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Sums of  Finite  Sets, Orbits of Commutat ive  Semigroups,  
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§1. I n t r o d u c t i o n  
• 

We can add subsets of a commutat ive semigroup: the sum A + B of two subsets A and B of a 
commutat ive semigroup is the set of points z representable in the form z = a + b, where a E A and 
b E B.  Denote by N • A the sum of N copies of the set A. 

In [1] we proved the following 

T h e o r e m .  For any finite subsets A and B in a commutative semigroup G, the number of points of 
the set B + N * A is a polynomial in N for sufficiently large positive integers N .  The degree of this 
polynomial is less than the number of points of the set A. 

This polynomial is the Hilbert function of a finitely generated graded module  over the ring of polynomials 
in several variables [1], and this proves the theorem. 

This algebraic argument implies two natural  questions: 
(1) what  is the relationship between the ring of polynomials in several variables and the calculation of 

the number of points in a set, and 
(2) is it possible to avoid the application of the Hilbert theorem (see §8) in the proof of the above- 

mentioned combinatorial fact? 
The present paper gives an answer to these two problems. We start  with the second problem. Here we 

can do without  the Hilbert theorem. Combinatorial arguments can give some more. Let us fix an arbitrary 
multiplicative character X: G -~ C, x(a + b) = x(a)" x(b). 

Denote by f ( N )  the sum of values of the character X over all points of the set B + N * A. 

T h e o r e m  5. For sufficiently large N,  the function f ( N )  is a quasipolynomial in N of the form 
f (N)  = ~ q~Npi(N). The numbers qi in this formula are the values of the character X on the set A, and 
the functions Pi are polynomials of degree less than the number of points of the set A at which the values 
of this character are equal to qi. 

For X = 1 the function f calculates the number  of points of the set B + A * N ,  and Theorem 5 
coincides with the above-mentioned combinatorial fact. Generally speaking, the function f is not the 
Hilbert function of a graded module (the values f ( N )  of this function are complex numbers that  are not 
necessarily integers), and Theorem 5 cannot follow from the Hilbert theorem. 

Theorem 5 is a manifestation of general properties of orbits of the semigroup Z~_ that  are described 
in this paper. Under the action of a group a set is decomposed into orbits, und each orbit has u simple 
description in group terms. For the case of a semigroup an orbit has no equally simple description. 
Moreover, the orbits of distinct points can intersect. How can we cut the set on which the semigroup acts 
into simple disjoint pieces? In §2 we give a partial answer to this question for well ordered semigroups. 

For the semigroup Z" this answer can be refined (see §4). The point is that  the semigroup Z~_ is + 
Noetherian (see [2, 7]). This classical result plays the central role in the present paper. We present it 
in §3 together with an addition we need: the complement of a Z~_-ideal is representable in the form of the 
union of a finite number of disjoint shifted coordinate semigroups. 

The orbits of the action of the semigroup Z~ are sufficiently regular: they decompose into disjoint 
unions of finite sets of orbits of coordinate semigroups (see §4). Theorem 5 is a manifestation of this 
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regularity. In the proof of Theorem 5 we also use some properties of the sum of values of an exponential 
function over all integral points of the standard simplex. These properties are presented in §5. 

Now let us come back to the first problem: what  is the relationship between the ring of polynomials 
in several variables and the calculation of the number  of points in a set? The calculation of the number 
of points in the set B + N * A is based on some properties of the semigroup Z~_. However, the ring of 
polynomials in n variables over a field K is just  the semigroup algebra for Z ~ + over the field K .  (As the 
remarkable construction of GrSbner bases shows, the Noetherian property of the semigroup Z~_ implies 
the Noetherian property of the polynomial ring.) 

A module over the ring of polynomials in n variables is a direct generalization of the action of the 
semigroup Z~ on a set. The existence theorem for a special linear basis in a module  over the ring 
of polynomials in n variables (see §8) is a direct generalization of the theorem on the decomposition 
of orbits of the semigroup Z ~ into orbits of coordinate semigroups. The theorem on the structure of + 
orbits of a well ordered semigroup G (see §2) is a consequence of the theorem on the existence of a 
special linear basis in a module over the semigroup algebra of G (see §7). The special linear basis in 
a module over the polynomial ring permits us to characterize the HiIbert functions of graded modules. 
Let us fix a homomorphism 3': Z~_ --+ F,  where P is a commutative semigroup. A module  M over 
the polynomial ring K[xl,  . . .  , xn] is said to be 3'-graded if M as a linear space is representable as the 
direct sum M = ~ 0 e r  Mo of linear subspaces indexed by the elements of the semigroup I" and if the 
following homogeneity condition holds: the monomial  z a , a ~ Z~ ,  maps the homogeneous space Mo into 
the homogeneous space Mo+~(a). The function on the semigroup P that  assigns the dimension of the 
homogeneous component  Mo to the element 0 is called the Hilbert function of the 3'-graded module M.  
In §8 we give a complete description of the Hilbert function for finitely generated "),-graded modules in 
terms of the homomorphism 3'. For classical 3'-gradations (which occur in homogeneous coordinate rings 
of algebraic subvarieties in the products  of projective spaces) this description can easily be translated into 
analytical language and implies the fact that  for large values of the arguments the Hilbert functions are 
polynomials. 

For the case of a general gradation 3" : ;g~ --~ Z~  the analytical nature of the Hilbert function turns out 
to be more complicated: there exists a finite stratification of the semigroup zr~ such that the restriction 
of the Hilbert function to each stratum is a polynomial with periodic coeJ~cients (see §10). Note that 
a similar description of the Hilbert functions (and their asymptotic behavior) for these gradations was 
obtained in [6] in a different way. Our description is based on some properties (see §9) of the number of 
integral points in convex polytopes with rational vertices. 

The present paper is an immediate continuation of [1]. The results of this paper were presented in 1991 at 
the seminars of V. I. Arnold and I. M. Gelfand in Moscow and in 1992 at the seminar of D. Kazhdan at 
Harvard. 

§2. A c t i o n  o f  O r d e r e d  S e m i g r o u p s  on  Se t s  

In this section we show how a set X on which a well ordered semigroup G acts can be decomposed 
into sufficiently simple disjoint pieces. 

By an action of a semigroup G on a set X we mean a homomorphism re: G --~ S ( X ) ,  where S(X)  is 
the semigroup of mappings of X into itself. The semigroup G is said to be well ordered if on G a well 
ordering is introduced (i.e., every nonempty  subset has the least element) that  admits left multiplication 
(i.e., gl  > g2 implies ggl  > gg2). 

A subset ~ C G is called a G-ideal if it is invariant under the left multiplication, i.e., if the relations 
hE : J  and g ~ G i m p l y  g h ~ .  

A set J C G is called a G-coideal if its complement G \ J is a G-ideal. 
Let a set U C X be invariant under  the action of the semigroup G. The problem to be considered is 

to cut the set X \ U into the simplest possible parts. 

E x a m p l e .  Let R be a set of indices, let X be the union of disjoint copies G~, c~ E N, of the semigroup 
G, X = [--J~e~ G~, and let U = U~e~ J~, where :J~ C G~ is a G-ideal. The set X \ U is decomposed 
into the union of disjoint G-coideals J~ = G~ \ :J~. 
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Let us show that  a similar decomposition of the set X \ U into G-coideals exists for each action of a 
well ordered semigroup G. Suppose that  the set X \ U is contained in the union of orbits O~ of some 
elements xa ~ X ,  c~ ~ R. 

Theorem 1. The set X \ U  is representable in the form of the union of disjoint sets X~,  ~J Xa = X \ U  , 
X~ ~ X~ = ;~ for ~ ~ fl, with the following property: for each index a the set X~ belongs to O~ and 
there exists a G-coideal J~ such that the mapping g ---* 7r(g)(xa) determines a one-to-one correspondence 
between Ja and the set Xa .  

P r o o f .  We fix a well ordering of the indices c~ ~ R of the elements x~.  For each index a let us define 
an invariant set U~ as the Union of the set U and the  orbits OZ of  all elements x~ with indices fl less 
than c~, U~ = (~J~<~, Ot~ ) U U.  Let us define Xa as the set of  points of the orbit O~, that  do not belong 

to the invariant set U~, X~, = O~ \ U~. Clearly,  [.J X~ = X \ U and X~ f~ X~ = ;3 for c~ ~ ft. 
For each point x belonging to Xa we consider the subset G(x) C G with the following property: 

g e G(x) if and only if r(g)(x~) = x. Let g(x) be a minimal  element of the set G(x). (Such an 
element exists because the semigroup G is well ordered.)  Define Ja  as the set of elements g(x) for all 
points x ~ X~.  By definition, the na tura l  mapping g --+ ~r(g)(x,) is a one-to-one mapping of the set 
J~ onto X a .  Let us show that  the complement  ~ = G \ Ja  is a G-ideal. Note that  the complement 
~ is representable in the form of the union of the following sets ~1~ and ~ :  g ~ ~ if and only if the 
point 7r(g)(x~) belongs to the invariant set U~, and g ~ ~2~ if and only if there exists an element a ~ G 
such that  a < g and ~r(a)(x,) = ~r(g)(x~). We will show that  ~2~ is a G-ideal. Let c E G be an 
arbi t rary element of the semigroup, let g e ~2~, a < g,  and let ~r(a)(x~) = ~r(g)(x~). Then  ca < cg and 
7r(ca)(x~) = ~r(cg)x~. Therefore, cg ~ ~ ,  and this proves the required assertion. Clearly, the set ~1~ is 
an G-ideal. Thus,  ~ = ~1~ U ~2~ is also a G-ideal. The theorem is proved. 

§3. Semigroup Z~ 

Theorem 1 can be s t rengthened for the semigroup Z ~ .  The point is that  the semigroup Z~_ possesses 
a kind of Noether ian proper ty  (e.g., see [2])• This proper ty  was discovered before the  Hilbert theorem on 
the Noether ian proper ty  of the polynomial  ring• Let us describe this classical result in the form we will 

need in the  sequel. 
By the octant  O~'(a) with vertex at a point a E Z n = • + ,  a (a l ,  .. , an), we mean  the subset of integral 

.points b = ( b l , . . . ,  G,) of Z~ that  satisfy the inequalities b~ >_ a l ,  . . . ,  b,, >_ a,~. Clearly, an octant  is a 

Z~-ideal: 

Theorem (on the Noetherian proper ty  of the semigroup Z~_). Each Z~-ideal is the union of a finite 
number of octants (in other words, the union of an infinite family of octants is in fact the union of a finite 
number of octants). 

P r o o f .  Induct ion on the dimension n.  Let us isolate out  the last coordinate x,~ in Z~_, i.e., put  
Z n _~ Z n - 1  + + + Z + .  It is clear that  

(1) the intersection of an octant  by a horizontal plane xn = c, c E Z+ ,  is an octant  in the semigroup 

Z '~-~ (after the  last coordinate x~ = c is deleted); + 

(2) the project ion of an octant  belonging to Z '~ is an octant  in Z '~-~ + + • 

We now proceed to induction. Take the projection of the union of an infinite family of octants  ~ C Z~ 

onto the coordinate  plane Z ~-1 By the induction assumption,  the  resulting union of (n - 1)-dimensional + • 

octants coincides with the union of a finite number  of octants.  Let these be the octants  with vertices 
• 

b l , . .  b k (b i (b~ i •, = , . . . ,  b~_~ )). By construction, the octants  are the projections of n-dimensional octants 

with some vertices {~ ({~i = (b~ , . . . ,  bn_~,~ b~)). Let the maximal  value of the last coordinates b/, of these 
vertices be c ~ Z ~ .  All points of the Z~_-ideal 5 for  which the last coordinate is no less than  c belong to 

the union of the  octants  O~({~). The remaining points of the  Z~-ideal  3 belong to the finite number  of 
sections x,i = 0, x,, = 1, . . . ,  xn = c - 1. By the induct ion assumption,  each of these sections is covered 
by a finite number  of (n - 1)-dimensional octants.  Now we see tha t  the Z~-ideal  ~ consists of a finite 

number  of octants  O ' ( ~  i) and a finite number  of n-dimensional  octants  whose vertices belong to a finite 

set of sections. 
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The semigroup Z~ has 2 ~ coordinate semigroups: for each subset I of the segment {1 , . . .  , n} of 
positive integers there is a subsemigroup Z+(I )  consisting of integral points a = ( a l , . . . ,  a,~) such that 
ai = 0 for i ~ I and ai >_ 0 for i ~ I .  The semigroups Z+(I)  include the zero semigroup (for 
I =  { 1 , . . . , n } )  and the semigroup Z~_ (for I = ® ) .  

A subset of Z~ will be called a shifted coordinate semigroup if it has the form a + Z+( I ) ,  where a is 
an element of Z~.  

T h e o r e m  2. The complement of a Z~_-ideal can be represented as the union of a finite number of 
disjoint shifted coordinate semigroups. 

P r o o f .  1) We first assume that  the Z~_-ideal is an oetant O'S(a) with vertex a. Let us represent the 
complement Z~ \ O~(a) as the union of shifted coordinate semigroups. For each nonzeio point a of Z~ 
we define the point ~-(a) by the following rule: if a = ( a l , . . . ,  a~) and al . . . . .  ai-~ = 0, ai > 0, 
then 7r(a) = (a~ , . . . ,  ai-1, ai -- 1, a i + l , . . . ,  a n ) .  Obviously, the octant with vertex 7r(a) contains the 
octant with vertex a, and their difference On(rr(a)) \ On(a) is a shifted coordinate semigroup. For the 
integral point a = ( a l , . . . ,  a,~) we have 7rl(a) = 0, where I = llall = la~l. T h u s ,  we obtain the required 
decomposition 

Z ;  \ O'S(a) = U O'~(7rt(a)) \ On(Tcl--l(a))" 
I=1 

2) Each Z~_-ideal is the union of a finite number  of octants. Assume that  the theorem holds when the 
Z_~-ideal ~ is the union of k octants. Let us prove the theorem for k + 1 octants. We have J = 30 U O~(a), 
where ~0 is the union of k octants. By induction, the complement of ~0 in Z~ is the union of shifted 
coordinate semigroups. In turn,  in each shifted coordinate semigroup L the complement of its intersection 

°~with the octant  IL \ (L f? On(a)) can be decomposed into the union of shifted coordinate semigroups 
(see step 1 in the proof of this theorem). The theorem is proved. 

§4. A c t i o n  o f  t h e  S e m i g r o u p  Z '~ + on  a Set  

Suppose that  on the set X an action 7r: Z '~+--~ S(X)  of the semigroup Z~ is defined; let U C X be 
a subset invariant with respect to this action. Let the set X \ U belong to the union of orbits of some 
elements x~ ~ X .  

T h e o r e m  3. There exists a decomposition of the set X \ U into the union of disjoint sets Xa,i ,  
1 <_ i <_ l(c~), where l is an integer-valued function of the index a, with the following property: for 
each pair of indices (a, i) there exists a point a ~ Z~_ and a coordinate semigroup Z+(I)  such that the 
mapping g -~ 7r(g +a)(x~) determines a one-to-one correspondence between this coordinate semigroup and 
the set X~, i .  

P r o o f .  In the semigroup Z~ there is a well ordering (e.g., lexicographical). Therefore we can apply 
Theorem 1 to the action of this semigroup. To complete the proof, the Z_~-coideals J~ in this theorem 
must be cut into shifted coordinate semigroups. 

§5. Exponential Sums 

Denote by A(rn) the s tandard simplex {x = ( X l , . . . ,  Xn); XI q-' '" q- an = m; Xl ~ O, . . . ,  Xn ~ 0} 
in the space N n . We define the function F(rn, p) depending on a positive integer rn and a covector 
p ~ (R'~) * by the formula 

= E 
xEA(rn)nZ" 

Le~ ei  denote ~he basis vectors of the space N ~. For each i = 1, . . . ,  n we set 

Hi(p) = ~ 1 / ( 1 -  e x p ( p ( e i -  ej))),  

where the multiplication extends over all j such that  j ~ i, 1 ~ j ~ n.  The function ~ ( p )  is meromorphic 
on the complexification of the space (~")* .  
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P r o p o s i t i o n .  For each m >_ O and each covector p such that p(ei - ej) # 0  for any 1 <_ i < j <_ n 
we have 

= 

l<_i<_n 

This proposition is a special case of a general result [3, 4] in which an arbitrary integral polytope 
is considered instead of the standard simplex A(m).  It completely determines the function F(ra, p) if 
p ( e i - e j ) ~ O  for any l < ~ < j _ < n .  

Le~ us pass to the general case. We fix a covector p = P0- Let the sequence (p0e~), . . . ,  (poen) contain 
exactly l distinct numbers q a , . . . ,  qt and let the number qi occur  k(i)  times. 

_ 

T h e o r e m  4. For each ra >_ 0 the relation F(p, m) = ~_,q'~Pi(m) holds, where P~(m) is a polUnorr~iat 
in m of de#tee < k(O. 

Theorem 4 follows from the above proposition for p = p0 + ~p~, where pl is a sufficiently generic 
covector and ~ ~ ~ ,  under the passage to the limit as ~ - ,  0. 

§6. S u m  o f  Va lues  o f  a C h a r a c t e r  Over  t h e  Set  B ÷ N * A 

We can add subsets of a commutative semigroup: the sum A + B of two subsets A and B of a 
commutative semigroup G is the set of points z representable in the form z = a + b, where a E A and 
b E B. Let us fix some finite subsets A, B C G. Choose an arbitrary character X of the semigroup G, i.e., 
a homomorphism X : G --* C of the semigroup G into the multiplicative semigroup of complex numbers, 
x(a + b) x(a) • x(b). Let q l , - . . ,  ql ~ C \ 0 be the set of nonzero values of the character X on the set 
A and let k(i) be the number of points in the set A at which the character X is equal to qi. 

We denote by N * A the sum of N copies of the set A. 

T h e o r e m  5. For suJficiently large positive integers N the sum of values of the character X over all 
l points of the set B + N * A is equal to ~i=~ q~Npi(N), where Pi is a polynomial in g of degree < k(i). 

P r o o f .  1) Let us index the elements of the set A, i.e., let A = {a~; i = 1 , . . .  ,n} .  Consider the 
semigroup Z~ and the homomorphism ~rl : Z~ -~ G that maps the standard generators e~, . . . ,  c,~ into 
the elements a~, . . . ,  an ~ A. Denote by ~r2 : Z~ --~ Z+ the standard homomorphism defined by the 
relation ~r2(x~, . . .  , xn) = x~ + ..- + x,~, xi ~ ~+.  

We denote by ~ the direct sum of the semigroups G and ~+,  ~ = G ~3 X+, and by ~: ~ --* ~ the 

direct sum of the homomorphisms 7q and ~r2. Let ~ and ~ be the following subsets of the semigroup 
G: B = (B, 0), .~ = (A, 1). The semigroup Z~ acts on ~ according to the following rule: an element 

c ~ ~ maps a point g E ~ into the point g 4/~r(c) Denote by X the union of the orbits for the points of + • 

the set ~ with respect to this action and by XN the subset of X consisting of the points whose second 
coordinate is N .  Clearly, XN coincides with the set (B + N * A, N) .  

- -  

2) Let us extend the character X: G --~ C to a character ~-: G --~ C by the formula ~(g, rn) = ~(g). 
Denote by U the set of points at which the character ~ vanishes. The set U is invariant under the 

- -  

action of the semigroup G and, consequently, under the action of Z~.  We are interested in the sum 
~ , e B + N . A  X(x) • It is clear that this sum is equal to ~ , e x ~ \ u  Z(x).  

3) We can apply Theorem 3 to the set X \ U. By this theorem, the set X \ U is the disjoint union of 
- -  - -  - -  

some sets X~,i, where b ~ B,  1 < i < / (b ) ,  and l: B --* Z is an integer-vMued function on B. Moreover, 
there exist c ~ Z" and a coordinate semigroup Z+(I)  (that depend on the indices(b,  i)) for which the . +  

mapping q: Z+(I)  --~ Xb,i determined by the formula q(x) = 7~(x + c)(b) is an isomorphism. 
The preimage of the set X~,~, N = X~,i ~ (XN \ U) in Z+(I)  is the standard simplex {x = (xl,  . . . ,  x , ) ;  

E x k  = N-7~e(c ) ,  xk >_ 0 for k ~ I and Xk = 0  for k ~ I}.  By Theorem 4, for N >_ ~ ( c )  the sum 

of values of the character X over the set X~,i,N is equal to ~ q~-~(~) .  Pj,~,i(N), where {qj} is the set 
of values of the character X on the elements ak ~ A for k ~t I and Pj,b,i are polynomials of degree less 
than the number of points ak ~ A with k E I for which the character X is equal to qj. Thus, the theorem 
is proved if "sufficiently large" numbers N are understood as the numbers N >_ max ~2(c), where the 
maximum is taken over a finite set of points c. 
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§7. M o d u l e s  O v e r  t h e  S e m i g r o u p  A l g e b r a  o f  a Wel l  O r d e r e d  S e m i g r o u p  

The notion of a module  over a semigroup algebra is a straightforward generalization of the notion of 
action of a semigroup on a set. In this section we describe the Grhbner construction for the semigroup 
algebra of a well ordered semigroup and the special linear bases in modules over such semigroups. We will 
also explain why the existence of these special linear bases proves Theorem 1 on the decompoaition of an 
orbit of a well ordered scmigroup into simple pieces. 

With a semigroup G and a field K the semigroup algebra K(G) consisting of formal linear combinations 
of elements of the semigroup G with coefficients belonging to the field K is associated. The multiplication 
in G is extended to the multiplication in K(G) by linearity. 

For an ordered semigroup G there exists the remarkable Gr6bner mapping Grb from K(G) \ 0 into 
G that  assigns to each nonzero linear combination a = ~ )~(g)g the greatest element g E G that  enters 
a with a nonzero coefficient A(g). Because the ordering in G is preserved under left multiplication, for 
g E G and a ~ K(G) we have Grb (g .  a) = g-  Grb(a) .  With a left ideal :J of the algebra K(G) the 
following objects are associated: 

(1) its Grhbner G-ideal, which is the image of the set of nonzero elements of the ideal 5 under the 
Grgbner mapping,  

(2) its Grhbner G-coideal, which is the complement in G of the Grhbner ideal of 1, 
(3) its Grhbner coideal in K(G) ,  which is the linear subspace of K(G) spanned by the elements of the 

Grhbner G-coideal. 
The following assertion is well known. 

P r o p o s i t i o n .  The algebra K(G) as a linear space is the direct sum of the ideal 5 and its Grhbner 
coideaI. 

P r o o f .  By definition, the idea] ~ and its Grhbner coideal L intersect only at the point 0. Let us show 
that each element a ~ K(G) belongs to the sum L + 1. For every element a = ~ A(g)g not belonging 
to L we denote by GrbL(a) the greatest of the elements g ~ Grb(5 \ 0) that  enter a with nonzero 
coefficients ~(g). By subtracting from a an element ~161 of the ideal 5 for which Grb(Albl) = Grbn(a),  
where -~1 is an appropriate coefficient, we can obtain either a -  ~161 ~ L or GrbL ( a -  ~1 bl) < Grbn (a). If 
the element al = a - Albl does not belong to L,  then the process can be iterated. Since in a well-ordered 
set any descending chain terminates,  after a finite number of steps we obtain the relation a - ~ Xibi ~ L, 
where bi E ~. The proposition is proved. 

C o r o l l a r y  1. Let 51 and 52 be ideals of the algebra K(G) such that 51 C_ ~2 and the GriJbner G-ideals 
for ~1 and 52 coincide. Then 51 = ~2. 

Indeed, the Grhbner G-coideals for the ideals 51 and 52 coincide. Therefore, 51 = 52 by the proposition. 

C o r o l l a r y  2. The elements g~ ~ 5 generate the ideal ~ if and only if their images under the Gr~bner 
mapping generate the Gr~bner G-ideal for 1. 

Corollary 2 follows from Corollary 1. 
Consider a K(G)-module  M and its submodule M1. Let a set B = {ma} of vectors rna G M ,  a ~ ~, 

generate the quotient module M/M1.  

T h e o r e m  6. There exists a set of G-coideals Ja C G such that the elements h(ma),  a ~ N, h G J~, 
rn~ ~ B,  form a basis in the linear quotient space M/M1.  

P r o o f .  Let us choose an arbitrary well ordering of the set ~ of indices. For each index a G R we 
define the submodules M~ < and M~ generated by the submodule M1 and all elements ra~ E B such 
that  ~ < c~ and/~ _< c~, respectively. Consider the ideal 5~ that  consists of elements a ~ K(G) such that  
for each vector m belonging to the module _~v/~ < the vector a(m) belongs to the module M~ < . By the 
foregoing proposition, the elements g(rn~), g G J~, where J~ is the Grgbner G-coideal of the ideal 5~, 
span the quotient space M~ < / M ~ .  This implies the theorem. 

Let us show that Theorem 1 in §2 is in fact a consequence of Theorem 6. The action of the semigroup 
G on X is extended by linearity to the action of the semigroup algebra K(G) on the K-linear space 
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Co (X, K ) ,  where Co (X, K) is the space of zero-dimensional chains in the set X with coefficients belonging 
to the field K .  

In the invariant subset U the zero-dimensional chains C0(U, K) form a K(G)-submodule  of the module 
Co(X, K) .  If the set X \ U belongs to the union of the orbits O~ of elements x~ ~ X ,  then the 
quotient module  of C0(X, K)  by Co(U, K) is generated by the vectors rn~, where rn~ is the zero- 
dimensional chain that  consists of the point xa with coefficient 1. Applying Theorem 6 to the modules 
C0(X, K) D C0(U, K) and the vector set { m a ) ,  we obtain Theorem 1. 

§8. Modules Over Polynomial Rings and Their Hilbert Functions 

The foregoing combinatorial considerations give some information about modules over polynomial rings. 
To each point a E Z n = •, = Xl • +,  a ( a l , . .  an) ,  there corresponds a monomial  x a al . . .  x~" The semigroup 
algebra K(Z~)  is the ring K [ x l , . . . ,  xn] of polynomials in n variables over the field K .  Since the 
semigroup Z~ is Noetherian, the polynomial ring is also Noetherian (see §3 and Corollary 2 §7). 

Let M be a finitely generated module over the polynomial ring in n variables, let M1 be submodule 
of M ,  and let ( m ~ )  be the set of elements determining a basis in the quotient module M / M 1 .  For each 
subset I in the set of the variables Xl, . . . ,  xn we denote by Vi the set of monomials that  do not depend 
on the variables belonging to the subset I .  

T h e o r e m  7. For each pair of indices (c~, i), 1 < i < l(~),  where l is an integer-valued function of the 
index a,  there is a point a ~ Z~_ and a subset I of the set of the variables xl , . . . ,  xn such that the set of 
all vectors of the form x ~ . x"(m~) ,  where x ~ ~ ~I  , generates a basis in the linear quotient space M/M1.  

P r o o f .  Because the semigroup Z" + can be well ordered, we can apply Theorem 2 to the modules 
M1 C M over the polynomial ring. To complete the proof we must  cut the Z~_-coideais J~ in this 
theorem into shifted coordinate semigroups. 

Note that  Theorem 3 can be derived from Theorem 7 in just  the same way as Theorem 1 is derived 

from Theorem 6 (see §7). 
Denote by ~ the set of positive integers supplemented with the number  0 and the symbol +cx~. In ~ 

a natural  operat ion of addit ion is defined not only for a finite but  also for an infinite set of elements. The 
dimensions of linear spaces take on the values belonging to ~ .  Moreover, the dimension of the direct sum 
of any set of linear spaces is equal to the sum of their dimensions. 

Let us choose a homomorphism "7: Z~_ -~ F,  where F is a commutat ive  semigroup. 

D e f i n i t i o n .  A module  M over the polynomial ring K[x l ,  . . .  , xn] is said to be 7-graded if M as a 
linear space can be represented in the form of the direct sum of linear subspaces, M - ~]~er M~, indexed 
by the elements of the semigroup F and the following homogeneity condition holds: the monomiai x~.2, 
a ~ Z~,  maps the homogeneous space M~ into the homogeneous space Mo+7(a ) . The function H : F ~ N 
that  assigns the dimension of the homogeneous component  M~ to the element ~ is Called the Hilbert 

function of the ~/-graded module M .  

What  functions H : F --~ ~ can be Hilbert functions of finitely generated 7~graded modules M? Below 
we give a complete answer to this question~ but  first we state some definitions. 

I~ the space of functions on the semigroup F with values in .~ the convolution operation can be defined: 

~ * ~ ( ~ ) =  ~ ~ ( ~ ) ' ~ ( ~ ) "  
01-+-0~:0 

With a homomorphism 7: Z~ --~ F we associate 2 n functions on F,  which will play the key role in 
our study. With  each subset I C ( 1 , . . . ,  n) we associate a coordinate semigroup Z+(I)  C_ Z~ and the 

function fz:  F --~ ]~ that  assigns the number  of points of the set ~/-1(0) ~ Z+(I)  to the element ~ ~ F. 

T h e o r e m  8. The Hilbert function H: F -~ ~ of a finitely generated -/-graded K [ x l , . . . ,  x,~]-module 
is representable in the form 

H =  E S ~ * g ~ ,  (1) 
I 

108 



where g[ is a nonnegative integer-valued function on F that vanishes everywhere except for a finite number 
of points. Conversely, each function H of the form (1) is the Hilbert function of a ~/-graded module. 

P r o o f .  1) Let us choose a finite number  of homogeneous generators rn~ in the module M .  By 
Theorem 7, the graded linear space M is the direct sum of a finite number  of graded subspaces M ( a ,  i) 
generated by the vectors x ~ • x~(rn~), where # E Z+(I ) .  Denote by b the element of the semigroup F 
which is equal to 3'(a) + g(rn~),  where g(rn~) is the gradation of the element rn~. The dimension of the 
homogeneous component  of the space M(c~, i) with gradation 0 is equal to f~ • 5b(O), where 5b is the 
function that  is equal to 1 at the point b and vanishes at the other points. This implies the first assertion 
of the theorem. 

2) To prove the other assertion of the theorem, consider the following example of a a/-graded module 
over the ring K [ x l , . . . ,  Xn]. We take the quotient ring of the polynomial ring K [ x l ,  . . . ,  xn] by the ideal 
generated by the variables xi, i ~ I .  Let us endow this module with ~/-gradation by the following rule: 
the gradation of the  equivalence class of the monomial x" ,  # ~ Z+( I ) ,  is equal to b + ~/(#), where b is a 
fixed element of the semigroup F. The Hilbert function H of this module is equal to f1 * 5b ; therefore 
each function of the form (1) is the Hilbert function of the direct sum of modules Of this type. 

Co ro l l a ry .  If  the semigroup F can be embedded into a group, then the HiIbert function of each ~/-graded 
module is a linear combination of a finite number of functions fi(O - b) with positive integral coeJficients. 

E x a m p l e  1. The simplest and, of course, the most important  example is the K[x~, . . . ,  xn]-modules 
with ordinary integer-valued gradation ~/: Z '~ -~ Z,  where "/(al, • .. , an) = aa + . . .  + a,~. This gradation 
occurs in homogeneous coordinate rings of projective varieties. In this case the functions f~(N) have a 
simple geometric meaning: they are the numbers of integral points in the simplex {a = (al ,  . . . ,  an) ; 
al + "" + an = N ,  a N >_ O, aj = 0 for j ~ I} .  Simple calculation shows that  if the number  p = n - I I I  
of nonzero variables is positive, then f i ( N )  p-1 = CN+p_ 1. I f p  = 0, then f i(0)  = 1 and f z (N)  = 0 for 
N > 0. Therefore the number  f i (N )  is a polynomial for N > 0. The shifted functions f i ( N  - b) are 
polynomials for N > b. 

This implies the following remarkable 

H i l b e r t  T h e o r e m .  Beginning with some positive integer, the Hilbert function H of a finitely generated 
module with ordinary gradation is a polynomial. 

Now we present a complete description of the function H .  Let us define the function ~ of two integral 
variables by the following formula: 

(1) if 0 < k < N ,  then ~ v  = C~v, 
(2) if k = N = - 1 ,  then the function ~ v  is equal to 1, 

(3) for the other values of k and N the function ~ v  is equal to zero. 
Theorem 8 shows that  the Hilbert function H of a finitely generated K [ X l ,  . . .  , xn]-module with the 

gradation in Example 1 has the following form: 

H(N) }2 ~ , l  N A - k - I - I '  

where I, k, and a},t are nonnegative integers and k _< n.  

E x a m p l e  2. A somewhat more complicated example is the gradation 7: Z~ --~ Z "~+ that  depends on 
the parameters i l , . . . ,  im related by the condition i~ + • • • + i,~ = n.  Let co = 0, c~ = i~, c2 = il  ~- i2, 
• . . ,  cm = i~ + . - . + i r a  = n,  and let " / (a l , . . . , an )  = ( N 1 , . . . , N m ) ,  where Nt = ~t_~<j<_~taj. This 
gradation occurs in homogeneous coordinate rings of subvarieties in the product  of projective spaces 
C_P i ' - ~  x . . .  x C P  i ' ~ - I  . The function f~(N),  N = ( N 1 , . . . ,  N m ) ,  has a simple geometric meaning: it 
is the number  of integral points in the product  of simplexes { ( a c t _ ~ + l , . . . ,  ac , ) ;  ~c~_~<j<_c~ aj = ]Vl, 

aj _> O, aj = 0 for j ~ I} .  This number  f z (N)  is equal to U m-lN~+m_~ ""~N,~+~-l~V'~-~, where pt is the 
number of indices j ,  c~_~ < j _< ct, such that  j ~ I .  
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Theorem 8 shows that  the Hilbert function H of a finitely generated K [ x l ,  . . . ,  xn]-module with the 
gradation in Example 2 has the following form: 

H(N1 .. Nm) : E a~,,t I I  ~k j -1  ' " ' " ~ ' N . ~ + k . ~ - - l j  - - 1  ' 

where k = (/ca, . . . , / cm ) ,  I = (/a, . . - ,  l,~) ; all numbers /cj, l j ,  a~,t are nonnegative integers and /cj <_ lj .  
In particular, the function H(N1,  . . . ,  N ~ )  is a polynomial if all coordinates Nj are sufficiently large. 

§9. Integral Points in Rational Polytopes 

To each face F of a convex bounded polytope A C ll~ n there corresponds a convex cone Kr  in the 
dual space (]~n).. Namely, a coveetor ~ belongs to Kr  if and only if the set of points of maximum for 
the restriction of the linear function (~, x) on the polytope A coincides with the face F.  The cones 
Kr  corresponding to different faces F are disjoint, and their union determines a decomposition A ± of 
the dual space (1~)*.  Two polytopes A a and A 2 are said to be analogous if the corresponding dual 
decompositions coincide. A polytope A2 is said to be subordinated to a polytope A a if the decomposition 
A~ is finer than  the decomposit ion A~ (i.e., if each cone Kr~ of the first decomposition is contained in 
some cone Kr~ of the other decomposition). The support  function f a :  (R~)* --* R of the polytope A 
defined by the relation fa(~)  = max,e ,~(( ,  x) possesses the following properties: 

(1) f/~ is continuous and positive linearly homogeneous (fzx(A() = Af~(~) for A _> 0); 
(2) fz, is linear on each cone Kr  of the dual decomposition; 
(3) f a  is convex, i.e., + _< + 
The set L~± of functions with properties (1) and (2) with respect to the decomposition A ± forms a 

linear space. The subset L+zx~ of convex functions in Lzx± is a convex cone. A function g belongs to the 

cone L+~± if and only if it is the support  function of a convex polytope subordinated to the polytope A.  
A polytope A C 1~ will be called a polytope with rational normals if all cones Kr  of the dual 

decomposition A ± are rational. (Note that  the vertices of a polytope A with rational normals are not 
necessarily rational.) In the space of functions L~± there is a lattice A ~  determined by the following 
condition: a piecewise linear function f E L a -  belongs to the lattice A~± if and only if for each cone 
Kr C A ± there exists an integral vector x ~ Z '~ C ~ such that  f(~) = ((, x) for ( ~ K r .  

Let f l ,  .-.  , f~ be the generators of the lattice A ~ - .  

T h e o r e m  9. There exists a polynomial Q of degree <_ n in r integral variables k~ , . . .  , k~ such that 
if the function fA  = klfa + ""  +/crf~ is the support function of a convex polytope Ak  , then the number 
of integral points in this polytope is equal to Q(/c). 

P r o o f .  This theorem readily follows from results in [5]. Indeed, denote by P ( Z  '~) the space of linear 
combinations of the characteristic functions of convex integral polytopes. Define a functional # on P(Z  ~) 
by the following formula: 

= • 

x ~ Z  n 

where ~ ~ P ( Z n ) ,  X~ is the characteristic function of the polytope A and * is the convolution with 
respect to the integral over the Euler characteristic. The functional # is invariant with respect to the 
shifts by integral vectors, i.e., # (T(- ) )  --- #(~2(a + • )) for a e Z n . The value of the functional # on a 
virtual polytope with support  function kaf~ + . . -  + k~f~ is a polynomial in k = (/ca,... ,/C~) (see [5, §7, 
Corollary 4]). Denote this polynomial as Q(k) .  Let the function fzx = kaf~ + . . .  + k~f~ be the support  
function of the polytope Ak, f A G  L~± .  In this case the value of the functional # on the characteristic 
function of the polytope 
proved. 

L e t  A: ll~ n -~ I~ "~ be 
We are int6rested in the 
x E ] ~  m . 

Let ca, . . .  , e,~ be the 
i = 1 , . . . , n .  A subset 

Ak is equal to the number of integral points in this polytope. The theorem is 

a linear mapping with the following nonnegativity property: A -a (0) n I~_ = 0. 
bounded convex polytope A(z) = A-~(~) n ll~_~ as a function of the parameter 

s tandard basis in R n and let ai E II~ '~ be the images of the vectors el, ai = A(ei) ,  
J of the segment J C {1, . . .  , n} of positive integers is said to be essential if 
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the vectors ai = A(ei) ,  i E J ,  are linearly independent.  For each essential subset J denote by K j  the 
relative interior of the cone spanned by these vectors, i.e., x ~ K j  if x = ~-~ieJ/~iai, ,~i > 0. With the 
mapping A" R ~ -~ R'* we associate the following stratification S(A) of the space tl{m: tWO points x and 
y are said to belong to the same s t ra tum if and only if for each set K j  we have either x @ K j  and y ~ K j  

or x ~ K j  and y ~. K j .  It is easy to show that the following assertion holds. 
• 

Proposition. (1) If a point x belongs to the set K j ,  then the polytope A(x) has the vertex Oj  = 
A-~(x)  A I~j, where I~j is the coordinate subspace generated by the vectors ei, i ~ J .  Conversely, each 
vertex of the polytope A(x) coincides with the point Oj  for some set K j  containing x.  

(2) If two points x and y belong to the same stratum, then the polytopes A(x) and A(y) are analogous. 
(3) If a point y belongs to the closure of a stratum containing a point x,  then the polytope A(y) is 

subordinated to the polytope A(X).  

Below we assume that  the matr ix of the mapping A is integral, i.e., A(ei) = ai, ai ~ •m. For the 
set of independent  integral v e c t o r s  {ai; i ~ J } ,  we denote by q(J) the greatest common divisor of the 
maximal,minors of the matr ix composed of these vectors. 

Corollary. Let a point x belong to the set K j .  Then the vertex Oj  of A(x) corresponding to this 
set belongs to the lattice q@j) Z ~. 

Indeed, the corresponding vertex Od has the form A-~(x) f~ Rd.  Let q,~ be a nonzero minor of 
maximum rank composed of the vectors ai, i ~ J .  Applying this minor for solving the system of linear 
equations, we see that  the point O j  belongs to the lattice 1--Z'~. We have a similar relation for any other 

q,~ 
1 ~ n  minor qj. Combining all these relations we obtain Oj ~ ~ . 

Definition. For an integral nonnegative matrix A the number k(A) is the least common multiple of 
the numbers q(J) for all subsets J of the set of columns of the matrix A. 

Definition. Let a semialgebraic stratification of the space N m and a positive integer k be given. 
A function f :  Z~  --~ R is said to be piecewise polynomial with respect to the given stratification with 
coefficients periodic modulo k if the following condition holds: for each s t ra tum X of the stratification 
and for each equivalence class a ~ Z'*/k.  Z m there exists a polynomial PX,a such that  if an integral point 

- -  

x ~ Z~ belongs to the closure of the s t ra tum X ,  x E X ,  and under their factorization re: ~rn ~ ~,rn/k.~m 
this point goes into the point a, i.e., ~r(x) = a, then I (x)  = Px,a(x) .  

Let A: N" -~ IR m be a linear mapping with an integral matrix and let  A-l (0)  ~ R n = 0 Let + • 

f ~ .  g -~ + --~ Z+ be the function that  associates the number of integral points in the polytope ZX(x) = 
A-~(x) C) R~_ with each integral point x ~ Z ~ .  

Theorem 10. The function fA is piecewise polynomial with respect to the stratification SA with 
coefficients periodic modulo k(A) .  The degrees of the corresponding polynomials P~,a do not exceed the 
dimension of the kernel of the matrix A .  

Proof. Let us choose a s t ra tum X of the stratification SA. If a point  y belongs to the closure 
of the s t ra tum X and a point  x belongs to the s t ra tum X ,  then the polytope A(y) is subordinated 
to the polytope A(x) .  If, in addition, the point y is equivalent to the point x modulo k(A), i.e., 
y : x + k~k(A)pl ÷ . . .  + kmk(A)pm where p~ are the generators of the semigroup Z "~ and k~ ~ Z are ' + 

integers, then the vertices of the polytope A(y) differ from the corresponding vertices of the polytope 
A(z) by integral vectors. Therefore, by Theorem 9, the number of points in the polytope z~(y) is a 
polynomial in k l ,  • . .  , k m .  

§10. Hilbert Function and Integral Points in Rational Polytopes 

In this section we deal with finitely generated A-graded K [ x l , . . . ,  x~]-comodules, where A is a ho- 
momorphism of the semigroup Z~ into the semigroup Z ~ .  Below we always assume that  A -1 ((}) = 0. 
This condition guarantees that  each homogeneous component  of the module is finite-dimensional. The 
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homomorphism A : Z~ -~ Z~  can be extended to a linear mapping of R n into lI( m , which will be denoted 
by the same letter A. 

For each segment I of the natural scale denote by N+(I)  the set of points (xl ,  . . . ,  x,~), xi --- 0 for 
i (5 I and xi >_ 0 for i ~ I .  Denote by TA,I the function that associates the number of integral points in 
the polytope Ai,x = A -1 (x) fl II{+(I) with each point x (5 Z ~ .  The functions f~r introduced in §8 have a 
simple geometric meaning for A-graded modules: fx = TA,I. 

Theorem 8 has the following version for A-graded modules. 

T h e o r e m  11. A function H: Z m + -~ Z+ is the Hilbert function of a finitely generated A-graded module 
over the ring K[xl , . . .  , x,~] if and only if it is representable in the form of the following finite sum: 

H(x)  = E a l , b T A j ( x - b ) ,  b (s Z 7 and I c {1 , . . .  ,n} ,  

whose coefficients are nonnegative integers. 

We will need a generalization of the stratification S(A) of the space II{ m described in §9. 
For each subset J C {1 , . . .  , n} and each point b (5 Z~ denote by Kj ,b  the set of points representable 

in the form x = b+ ~;~iA(ei) ,  where )~i > 0 for i E J and hi = 0 for i ~ J .  
Consider the following construction. 
(1) Let us choose a finite number of sets Kj,b.  
(2) With the help of the sets in (1) we define the stratification as follows: two vectors x and y belong 

to the same stratum if and only if they belong to the same sets in (1). 

Def in i t ion .  The above stratifications are called stratifications compatible with the mapping A. 

Combining the theorems from in §§8 and 9 we obtain the following result. 

T h e o r e m  12 (cf. [6]). The Hilbert function of a finitely generated A-graded module over K[xl , . . . , Xn] 
is piecewise polynomial with respect to some stratification of the space ~'~ compatible with the mapping Ai 
with coefficients periodic modulo k(A).  The degrees of the corresponding polynomials Px,~ do not exceed 
the dimension of the kernel of the matrix A.  
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