
This article was downloaded by: [University of Toronto Libraries]
On: 21 November 2011, At: 10:28
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer
House, 37-41 Mortimer Street, London W1T 3JH, UK

Integral Transforms and Special Functions
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/gitr20

Integral transforms based on euler characerisic and
their applications
Askol'd G. Khovanskii a & Alexander V. Pukhliskov a
a Institute for Systems Analysis, RAN Prosp. 60-letya Oktyabrya 9, Moscow, 117312,
Russia

Available online: 02 May 2007

To cite this article: Askol'd G. Khovanskii & Alexander V. Pukhliskov (1993): Integral transforms based on euler
characerisic and their applications, Integral Transforms and Special Functions, 1:1, 19-26

To link to this article:  http://dx.doi.org/10.1080/10652469308819004

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to
anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss, actions,
claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/gitr20
http://dx.doi.org/10.1080/10652469308819004
http://www.tandfonline.com/page/terms-and-conditions


Integral Transforms and Specaal Functzons, 1993, Vol. 1, No. 1,  pp.19-26 
Reprints available directly from the publisher 
Photocopying permitted by license only 
@ 1993 Gordon & Breach Science Publishers, S.A. 
Printed in Malaysia  

INTEGRAL TRANSFORMS BASED 
ON EULER CHARACTERISTIC 

AND THEIR APPLICATIONS 

ASKOL'D G. KHOVANSKII and 
ALEXANDER V. PUKHLIKOV 

Insti tute for Systems Analysis, RAN 
Prosp. 60-letya Oktyabrya 9, Moscow 11 7312, Russia 

The basic notions and constructions of the theory of integration over the Eder  characteristic are 
introduced and explained. A few examples from the theory of convex polytopes show usefulness 
of this non-classical integration. The analog of the Radon transform with respect to the Euler 
characteristic is constructed and illustrated by a topological example.. 

KEY WORDS: Euler characteristic, Convex polytope, Valuation, Minkowski addition, Radon 
transform 

MSC (1991): 57H60, 52B45 ,  44A12  

INTRODUCTION 

The aim of the present paper is to explain the concept of integration over the 
Euler characteristic and to give a few examples of its use. The integral over the 
Euler characteristic can be discerned in many classic arguments (see example 2.1 
below); the modern forrnalization of the theory is due to 0 .  Ya. Viro [I].  Later 
the authors [2,3] found numerous applications of this technique to the theory of 
convex polytopes. 

The concept of integration over the Euler characteristic is based upon the fact 
that  the Euler characteristic has some properties of a measure. Let us consider 
two typical situations. 

(1) Let X I ,  X2 and X1 n X2 be compact finite subcomplexes of a CW-complex 
X .  Then XI U X2 is also a compact subcomplex and there is the Mayer-Vietoris 
exact sequence . . .  - Hi(Xl U X2) - Hi(X1) $ Hi (x2 )  - Hi(X1 n X2) - 
H"+'(X~ u X 2 )  -+ . . . (for example, with integral coefficients). Thus for the Euler 
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we get the additivity x(X1 U X2)  + x(X1 n X2)  = x(X1) + x(X2) .  Besides, for 
finite CW-complexes Y and 2, x ( Y  x 2) = x(Y)x(Z) .  

(2) For another example let X be a smooth connected manifold, X I ,  Xg and 
X l n X z  its open submanifolds of finite type [4]. Then for cohomology with compact 
support there is the Mayer-Vietoris sequence . . .  --, H ~ ( x ~  n X2)  -+ HE(X1) @ 

H ~ ( x ~ )  --, Ht(X1 u X 2 )  --+ H ~ + ' ( X ~  n X2)  - . . . whereof we get the additivity of 
the Euler characteristic again. The  Euler characteristic with respect to  cohomology 
with compact support also multiplies when the direct product is taken. 

These examples show that the Euler characteristic looks very much like a mea- 
sure, and the corresponding integration theory is going to  be a full-fledged one in 
the sense of Fubini-type theorems - because of the multiplicativity of the Euler 
characteristic. But examples given above immediately point out the main obstacles 
to construction of the theory of integration over the Euler characteristic. There 
are two points of trouble: first, in both situations considered above the "measure" 
x(.) is defined for a certain system of subsets of the ambient space closed with 
respect to finite intersections and unions, whereas for an integration theory this 
system should be extended to  an algebra of subsets. So the question is whether 
the topological Euler characteristic can be extended to  a measure on this algebra. 
Then, in both situations there are certain conditions of finiteness which make sure 
that the Euler characteristic does exist, and this is a very strong restriction for 
an algebra of measurable sets. A situation when two algebras of X-measurable 
sets are not both contained in any X-measurable algebra, is typical (in particular 
there can be no universal slgebra of X-measurable sets). At the same time, the 
X-measures of a set belonging to both algebras coincide. 

The first of the two difficulties can be easily overcome. But the second is a 
non-avoidable feature of the theory of integral over the Euler characteristic: every 
application of the theory should be preceded by pointing out a system of sets and 
verification of its "permissibility". In practice, though, this verification is usually 
trivial. 

1. CONSTRUCTION OF  INTEGRAL 

Definition 1. Let X be a topological space. A )  If X i s  compact then  a 
structure of a finite CW-complex  

i s  said t o  be a regular CW-s t ruc ture  if the following conditions are satisfied: ( i )  
the characteristic mapping of any  cell is a homeomorphzsm of the closed ball onto 
i ts  closure, ( i i )  the boundary of any cell falls apart in to  a un ion  of cells of smaller  
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dimension. The sets representable as a union of cells are said to be cellular. B) If 
X is arbitrary then the following data is  said to be a regular CW-slructure on S:  
( 2 )  a dense injection X C 2,  where 2 is compact, (ii) a regular CW-structure on 
2 such that X is an open cellular sebset. The definition of cellular subsets of X 
is evident. C) We define a finitely-additive measure x on the algebra of cellular 
subsets of a space X with a regular CW-structure setting for an open cell e c X 
~ ( e )  = ( - l )d im  e .  This measure is said to be the Euler characteristic. 

Proposition 1. Let Z c X be a subset with compact closure 7 and suppose 
that there exists at least one regular CW-structure on X such that Z is cellular. 
Then the Euler characteristic x ( Z )  does not depend on the choice of a regular 
C W-structure. 

Proof. Suppose a t  first tha t  Z is compact. If Z is cellular it is easy to  see 
tha t  x ( Z )  in the sense of Definition 1 is the same as C?-o(-l)i d i m H i ( Z , R )  
and thus does not depend on the choice of a regular CW-structure. If Z is not 
necessarily compact, let us construct the following series of cellular (with respect 

+i)  \ ~ [ i ) ,  to a fixed regular structure) sets ~ ( " 1 ,  n E &: Z(O) = Z ,  ~ ( ~ ~ ' 1  = Z 

Evidently, $i) are compact and z ( ~ )  = 0 for i >> 0, because z("+') consists 
of cells of dimension smaller than the maximum of dimensions of cells in ~ ( ~ 1 .  
Thus x ( Z )  = ~ z ~ ( - l ) ' ~ ( $ ~ ) ) ,  but for gi) the invariance of x has been already 
proved. 

Definition 2. Let X be a topological space with a regular CW-structure, '4 
be an Abelian group. A function f : X + A is said to be cellular if F - ' ( a )  zs n 

cellular set for any a E A. In particular, f is finite-valued. The integral o f f  over, 
the Euler characteristic is set to be equal to 

Definition 3. A function f : X i A where X is a topologzcal space, A zs 

an Abelian group, is said to be permissible, if it is cellular with respect to some 
regular CW-structure on X .  

Corollary 1 (from Proposition 1). For a permissible function f : X + A 
with a compact support its integral over the Euler characteristic Jx f d x  does not 
depend on the choice of a regular CW-structure on X .  

Example 1. Let V E be a real vector space, P ( V )  be the set of (compact) 
convex polytopes in V .  A function a : V - z representable as a = CiEI  n i IA , ,  
where # I  < m, ni E z, Ai E P ( V ) ,  ]IA denotes the indicator of the set A,  zs 

said to be a (convex) chain. The additive group of chains zs denoted by Z ( V ) .  
Evidently chains are permissible and for a written out above 
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I n  particular the latter integer does not depend on the representation of the chain. 
A s  i n  [Z] we call i t  the degree and denote by degm. 

2. FUBINI THEOREM 

In the notations of Sec. 1 let f : X + A be a permissible function, : X --+ Y 
be a continuous mapping of topological spaces. Suppose that  for each fiber X y  = 

y E Y ,  a regular CW-structure is given, such that  f y  = f l x ,  is cellular. 
Then the "direct image" of f is defined as follows: 

This operation makes sense if a,  f is permissible too. 

Definition 1. A )  A continuous mapping @ : X --+ Y of spaces with regular 
CW-structures is said to  be cellular if maps  each cell e c X surjectively onto a 
cell h C Y .  B)  T h e  direct product of spaces with regular CW-structure is  defined 
by taking direct product of cells. C) Let : X - Y be a continuous mapping 
of spaces with regular CW-structures.  T h e  following data is  said to  be a jibratzon 
structure for a :  for each cell e C Y a space F, with a regular CW-s t ruc ture  and 
a homeomorphism @ ,  : @ - l ( e )  - Fe x e such that a ,  and a;' are cellular. D )  
A cellular function f : X --+ A is said to  be compatible with the fibration structure 
for a ,  if for each cell e c Y there is  a cellular function fe : Fe - A such that 
f l G - l ( e l  = f e   OPT^ o a e .  

Theorem 1 (Fubini theorem). In  the situation described in  C )  and D )  of 
the last definition the funct ion a. f : Y - A, a,  f : y - J + - I ( Y )  f d x  = LC fedx,  
y E e C Y ,  is cellular and 

/ ~ * f d X  = J f d X .  
Y X 

In other words, integration of a function over the Euler characteristic can be rep- 
resented as the composition of two  operations: first, i ts  integration over the fibers 
of the mapping,  second, integration of the resulting function over the base. 

The  proof of the theorem is evident. 
Clearly, the "direct image" operation is connected with a definite fibration 

structure in the existence aspect only, while its result does not depend on tile 
fibration structure (Proposition 1). 

Definition 2. A permissible function is  said to  be compatible with the map 
: X - Y if there exists a fibration structure for such that f is compatzble with 

it. 

Example 1. T h e  Riemann-Hurwi t z  theorem. 
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INTEGRAL TRANSFORMS BASED ON EULER CHARACTERISTIC 23 

Let C ,  2; be compact Riemann surfaces of genuses g an! z, respectively, T : 
2; -; C be a holomor~hic covering of the degree m,  B C C be the ramification 
divisor (a  point b E C comes into B with multiplicity k if k + 1 sheets of the 
covering meet in b). The classic Riemann-Hurwitz theorem asserts that 

The standard topological proof [5] of the theorem can be interpreted as a compu- 
tation of certain integral over the Euler characteristic [I]: let f : -+ be equal 
to 1 identically then by the Fubini theorem 

But r* f(c) = #r- l(c)  for c E C ,  whereof we get the theorem. 
Example 2. Multiplicalion of chains [2]. 
Minkowski addition of convex polytopes extends to a bilinear operation on the 

group of convex chains 
* : 2 ( V )  x 2 ( V )  -t 2 ( V ) ,  

1.4 * nB = IAeB for A, B E P(V) ,  which can be represented as convolution with 
respect to the Euler characteristic: 

(an easy check is left to the reader). The group Z(V) with the multiplication * is 
said to be the algebra of (convex) chains. Denote by p : V x V -+ V the addition 
mapping, and for a, P E 2 ( V )  set a x P E 2 ( V  x V) to be the direct product of 
a ,  P: a x P(x, y) = a(x)P(y).  Evidently, a t P = p,(a x P). Let f : V -+ W be a 
linear map. Applying Theorem 1 to the diagram 

v x v  - W x W  
( f > f )  

we get that the direct image mapping (i.e., fiberwise integration) f, : 2 ( V )  -+ 

Z(W) is a homomorphism of commutative rings. 
~ x a m ~ l e  3. Ideals in  the algebra of chains [2]. 
It is easy to see that deg : 2 ( V )  -, is a ring homomorphism. Let L = 

Ker deg C Z(V)  be the ideal of chains of degree zero. Let M = L n q ~ ]  where 
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24 A.G. KHOVANSKII and A.V. PUKHLIKOV 

the group algebra a V ]  is considered as a subalgebra (of zero-dimensional chains) 
of Z(V) .  

Theorem 2. For  k 2 1 

In the case k = 1 the theorem contains all the classic theory of valuations of 
convex polytopes ([2,6]). 

The  proof of the theorem see in [2]. 

Example 4. "Minkowski subtraction" [2]. 

For A E P ( V )  denote by Int A i ts  interior in i ts  affine hull < A >. 
Theorem 3. ( - l )d imA&nt(-A)  * IA = 1, where 1 = n,,, is the zdentiiy of the 

algebra 2 ( V ) .  

The  proof is straighrforward and easy, and left to the reader. 

3. RADON TRANSFORM 

Let X = mn, X *  = wn* be the dual projective space, so tha t  points of X" 
correspond to  hyperplanes in X ,  and vice versa, Z C X x X* be the graph of 
the incidence correspondence: {(x, h ) / x  E h) .  We say that  a permissible function 
f : X -+ A permits the Radon transform if the function resz opr;(f)  : Z - A 
is compatible with the fibration pr2 : Z --, X * .  If that  is the case, the function 
f *  : X *  -, A, 

f * = (prz), 0 resz OPT; (f ), 

(so tha t  f * ( h )  = [,, f d ~  for a hyperplane h c X )  is said to  be the Radon transform 
o f f  (with respect to  the integration over the  Euler characteristic). 

Theorem 1. I f f ,  f *  permit the Radon transform, then the following zdent~ty 
holds: f * *  + f = S, f d x  = Jx. f * d x  for even n = d i m X  and f * *  = f for odd n.  

Proof. For x E X set 

Evidently, 
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INTEGRAL TRANSFORMS BASED ON EULER CHARACTERISTIC 25 

By the Fubini theorem, f **(x) = Jw, pr;( f ) d x .  On the other hand, the projection 
onto the first factor p r l  : Wx + X is a fibration over X \ {x) with the fiber wn-' 
and pr i  ( f )  is evidently constant on the fibers of p r l .  Finally, pr;l (x)  2 Wn-'. 
Applying Fubini theorem again, now to the map pr l  : W, 4 X ,  we get 

For even m X ( m m )  = 1, for odd m - zero. Q.E.D. 

Example 1. Finite covers of m2 
Let S be a smooth connected compact (real) surface, T : S - m2 be a finite 

map unramified over m2 \ C ,  where C is a smooth (possibly non-connected) 
curve, having the simple fold over C. In other words, for the branch curve B c S 
a : B + C is an isomorphism and for any point b E B there are local parameters 
x, y in b and u , v  in p = ~ ( b )  E C such that a can be written locally as u = x ,  
v = y2. For a point p E C which is not a point of inflexion, we define the index 
i(p), setting it to  be equal to  $1, if (in the notations above) the tangent vector & 
and the curve C lie on the same side of the tangent line TpC near p, and to  ( - I ) ,  
in the other case. 

Theorem 2. Suppose that x E lf@' does not lie on the union of tangent lines 
to C in all the points of inflexion. Then 

Proof. Define a function f : w2 - z, setting f (p)  = #T-'(p). If the line L is 
not tangent to  C, then T-I(L) c S is a smooth compact one-dimensional variety, 
i.e. a disjoint union of loops; consequently, X ( a - l ( ~ ) )  = 0. Thus f *  vanishes 
outside the curve dual to  C .  If L is tangent to  C in the points p i ,  j E J, which are 
not points of inflexion, then it checks easily that  X(n-l(L)) = C j E J  i(pj). Now 
apply Theorem 1. 
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