p ,  g') + ~op(O) - ~Op(1), (2.3) 
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1 
where we set q0p(t) = ~ .  Isign(p, x(t)) - sign(p, • 

Now the assertion of Theorem 4 follows easily from the following principle 
well known from the integral geometry: for any smooth curve g the length 
of its spherical projection L(g) is equal (modulo a factor ~r) to the average 
number of intersections of g with the variable hyperplane lip [1]: 

L(~) = ~an-1 / N(p,i)dan-l(p). (2.4) 

Averaging inequality (2.3) over all hyperplanes, we obtain 

L(~) <~L(l ' )+  ~---~-(an-1 / ~p(0)d~rn- i (p ) -  / ~p (1 )da~- l (p ) ) .  

Note that for any t the integral 

/ ~p(t) dan-l(p) 
Sr~-- 1 

is the spherical measure of the hyperplanes lip separating the vector x(t) 
from the vector ~(t), i.e., intersecting the line segment [x(~), • C ]~n. By 
the same integral geometric inequality (2.4), this measure is equal to the 
spherical distance dists,-1 (x(t), ~(t)) modulo the factor 7r/an-1. [] 

Remark on the singular case. Inequality (2.1) was established under some 
genericity and regularity assumptions. In fact, they can be dropped when 
the definitions are properly modified. If g is only piecewise C2-smooth, 
then the velocity curve may have jumps, being only a piecewise continuous 
Cl-curve. In this case one should set L(I') equal to the sum of lengths 
of connected components of the spherical projection of g' plus the total 
spherical length of all jumps of this projection. 

Next, if g passes through the origin, then its spherical projection will 
also have jumps which must be incorporated into the length of the spherical 
projection (e.g., if x(t0) = 0 E R'* and x(~) is C2-smooth near to, then the 
spherical length of the jump at to is equal to 7r since the point instantly 
moves to the central symmetric position). 

All these refinements can be justified by analyzing small perturbations 
and/or smoothing the curves. We leave the details to the reader. Note 
also that inequality (2.2), which is.essentially the classical Rolle theorem, 
can be regarded as a special case of (2.1): for the scalar function f( t)  
inequality (2.1), applied to the plane curve ~-* (f(~),~t) with small ~ > 0, 
yields (2.2) as a limit case. 
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2.3. P u r s u i t  on  R i e m a n n i a n  man i fo lds .  In this section we give an 
alternative proof of (2.1). It is based on the following construction. Let 
M be an arbitrary complete Riemannian manifold and l , / '  [0, 1] --+ M be 
two parametrized curves. We say that the curve ~pursues the other curve 

if, for aimost all moments of time t E [0, 1], the velocity vector of 
points towards the current point of ~. In other words, the velocity vector 
is tangent to the shortest geodesic curve connecting l(t)  with •(t) in the 
"right" direction. 

Remark. This definition also applies to the case where the "pursued" 
curve is only piecewise continuous. If, at a certain moment, the two curves 
occupy cutting points, then the choice of the geodesics from the global 
minimizers is not specified. 

L e m m a  2 (integral triangle inequality, alias pursuit principle). 
Suppose that one rectifiable curve -[ pursues another rectifiable curve ~ on 
a complete Riemannian manifold. 

Then their lengths L(l) and L(~)  are related by the inequality L(~') ~< 
L(g)  + ~(0) - ~(1), where ~(t) = distM(~'(t),~(t)) is the Riemannian dis- 
tance between the points on the curves at the moment t E [0, 1]. 

Proof. We prove this inequality assuming that ~'(t) and ~(t)  occupy cutt ing 
and focal positions only at discrete moments of time, so that  the distance 
~(t)  is piecewise-differentiable. At the moment t of uniqueness we take a 
geodesic curve ~/~ connecting ~'(t) with ~(t).  Then ~(t)  is the length of  the 
segment of Tt between the two points. Obviously, ~(t) -- p ( v ' ( t ) ) - p ( v ( t ) )  
]lv'(t)ll - [Iv(t)ll, where p(.) e R denotes the projection of a vector onto 
the tangent direction to 7t (taken with the natural sign), and II " II is the 
length of the vector. Indeed, p(v(t))  -- IIv(t)II by the pursuit condition, and 
the second projection does not exceed the norm IIv'(t)H. Integrating this 
inequality from 0 to 1 and observing that  L(~-) = f01 IIv(t)ll dr, we obtain 

~5(1) - ~(0) < L(~)  - L(~'), which is what we need. 
If M is a sphere, then the regularity assumption about  focal p ~ n t s  is~ 

in fact, obsolete since on the "stalemate" subset of [0, 1] the curves g and g 
are symmetric, and, hence the corresponding points produce equal paths. 
We will not discuss the general case. [:] 

Remark. Apparently, Lemma 2 can be proved in a more general setting. 
Let (M, p) be a metric space and consider two discrete time trajectories 
X l , . . .  , x ,~ ,y l , . . .  ,y,,, x~,y~ E M.  We'say that  the trajectory (y~} pursues 
{x~} if, at  any moment i = 1 , . . . ,  n -  1, the point Y~+I lies on the "segment" 
connecting Yi and xi+l,  i.e., P(Y~,Yi+I)+ p(y~+l,X~+l) = p(y~,x~+l) (the 
triangle degenerates into equality). A discrete analog of Lemma 2 asserts 
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n - 1  that  in this case the (metric) lengths L v = ~'~i=1 P(Yi, Yi+I) and Lx = 
n--1 ~-~i=1 p(xi, Xi+l) are related by the inequality 

Ly <~ Lx + p(xn,yn) - p(x l ,y l ) .  

This is the result of addition of several triangle inequalities. 

L e m m a  3. I f  s [0, 1] --* ]R n, t ~-~ x(t), is a piecewise smooth curve, then 
its spherical indicatrix "[ (the spherical projection of g onto the unit sphere 
S '~-1) pursues the indicatrix ~ of the derived curve s t ~-~ • 

Proof. The velocity vector of s lies in the 2-dimensional plane spanned 
by x(t) and • (a tautology!), and, hence the situation is in fact planar: 
the curve s tangent to the large circle passing through ~'(t) and ~'~(t) at 
any moment t. One needs only to check that the direction (one of the two 
possible directions along the circle) is correct, which is completely obvious 
in the plane case: if the oriented angle from g(t) to ~(t)  is positive, then 
the vector s itself rotates in the positive direction and vice versa. [] 

Lemma 2 and Lemma 3 taken together imply inequality (2.1), thus com- 
pleting the second proof of Theorem 4. [] 

2.4. Ro l l e  t h e o r e m s  for  a n a l y t i c  func t ions .  We shall prove now in- 
equality (1.6) which is the Rolle theorem for analytic functions. 

Let f ( z )  be a function of one complex variable z E C, analytic in some 
neighborhood of the curve F C C parametrized as [0, 1] ~ t ~-* z(t). In 
this case the function f ( z ( t ) )  restricted on [0, 1] can be regarded as a 
parametrization of the image curve s = f (F)  in R 2 - C 1. The spher- 
ical projection can be identified with the argument Argf ( z ( t ) )  or, more 
precisely, with the function t ~-* exp(i  Arg f (z( t ))) .  The (angular) length of 
the spherical projection is the torn/variation of argument of the function f 
along F, and thus L(i)  = 2~rVr(f).  On the other hand, the derived curve 
l '  in this case is t ~-~ f ' ( z ( t ) )  �9 ~(t), where f '  is the complex derivative of 
f .  Finally, using (1.4) and the triangle inequality (1.8), we establish (1.5) 
since 

L(s ~< 2~rVr(f ')  § 2~rVr(~) = V r ( f ' )  + g(F),  8t = ~(t)  for t = 0, 1. 

The other inequalities, (1.6) and (1.7), are obvious corollaries of (1.5). [] 

Remark about the Voorhoeve inequality. Inequality (1.5) applied to a com- 
plex-valued function on the real interval [0, 1] implies the Voorhoeve inequal- 
ity (1.2). Indeed, the curvature of the interval is zero and both 9~, t = 0, 1, 
are between 0 and 7r. Hence their difference is at most r ,  and after division 

1 
by 2vr one obtains the term ~ in (1.2). Alternatively, we could consider a 
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[1] 
closed loop squeezed onto a segment as t ~ 2t for t E 0, ~ and t ~ 2 ( l - t )  

for t E [1, 1]. The total curvature of such a singular loop is 2~r (the sum of 

two rotation angles at endpoints, each one being ~r), the total variation of 

f and f '  will be doubled, V[0,1](f, f ' )  = 1 V r ( f , f ' ) ,  and, hence we again 

arrive at inequality (1.2), this time starting from the closed-loop form (1.6). 

2.5. L u c a s  t h e o r e m .  We can now easily estimate the Voorhoeve index 
of a rational function. For the C2-smooth closed curve g C C and the 
point a ~ ~ the absolute rotation Ra(g) does not exceed (by Corollary 1 to 
Theorem 4) the integral curvature of g. Using (1.8), one easily obtains an 
upper bound for rational functions. 

Proposi t ion.  / f  f ( z )  = p(z ) /q ( z )  is a rational function, p, q E C[z], 
then 

V r ( f )  ~< ~ 2 ~  (degp + deg q). [] (2.5) 

Remark on zeros of polynomials, If / is a closed convex curve contain- 
ing all roots of the polynomial p, then the argument Argp is monotonous 
along l, and, hence Vt(p) = degp. On the other hand, V~(p') ~< degp  I = 
degp - 1, and the equality can occur only if all zeros of p/ also lie in- 
side g. Meanwhile, the complex Rolle theorem asserts that  p = V~(p) ~< 
Vg(p') + 1 ~< p - 1 + 1. Hence, all inequalities must be equalities in this 
case and we have re-established the well-known fact (known as the Lucas 
theorem) that  all roots of the derivative p' belong to the convex hull of  the 
roots of p. 

3. APPLICATIONS TO QUASIPOLYNOMIALS 

3.1. G e o m e t r i c  inequal i t ies .  Let F C C be a rectifiable plane curve and 
f ( z )  ---- e ~z. We estimate V r ( ] )  for two important special cases: 

(a) F is a closed curve bounding a convex domain U C C, 
(b) F is a line segment of finite length I(F). 
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In the first case we have 

' 
v ~ ( / )  = ~ 

r r 

1 
= 2"-~1~1 x (total length of projection of r on the line Ri/~) = 

1 
---- 2---~1~1 x 2(length of projection of U on this line) = 

= -1 II~llv <~ (see 1.4) 

diamc U -< I ~ 1 - -  

(3.1) 

In the second case, one can obviously write 

1 
V r ( f )  = 1-~-~2~rx (length of projection of/~ on the direction parallel to r ) .  

(3.2) 
We will also need an upper estimate for the length of a polyline passing 

through all points of the finite set A ~ C in terms of the Euclidean diameter 
of the latter. In the best case, where A is a finite subset of a rectifiable plane 
curve C, we have/.:(A) ~< I(C). 

L e m m a  4. I f  A is a finite subset of the unit square 

{0<Rez<l, 0<Imz<l}, 

then L(A) ~< 2(v/~'A-{- 1). 

Proof. We denote n = # h  and let rn be the integer part  of V~A + 1. We 
break the square into m horizontal strips of height m -1, and in each even 
(resp., odd) strip find a polyline starting in the upper left (upper right) 
corner, visiting all points of this strip in the order of increase (decrease) of 
their abscissas, and ending in the lower left (resp., lower right) corner. Then 
the length of each of these polylines is at most 1 + (n~ -{- 1) /m,  where n~ 
is the number of points in the i th  strip. Clearly, all these polylines can be 
joined into a common polyline visiting all points of A. The overall length 
of the polyline thus constructed will be at most 

[i + ~-~(n~ + i)] < ~ + . / ~  + i .< v~ § i + ~ + 1. 
i 

[] 

Corollary. L:(A) < 2(v~X + I). diamc(A). [] 
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Remark. The uniform square grid of m 2 points inside a unit square shows 
that the length of the shortest polyline cannot be made less than rn since 
the distance between any two points is l /re.  In fact, the numerical pro- 
portionality coefficient 2 can be slightly improved by taking a symmetric 
hexagon of diameter diamc(A) to cover A instead of the square. On the 
other hand, the hexagonal grid gives a slightly better lower bound. 

3.2. Uppe r  bounds  for the  n u m b e r  of  complex zeros of  a quas ipoly-  
nomial .  In this section we prove Theorem 2. The quasipolynomial f -- 
~_,j e~Zpj(z) with the spectrum A = {#1, . . . ,  #k}, #j ~ #k for j ~ k, solves 
the linear equation 

Dn~-le(~-x-~k)ZDn~-* e (~'k-2-~-l)z... Dn2e(~-~2)ZD nl e-~'~z f = const, 

(3.3) 
where nj = degp~ -t- 1. Without loss of generality, one can assume that 
#1 -- 0 (otherwise we just divide f by e ~'~z without changing the number of 
zeros). Here D : f ~-+ f~ is the differentiation operator, and the degree of the 
above expression in D is d -  1, where d is the degree of the quasipolynomial. 

By the complex Rolle theorem applied to the closed curve F, the differ- 
ential equation (3.3), together with inequality (3.1), implies the inequality 

Vr(f) ~ Vr(const) + ( d - 1 ) - ~ )  + ~ V r  (e (~-~j+~)z) 
j----1 

< 0 + ( d -  1) + 1 ~ II#j - #j+ll]u = ( d -  1) + I~:u(A) 
. 

3 

~< (d - 1) + I diam U. s 
7r c 

since ,~(F) -- 27r for the convex curve. We can choose the ordering of points 
on A following the shortest polyline, and since the number of zeros of f is 
at most Vr ( f ) ,  we arrive then at the inequality asserted by Theorem 2; 
inequality (1.10c) follows from Lemma 4 and Corollary thereof. [] 

3.3. Compar i son  wi th  previously  known  est imates .  The estimate 
given by Theorem 2 is quite accurate if we consider A to be fixed and 
let the degrees grow to infinity: the Chebyshev excess remains bounded 
and proportional to the size of U. This boundedness of s will persist if we 
consider a specific case of quasipolynomials with essentially one-dimensional 
spectrum (say, an arbitrary finite subset of a fixed smooth curve). Moreover, 
if the spectrum A is real and U is a real line, then, obviously, L:u(A) --- 0, 
so that s(d, A, U) = 0 and we arrive at the well-known Chebyshev property 
or real quasipolynomials. 

Voorhoeve proved in [7], using inequality (1.1), that the number of zeros 
of a quasipolynomial of degree d in a circular disk U can be at most 2(d - 
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9. 
1) +---diarac(h)- diamc(U); this result overrides previous achievements by 

7f 
Tijdeman and Waldschmidt (see [7] for references). The inequality from [7] 
asserts that 

s(d ,A,U)  <~ (d - 1) + ldianl  U.  dia.m A -- d +  O(1). 
7r s c 

(3.4) 

This estimate is worse than (01.10) for large d, though it can be better for 
small d and relatively large domains U. 

3.4. Discussion.  1. As follows from the above inequalities, the worst case 
from the point of view of counting the number of zeros of quasipolynomials 
is the case where f is a linear combination of exponentials with points 
of spectrum filling more or less uniformly a domain in C with nonempty 
interior. It is not clear for the moment whether the Chebyshev excess indeed 
increases to infinity as #A -~ oo. 

2. An alternative form of the question concerning the number of zeros of 
quasipolynomials is to ask about the size of domains (in particular, circular 
disks) in which the quasipolynomials possess the Chebyshev property (i~; 
s -- 0). The above inequalities can be transformed into results of this type 
by inverting the inequality s < 1 (since then the number of zeros, being 
integer, must be at most d -  1). 

3. The above results can also be easily generalized from quasipolyno- 
mials to the class of the so-called generalized quasipolynomials that solve 
differential equations of the form 

d+l ) d l'Ie""Rj(z)D I=0 ,  D =  d-z' 
j = l  

where Rj are rational functions of known degrees. Since we have Vr (R j )  

(degpj + deg qj)- ~ for the rational function Rj = pj (z)/qj (z) by virtue 

of (2.5), all the above constructions can be easily repeated in this case. 

4. T H E  BERNSTEIN INDEX AND THE EQUIVALENCE OF TWO RO LLE 

THEORIES 

In this section we recall briefly some elementary properties of the Bern- 
stein index f ~-* BK,u ( f )  defined in (1.3) and prove Theorem 3. For more 
details on the Bernstein index see [2], [6]. 
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4.1. G e o m e t r y  of  plane sets. Let U C C be a simply connected plane 
domain conformaily equivalent to the unit open disk D = {z : iz] < 1}. As 
such, it inherits the hyperbolic metric Po-(', ") invariant by conformal auto- 
morphisms of U. We write K ~ U if the hyperbolic diameter diamu (K) = 
supz,~eg Pu (z, w) of the subset h" ~ U is finite (the symbol diarac stands, 
as before, for the Euclidean diameter). By I(F) we will denote the Eu- 
clidean length of a rectifiable (usually even piecewise smooth) curve F C C. 
If K ~ U, then the Euclidean distance from K to the complement C \ U 
must be positive, and it will be denoted by/9(K, U) (the thickness of the gap 
between K and U). Next, for any bounded subset K C C there exists at 
least one covering of K by a finite union of Euclidean disks with diameters 
dj; we denote by r/(K) = infr  dj the infimum taken over all these 
finite coverings of K by disks. If K contains a line segment of length r > 0, 
then, obviously, ~(K) t> r > 0. 

There are several inequalities relating these geometric characteristics. For 
1 l(0U) 

example, the KSbe ~-theorem implies that diamcr(K) ~< /~(K, U------~ for the 

convex domain U. In any case, all of the above characteristics can be easily 
computed for simple domains (or pairs of domains) in C. 

In what follows we denote by ~4(U) the space of functions holomorphic 
on the closure of the domain U; the domain itself is always assumed to 
be bounded by a sufficiently regular curve OU (we simply say a "regular 
domain"). We also denote In+ a = max(In a, 0). 

4.2. Basic proper t ies  of  the  Be rns t e in  index. For a pair of nested 
sets K ~ U and the function f E A(U) the Berustein index BK, u ( f )  >/ 0 
was defined by (1.3). The relation BK, U(f) = 0 implies that f ---- const, and 
we set BK, U(0) ---- 0 by defnition. 

This index possesses a number of useful properties relating it with the 
degree of a polynomial (or the number of zeros of an analytic function). 
Among these properties, we will need the following ones. 

1. Bernstein inequality. If p E C[z] is a polynomial of degree n, K = 
[-1, 1] ~ C is a segment, and U = Ua = {It - 11 + It + 11 ~< 2R} is a 
confocal ellipse, then BK, U(p) <~ 7R d, where 7a = in R (S. Bernstein, 1926). 
Moreover, one can easily show that for any pair K ~ U with r/(K) > 0 there 
exists a finite positive geometric constant 3'0 = 7o(K, U) such that 

BK,U(P) ~ 7o n. (4.1) 

One can take 70 = In+(eD/O(g,U)rlig)), where we denote D = diamc(V), 
and e = 2.718... is the Euler number. 

2. Generalized Jensen inequality. The number of isolated zeros of an 
analytic function can be estimated from above via its Berustein index [2]: 
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if f ~ 0, then there exists 7i = 7i(K,  U) such that  for the number NK(f) 
of isolated zeros of f in K we have 

NK(f) ~< 7i BK, U(f), 7i = l ( e8  + 1). (4.2) 

Here 6 = 6(U, K) = diamu(K).  
3. Rolle theorem for analytic functions. The following inequality holds for 

any f E A(U) [6]: if K -  ~ K ~ U, then there exists a finite geometric 
constant c = c(K-,  K, U) such that  

(l(Og) . I(OU) "~ 
BK, u ( f )  ~< B K - , v ( f ' )  + c, c = 1 + In+ ~, ~ - - ~  ] .  (4.3) 

4. Weak dependence on the inner set. The Bernstein index is a zero-order 
homogeneous functional on A(U) whose equivalence class does not depend 
on the inner set K as soon as ~(K) > 0 [6]: if )~ ~ 0, then BK, t]()~f) = 
BK, u ( f ) ,  and if 7/(Kt) �9 ~(K2) > 0, then there exists a positive finite 72 = 
72 (/(1, K2, U) such that  

Vf E A(U) _.i Bg~,v(f) ~< B/~2,u(f) ~< 72 BK,,V(f). (4.4) 
72 

5. Almost additivity. The Bernstein index is almost additive in the fol- 
lowing weakened sense: the index of the product fg of two functions cannot 
exceed too much the sum of the indices of f and g and must not be much 
smaller than the absolute value of their difference [6]. In particular, if 
p E C[z] is a polynomial, and f is an analytic function without zeros in the 
closure of U,  and K ~ U-  ~ U, then 

BK, U(PI) <<. (1 + e 26) BK,u( f )  + 73n, 

BK, r:- i f )  <~ BK,Lr(p:) + 74n, 

"Y3 = 111+ (eD/~(K)), 
(4.5) 

.y, = ln+ (eD/e(U-,  U) ), 
(4.6) 

where n = degp, 6 = diamu(K),  D = diamc(U), and ~/3, 74 are geometric 
constants. It is this simplest form that  we will need (compare (4.5), (4.6) 
with inequalities (1.8), (1.9)). The general case is discussed in [6]. 

4.3. B e r n s t e i n  index  a n d  l inear  d i f fe ren t ia l  equa t ions .  Relations 
(4.2)-(4.6) are less convenient than the corresponding inequalities for the 
Voorhoeve index. However, the Bernstein index can be easily computed 
(or rather estimated from above) for an analytic function solving a linear 
differential equation of the form 

y('~) + ai(z) y(n-i) + . . .  + an-2(z) y" + an-i(z) y' --i- an(z) y = 0 
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in terms of the maximum modulus of the coefficients ak(z), even if the 
coefficients ak are variable. Indeed, the above equation is equivalent to the 
system of first-order linear equations 

Y( t )  = A(t)V(t) ,  V = (y, y,, y , , , . . . ,  y(~-l)) 6 C ~, 

where A(t) is a matrix-valued analytic function in the companion form with 
the bounded norm IIA(t)ll <~ A everywhere in U. The growth of solutions 
of a linear system can be easily controlled: maxteu I[Y(t)[ I ~< exp(vA) �9 
maxteK HY(t)H, where 7 is determined by the geometry of the pair K ~ U. 
But this means that for some component of the vector Y a similar inequality 
holds, and, hence the Bernstein index of some derivative y(k) 0 <<. k <~ n--1, 
admits an upper bound in terms of the magnitude of the coefficients aj  (t) in 
U. Iterating the Rolte theorem in form (4.3), one obtains a similar estimate 
for the solution y(t) itself. As a consequence, we infer that if f satisfies the 
above equation with maxzeU lak(z)l <. A for all k = 1 ,2 , . . . , n ,  then the 
number of zeros o f / i n  any K ~ U can be as large as O ( A + n l n n )  modulo 
a factor dependent on the geometry of the pair K, U (in [2] this is proved 
for the case where K is a real segment and f is real on K, and in [6] the 
general complex case is considered). 

Still the question of how many really independent Rolle theories do co- 
exist is quite natural. The Riemann mapping theorem immediately implies 
that knowing the Bernstein index of an analytic function does not impose 
any upper bound on its Voorhoeve index, even if the function has no zeros; 
the inverse is also true. However, Theorem 3 asserts a natural equivalence 
of the two constructions in a weaker sense, after diminishing the domains. 
The proof of this result occupies 4.4-4.6. 

4.4. Nor, expans ion  principle. We start with the following reformulation 
of the classical Schwartz-Pick lemma; see [4]. Let f U --* C be an analytic 
function defined in the hyperbolic domain U. Assume that f (U) C V, where 
V is yet another hyperbolic domain. 

L e m m a  5 (Nonexpans ion  principle [4], p. 14). The map f is non- 
expanding in the hyperbolic metrics in U and V: 

Vz, w e V Pv if(z),  I(w)) < Pu (z, w), 

and the equality is possible i f  and only if  f is a conformal isomorphism 
between U and V. 

Proof. Obviously, it is sufficient to prove this property for an automorphism 
of the unit disk f D --* D, having a fixed point at the origin, f(0) = 0. But 
in this case the assertion coincides with the Schwartz lemma: since p~ (0, z) 
is a monotonic function of Izl, we have 

lY(z)l Izl p,(f(z),O) < [] 



GENERALIZED ROLLE THEOREM IN R ~ AND C 121 

C o r o l l a r y .  Let f be analytic in U and take values in the right half-plane, 
f (U)  C H = {Rez > 0}. Assume that f (a)  = 1 for some point a e U. 

Then for any set K ~ U the image of K belongs to the Euclidean disk 
D~ --- {w e H : Iw - cosh~i] < sinh~i}, where ~ = d iamu(K U a) < co. 

Indeed, in the hyperbolic metric (Rew)- l{dwl  the set D6 is also the disk 
of the hyperbolic diameter ~i centered at w = 1 : D 6  = {w �9 HpH(1,w ) < 

5}. [] 

4.5. D e m o n s t r a t i o n  o f  T h e o r e m  3 for  f u n c t i o n s  w i t h o u t  ze ros .  If 
a function f has no zeros in some domain, then a branch of logarithm In f 
or the power f~  can be selected. 

Estimating B through V. Let K ~ U be a nested pair of sets and suppose 
that  a simple closed path F = OU ~ encircles the domain U remaining at 
a positive distance from it, so tha t  K ~ U ~ U ~. We denote by 5 -- 
diamr(U) < co the hyperbolic diameter of the set U with respect to U ~. 

Suppose that  f has no zeros on FUU' and denote V r ( f )  = v. Let z0 �9 K 
be the point where the maximum of f ( z )  on K is achieved. Without  loss of 
generality we can assume that  f(zo)  = 1. Consider g(z) = f ( z )  t/4~. Then 
g takes r into a curve entirely belonging to the right half-plane H (since the 
total  variation of Arg g(z) on F is no greater than lr/2). 

By the nonexpansion principle, the domain U of a finite hyperbolic di- 
ameter 5 (in U ~) is taken into the circular disk D8 of the Euclidean di- 
ameter e ~ - e  -6 = 2sinhS. Note that  max{[w[ w �9 D~} ~ e ~, and hence 
max~ [g(z)[ ~< e 6 and, finally, maxu If(z)[ ~ e 4~v. Thus BK, u ( f )  ~< 45v, 
where v = V r ( f ) ,  and (1.12) is proved for f without zeros. Note also 
that  this estimate is valid for any choice of the subset K,  even for a single 
point in U, but  in order to achieve (1.12) for the general case, we will need 
~ ( g )  > 0. 

Estimating V through B. Conversely, let K ~ U and F be a simple closed 
path  strictly inside U: F ~ U. We denote BK, u ( f )  = b. The function 

1 
g(z) = -~ L n f ( z )  is well defined and maps U into the translated right half- 

plane H'  = {Re w ~ 1}. Without  loss of generality we assume that  g(zo) = 0 
for z0 �9 K.  For the closed curve F ~ U we have 

V r ( f )  = b • (length of projection of g(F) onto the imaginary axis) 

< b. l(g(r)) b. l (r)  �9 T lg'(z)l. 

Choose a subset U ~ ~ U containing F strictly inside. By the Canchy integral 
formula, 

l(ou') 
2 o(r,u,) 
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By the nonexpansion principle, the latter maximum does not exceed e ~, 
where 6 = diamv(U' 0 K),  the whole expression can thus be regarded as 

a geometric constant 75 = e ~ I(OU') 2Tr0(F, U~) ' and we arrive at the inequality 

v ~< 75b which is the special case of (1.11) for functions without zeros. [] 

4.6. T h e  g e n e r a l  case  o f  T h e o r e m  3. The general case is reduced to 
the case of nonvanishing functions by inequalities (1.8), (1.9), (4.5), (4.6) 
after representing the arbitrary function f in the form f = Fp, where p is 
a unitary polynomial and F has no zeros. 

If f e Jr(U) and BK, t](f) = b for some K ~ U, then for an arbitrary 
set U ~ such tha t  K ~ U ~ ~ U and F ~ U t the number of zeros of f in 
U ~ can be at  most d ~< v6b by (3.2) and (3.4), where ~76 is a geometric 
constant. Let p be a unitary polynomial of degree d with roots at these 
zeros. The function F = f / p  will be analytic and nonvani.qhing in U ~, 
and by (4.5) its Bernstein index with respect to the pair K, U t admits an 
upper estimate BK, u, ( f /p)  ~ b + 74d ~< b(1 -t- 9496). Then inequality 
(1.11) already proved for this case implies that  V r ( f / p )  ~ 9~ b, and, hence 
V r ( f )  ~< 375 + d- x(r)/2r = 9sb. 

The chain of inequalities that  proves the inverse sense inequality is com- 
pletely similar: if p is a unitary polynomial with the same zeros as f inside 
F, then d = degp < v, and by (2.5) V r ( f / p )  <. v (1 + x(r)/2~) = 99v. 
Now (1.12) can be applied to the invertible function f / p ,  yielding the in- 
equalities 

(~) (~ BK,U(f) <<. 711 v .  V r ( f / p )  <~ 7.v BK, U(f/p) <~ 710v 

All constants 7i that  appear above are geometric, and thus the assertion of 
Theorem 3 is established in full generality. 
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