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A RIE ,IANN-ROCH THEOREM FOR INTEGR{IS AND SUMS
OF QUASIPOLYNONIIALS OVER VIRTUAL POLYTOPES

A. V, P(IKHLIKOV AND A. G. K}IOVANSKII

ABSrRAcr. This paler is devolcd io the proofofa lheoren (rvhich the authors call a
Ricmann Roch rheorn) connecling thc intcgraland the laldce sum ofA quasipolyno-
nial ovcr a convcx chain belonging to sone fanilr. \\c stoq thal there exlsB a linear
diile.enlial ope.alor (lhc 'rodd operatorl transfo.ninE ihc inlegral 10 the sum. This
Clves a higher-dihensionalgcneraliz.lion ofthe well-known EuleFMacla!.i. formula.

INTRoDUCTIoN

This papcr is a direcl continualion of ul, b) lhe same authors. The iheory devel-
oped in [1] concerning convex chains and finitcly additive mcasures on them realizes
one posslble approach lo sludying them; in this paper we propose another, "transver-
sal", approach, based on the s_\'stematic use of thc idea of a conical representation of
a convex chain, 1.e., a reprcsenlaiion of a chain as an inlegral linear combination of
characle stic functions ofcones. This therne was touched on once in [1]: when the
question of lhe recovery of a convcx chail from its suppofi function was considered
(54, Proposilion 2, where in essence lhe general lines of the technique on which the
prcsen1 papcr is conslructed were considcrcd).

The objecl of our sludy is special ncasules ofconvex chains-integrals and lafiice
sums (i.e.. sums over the points of a discrclc latlice) of quasipolynomials. We give
a ralher detailed co pulation of ihese measures. which allows us to obtain the main
result-a "Riemann-Roch theorem", connecting the lattice sum and the inlegal of
the (same) quasipolynomial over a family of convex chains. Thc one-dimensional
variant of this theorem is thc old Euler-Maclaurin formula for a special class of
funclions (quasipolynomials), so our "Riemann-Roch theorem" can be interpreted
as a higher-dimensional generalizaiion of the Euler-Maclaurin formula (see [2], lor
example. for details).

We shall freel,v and $ithoul special reierences use the language of the previous
paper ul, especially the concepts ol a convex chain and irs supporl function. Aside
from this the presenl paper is almosl independcnl ol [1]-from the results proved in
[1] we essentjally need only the almost triviai Proposition 2 of i4, nenlioned above.

The numbering schemc for assertions and definitions is the same as in Il].
The authors lhank the Inlcmalional Laboratory "Malhematical Methods of Com-

puter Science and Conlrol" and i1s direclor S. K. Korovin for linancial suppon of
this work.
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$1. STATEMENT oF TI]E MAIN THEOREM

ln this section we introduce the concepts and conslruclions that will be nccdcd
for lhe statement of ihe Riemann-Roch thcorem. In addition. we briefly cxplain the
algebro-geometric origin of this theorcm.

1. Basic concepts and constructions. Lc1 (r,A) be an admissible pair [1], where
f is an n-dimensional rcai linear space and A in this case is a discrcte complete
la1lice. We nx an isomorphism I/: R" relalive ro which ./\ becomes a naturally
embedded inleger lattice Z" c R" ; the points ). € .\ will be referred to as inlegrul
lecloff. Let ,{t : U € f'11(,{) c Zl c I/' be the dual lattice. Its elemcnts will be
called. i nt e grdl c a, e c I D r s.

Mosi of the concepls we shall use are genelally accepled ones. However, lo avoid
possible confusion 1ve give a list ol them with their precisc mcaning.

(11 A /dt is a closed affine halfline in I/ , the r:.rl?-r of a ray is its origin, and a ray
is a ,^. rd-r (or an inrcger rct) il i conlains at least lwo (and hence infinilely n1any)
points of ,{, one of which is ils vcrtex.

(2) An amne subspace ''l'." a ,^. is a 
^ipd.? 

lot a lauice turva.., if ltl is the
affine hull of ltln-^.

(3) A cor.. C c I/ is ihe convex hull of a finile se1 of ra-vs Rr , .., RN with
a common veftex; C is a A<ozc (or ldtltce cone) if the rays -Rl ,..., l?x can be
chosen to be inleger. We denole by (C) and vs(C) the amne hull and the ve(ex
space, respectivel_v, ofthe cone C- Obviously, if C is a ,^-cone, thcn (C) and
vs(C) are A-spaces. Any face of a 

^-cone 
is obviously a 

^-cone.(a) A cone C is said to be deteloped if dimvs(C) > l. Othervisc the cone
C is said ro bc pointed. ln the latter case its venex is thc point vs(C) afld edges

(one-dimensional faces). where C is the convex hu]] of ils edges.
(5) Lct l? be a ray ri'ith ve(ex -r. The direclion vector of the ray R is .t -x,

where , € R\l-r) is lhe closest integer point lo ). if R is a ,^.-ray, and I is any
point olherwise.

(6) A rlmtle cone C is a poinred cone a for which the direction vectors ot an
edge are linearly independeni. A sitkple Lcane lot a. simple laltirc cane) C is a
simple cone C which is a 

^-cone 
such that lhe direction veclors of its edges lbrm a

basis ol lhe lailice 1al) n ,^.
0)The ditnenslon ol a cone is dimlc) . and the inleriot lnlc ofa cone is always

understood as its inlc or in {C) . We slress thal a coflc in our usage is alwa}s closed.
All of these concepls are of course applicable 10 anr' spacc and any discrete com-

plcte lattice (in facl 1o any admissiblc pair in the sense of ll l). Applying them 1() the
pair (I/' , ,{'). we give one more dcllnilion.

(8.) 
^ 

decompasilion ol lhc spacc I/' is a linite set of conesl=1C,'cf'l€1)
wilh the following propcrlics:

ia) 0€vs(Ci), l€1.
(b) Inla;nlntc; =a fot d+b.u.b€L
(c) a; n al; = C' for some e € /.
(dl C; c C; implies: C; is a lace ol aii.
(e) r- : U,€1 Int C,' .

A decomposilion is rlr?/e it all the cones ali are simple. and simple lduice (.or

A-l if all the Ci arc slmple A-cones. The .dgd of a simple (lattice) decomposition
are all rhc cdges ofthe cones C,', and thc dircction veciors ofa dccomposition are

the dircclion Yectors of the edges.
(9) A convex polylope Aa?(l') olfnll dimension (i.e., (,4) : I') issaid!obc

simple. lalricc (A-). or simple latlice if all lhc cones fbr iis veflices arc respeclively
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simple, lattice. or simple lattice. (We srress that in our rerminology "simple lattice" js
a slronger condition than "boih simplc and laltice"!) It is nol hard to see that a simple
lattice polytope ,,{ gencratcs a simple lattice decomposition tr of the space t,'
(called the /rdl of ,1): lel f(l) bethe set ottaces of ,4, and 1cl C^ , for A € f(l)
be the core for lhe face A (i.e., vs(C^ ;) = (A) and for any -r q lnt^ there exisls
a neighborhood Lrlr such thal ai,!nU=,4nU):rhen t.r={Ci;A€f(l)},
where Ci ! C I/' is the cone dual ro C^.A CIl translated so that the o gin lies in
its veflex spacc.

It is well known (in thc theory of loric varielies this means that every complele
toric vadety extends to a nonsingular projective loric variety) that evcry latticc dc-
composilion ofthe space I/' (r.e.. decomposirion wirh lattice cones) isrefinedtoa
simplc lattice decomposilion that is dual to a simple lartice polltope.

Wilh each simplc lailice decomposition ! v/c associate the following four subsets
of the group ol convex chains Z(I/): Z(tr/ , >) arc chains whose supporr functions
are linear in 2: Z(.L,t) are the integral chains: Z(,{, t) : Z(,^) | ZIY,t);q'lv , 2) = !7' (.1/ ) | Z (.1, , t) are virrual polyropes whose supporl luncrions are
linear in t; and l'(4,:) : 9"(L) n Z(V,L) are the lattice virlual polylopes
lrcm 9'(V , t) .

The groups of vinual pol'1opes 9'(V,t) anC, l'(,\,t) have a naluml pa-
ramelrization which is constmcled canonically from a given decomposition t. Lel
1r , ... , 1,r e A' be the integral direclion vectors of the edges of the decomposition
t. Obviously the piecewise Lnear lunction /: I/* . R. linear in the decomposition
t. is uniquel,v deiermined by its "coordinates" z,: f(lt). 1< l:, N. Morcover,
I. om the condilion thal t is a simple lattice dccomposition it follows easily that for
any se1 (zrj...,rN)€lRN there exists a pieccwise linear funcrion /,linearin t.
such tha! :i = f(.lj), 1< iaN and rhevirrual polyrope corresponding io / and
denoted by a(Zr,.... :N) is lauice if andonlyif zi eZ, 1a l<N. Thus, we
have a diagram

z^

. ,.t

R,A

1".,
z\L ' t) + 7'lv '')

The supporl lunclion ol the vi(ual polylope a(:r ,..-, zx) will be denoted by
/(.zl . . . . . :N ) , and ils value on a covector EeV- by [(z],...,.2N,<) orsimpjy
by .f(' , 6) .

2. Integrals and sums oler conver chains.

Definition l. lA) Let lr: f - C be a continuous function. lts integvl arcr d conrcx
chain Lt e ZiV) is ihe number

tLt-) 1 .,,,)hvtd,.
.lv

where thc volu e element /-r is generaled bv the inreger laltice ,\ a I/ , and the
integral always exists since the supporl of d is compact-

(B) Let i: A - C bc an arbitrary function. hs (laltice) rrm over a chain Lt < ZIV )
is the number

sr(") : t "(")r(").
which is delined since rhe supporl of .r is compact. so that the sum has only a linite
numher of nonzero terms.



79'} A. V PUKILIKOV AND A C' KHOV,'INSKIi

The main result of lhis paper is the determination of the conncction between lhe

mappings 4(.) and Sh(.) (obviously these are measures on lhc group of convex

chuin$ fo. i 
"pccial 

class of functions , . restricled 1o suitable familics of chains-

Morc precisely, let P€Z(L,z) and o(.2)e9-(V,2). (;)=(21' . , "!):then
for fixed l] wc have a pair of mappings

lrlP - a(')): Rl *c, s/,{P * oO): z'.Y - a

we wish 1o recover the second of these mappings irom the first, where l?()') is
taken to be a polynomial on I/ . We recall that according to I l] (Corollaries 2 4 and

2.5) in thjs case both these mappings are polynomial in (z) ofdegree degj?+^dim I'"
The problem is thus reduced 1o finding thc coe{licients of the pol-\'nomial Sr,(/*a(:))
from the coefrcj ents of thc polynomial 1t (p * .i ( z ) ) , or, more precisel-!. to construct-

ing a ljnear opetalor mapping lhe first polynomial to the sccond Such an operator
(tie Todd operator) exisis and solves our problcm Howcver, in order to prove this

we need 1() ;onside; a wialer class of functions i(-t) , the class of quasipolynomials'

i.e., linear combinalions of functions ofthe form P(ir) exp((ir)' where P isapoly-
nomial and <:r/ .C is a complex covector, <€Home(I/,C). The action ofthlr
(complex) covector { onavector).€f will be denoted ((-r) or (( )r)'

3. The Todd operator. Let zr , . .. . zN be independent variables. rcal or complex,

and @ l0 z,) ihe coffesponding parlial differenlial operators.

Definition 2. the TadJ ndpung i. a 'un.Lion

Td(t): Rx - R or Td(.?): CN ' C.

real-analytic jn the firs1 case and meromorphic in the second. deined by the equality

I

I exp(-,-i)'

Properties of the Todd mapping. (i) Ii is symmeiric relative 10 permulations of lhe

variables.
(ii) Let {zi,...,2'.)a(2t,...,.2,v), M < N , be some subsel of the variables'

Thi mapping'Td(z) o; lhe ptane oflhe variables (z/) js Td(-?'). This follows from
the fact that Td(0) = I .

{iii) The mcrcmorphic funclion Td(z) has poles of mulriplciiv 1 along the hv-

perplanes zi : 2n'/ lm, m e Z\{Ol ln particular. the radrus of convergence of
ihe_po*e. series Td(:) al1he origin is cqual to 2z in each ofthe variables ?i and

the series itself has the form

"\rd,, nlr'l- -t r"''')",', 
1\-

where Br is thc Alh Bernoulli number.

Removing the parentheses in thc lasl lormula, we write

Td() = | tl zI
r€rl

in the usual muhi-inalen notation: /=(lr,...tr), 1l :tl='k. Abusing lhc no-

tation, \te shall writc lhis representation for differenl NlTd(.Z) :t/r1:/,withoul
indicating the number N . This is legal by propefiy (ii) and does not cause confusion

ln our-understanding the Todd operator is the rcsult of substlluting the diferenti-
alion operalor d/Au, ior the variables ;r in this expansion. The functlons to \'!hich

rd(:) = fl
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i1 can be applied will be complex-valued analytic functions of the real variables z,
which arc the restrictions of holomorphic functjons on , c cr to the real domain
, n Rr (the coordinates are lixed and the embedding of Rx c Cx is the natuml
one).

Definition 3. The function :l(z) ls said,Io admit the Todd aperator Td(t/az) ifthe
sclies

- 0' .,_,

is absolutely convergeni on ihe domain of definition of /, uniformly o. compacl
subsels,lo the function ,(z), and then hlz) =Td\A/02)flz).

we consider the action of the Todd operator on cenain classes of functions.
(i) 11 is obvious that polynomials P(z) admit the Todd operalor, atd its acdon

does not require any comnlenls, Unforlunalely, we cannol reslrict ourselves to the

class of polynomials, for reasons that will become clear below.
(ji) Lei p,, t : 1,..., N, be complex coordinates. It is easy to see thar lor

pi <2iT the exponentlal expl!,p,2, admils lhc Todd operator and

ro(,',).'ola- rdpr ... .o, erp!p.-.
",

Moreover- it is not hard to see that the series thal realizes the aclion of the Todd
operator converges uniforml-v on compact sels in D2, = {@) lh < 2r} .

(iii) we consider exp IL p;zr as a function of (p, z) . Then for any polynomial
P(z) wc obviously have

r.: erp!," -. - P( L )".'plr,'.,.tl , :1
All the concrete computaiions of thc aclion of the Todd operalor lhat we shall need

beiow are contained in the following assertion.

Lemm l. The Elasipal!-namial p(z) exp IL p;2, for lpi < 2n ad its lhe Tbdd
operutor, and he rcsuh of its action is gi'en bf

,.
ro / J ) p -,.',0f p,-,- P(!\ lra.s, .....s',.'pf q,' I

'ds,\ - I , o

Proot. wc apply the Todd operator, using lhe rcpresentation ofthe pol-vnomial wriF

Since l,z7plcxp!!1ttzr converges absolutely and uniformly on compact sets for
r, in ,r, . anal ils terms are holomorphic, this is also true for all its derivalives with
respecl lo p. so thal the required scrics also converges absolutcly and uniformly on

compacl sets, lhe operatot PIA lDp,) can be taken outsidc the summation sign, and
we obtain the answer written in thc lcmma. a function that is holomorphic in D2n

t
t ezi

:).-oin,.,rp, t

/,,0'.*oir,,,) .

\;/

ra f9)pr,r"'oi, , =S-.. !)r(\,,:/ :1 7 ,rzt \

:rp/a\
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in the variable p and holomorphic everlvhere wjth respec! 10 r . This pmves the
lemma.

4. The main theor€m and its origin. Wc shall no\\,slale the rnain result.

Riemann-Roch theorem for integrals and sums of quasipolynomials. In the aha-re no-
tation, Jbr d fixed stmple lattice decamposition t thete exists a neighbofiaad of the
otigin 0 e U c V' such lhdt fot anN qudsipolyna ial

-t: I P,(j.)e"p{j(r),

v)here 4j e U, j e J, the functian

ItlB ' alzt,... . "r))i Rx - c

admits the Todd operutat and,.far lct,...,cN) €Zr,

,o (!),,w.a,,,, z,v)) 
;.,1u

: Sr(f + a(cr . ... , .N)).

Rouglly speaking, the Todd opcralor lransfor s the integration of a quasipolyno-
mial (with sufrcienrl! small exponenls) ovcr a convex chain into irs laftice sum. For
the proofoflhe theorcn we need explicit formulas fot I y'.t"1'(z)) and Sr(l*o(:)),
$hchqilbeoblainedbelos.The\elor.nula.areal\oo'.ndcpcndenlrnteresl.such
formulas have been oblained previously by other melhods (see, for example, [3]1.
But the siriking connection bet$een integmtion and latlice sunrmation has not bccn
known unlil no\r.

Wc biefly explain the algebro-geomclric origin of our theorem (and its name at
the same lime). 11 is well known isee l4l and I5l) thal with each simple lanice
decomposition I of the space L' one can associale in a naluml way a smooth ioric
variety ,{r (1he elemcnls of the lattice A' corrcspond 10 onc-parameter subgrcups
of the torus (C\10])' , the elements of .^ to its charactcrs). For a virtual polytope
a . 9"(.A, t) we denole the corresponding inverlible sheaf b)'' .t(a) . We have lsee
I5l)

-l-y(\.-, I ldimH Y.c^,, 51..,.
i=0

where lL: ,/ - IR is a constant funclion. i.e.. the Euler chamctelistlc of the sheaf is
lhe "number of lattice poinls" of rhe coffesponding virtual polylopc. According to
the usual algebro-geomelric Riemann-Roch theorem [6], [7],

llx, .t(o)) = dcg(ch(.rGi)) . tdl* l), .

t.
i\ r-c c\ponenlral Chir-.-araclcro ,n"I'.-t 0,.,heal r . and .d i ii rhe
Todd class of the langenr sheal of the variety X .

The melhod of computing the number of lattice points of a polyhedron using a
Riemann-Roch theorem was proposed in [5]; in that paper this mclhod was used
to prove the polynomialir_v of the number of lattice points of the pol),hedron /?,4

relalive to n € Z+ and the coresponding special case ol Ehrhardt's duality theorem



(see Theorcms 1.1 and 1.2 of l); the duality theorem followed lrom the algebro-
geomelric Serre dualily theorem- Now, however. we can sa-\' considerably more. Lel
u: R) - lR be the volume function of the virtual polllope,

{relalive to the volume element defined by lhe laltice A a I'). Obviously, !(z) is

a pollnomial ol degree dimf . Let ./,, c Q[.,.r , ... . -r,\'] be the ideal consisting of
thepolynomials 1(rr ,....).N) suchihatp(AlAzt,...,AlOzN)u(.7i, . .,'.r)=0.
We have the following fact.

Theorem. The Cha\r ing .r(x) s Q = ei=o..1iitr) F q qfdlgebruic cycles an the rd
iety X madulo nunerical equiwlence, graded by udim?nsion oJ cycles, is isomaryhic
ds a graded dlgebrc to the ting @[\ , . .. , -r,v]/./,, .

One can also show thal the Chern class of the inverlible sheaf .q(a) , where a :
a(rr..-., b,v), is represenled in Qljrr . . . . , -{Nl/"I,, by the polynomial tlll r,J.,,
and ihe corrcsponding exponenlial Chern characlcr bl a truncated series for the
funclion exp(t,:rri).,), and finally, the Todd class ofthe tangent bundle .7r is
rep,e\enrco b\ d lru_caled \erie, ol lhe lunrlron

II
i=1

I erpt \,)'

tr(21, ... . :1,,) = /1(o( ,,. ... . ,ry: l,.l",r)a,

From ihis it is not hard 10 dcduce lhat
,|

s1(o) : r(x, 9!r)) = l{
i=1

1)(2t,....2N)1,, h,,
al0zl

I expl-A l0 zi)

i.e.. a special case (for / = tr) of our Riemann-Roch theorem (since N(-z) =
l1(a(zr,-..,zN)ll. A dclailed presentation of these arguments and facts will be
published elsewhere.

5. Plan of the proof of the Riemann'Roch theorem, The idea of thc proof of ihe
Riemann'Roch rheorem presented below (rhc remainder of the papcr is devoted to
it) is as follows. In ihe previous papcr l we showed (Proposirion 4.2) lhat a convcx
chain can be recovered from ils suppo functlon as a linear combination of charac-

terislic functions of cones. $,here as concs we can lake the lranslations of the dual
cones lo the cones of the decomposilion :. As :r , . . . . .z4 vary thc chain , *.r(.2)
itselfvaries i. a complicated way, bul thc molion of each cone of il js simply iis par-

allel transpoft. $'herc the lmnsport veclor depends linearly on the coordinates (-z) . If
ihe integral (sum) of a quasrpolynomial over a concrelc simple cone exisls (rhanks 1C)

the exponential). lhen for this separate cone and quasjpolynomial the Ricmann-Roch
theorem (i.c.. the connection between sum and integral) is siated and proved withoul
difficulty (this is done in ll2).

For this, in order to "glue" these facls inlo our Riemann-Roch theorem, we nccd

to know how to decompose a convex chain inlo a linear combinalion of cones so that
a quasipollnomial wilh given exponent { € I/" in the exponeniial can bc integrated
over each of them. This goal is achieved via the lcchnique of conic rcpresenlations
ofconvex chains. considered in lj3. The prololype ofour technique is the welL-known

construcdon of Varchenko and Gel'fand [8].
Fil1ally, combining the resulls of Sg2 and 3 in [4, we shall prove that 1he inlegral

(sum) of a quasipolynomial over suitablc cones extends lo a meromorphic-valued
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measure on the sel of conical chains. This allows us 1() work as if we could integrate
(sum) any quasipolynomial over any cone, without fcar ol di\'crgcnces. Hence it is
easy 10 compute rather explicil formulas for the integral and sum of a quasipoly-
nomial over a convex chain and (independently of these formulas) to prove the
Riemann-Roch theorem (!i5 ).

From thls superficial description it is already clear why we cannot rcstdct our
attenlion 10 sums and integrals of polynomials over convex chains-for a cone they
do not exist and an exponential is necessary to ensure convergence.

92. RTEMANN-RoCH TEEoREM FoR A srMpLE coNE

l. Universal exponential. Let fd:f'ac:HomR(f ,C) bc the complexificalion
of I" , and V- : Ir- a I + /d be the naiural embedding of rcal vcctor spaces, so

lharover R we-a!e l-: - / \ I J r"fi anda.cord'ngl) lor I. l; qeha\elhe
canonical decomposition {:Re(+y' 1Im{. Every lime whcn coordinale notalion
appears, it is understood that a coordinate system -rr , ... , -r,, € t/* is gil,en on I/.
relative ro which the discrete lattice ,{ c f is realized as thc slandard integer laitice
(we shall call such coordinate systems "inlegral coordinate systems"). and thai on f'
lhere is the dual coordinatc syslem (r , ... , C, e f, ((i.jrr) = dti , 

"'here 
lhe (, are

exlended naturally to I/i as conplex coordinates,

(,(Re / + \,/ lIm/)={,(Re/)+/ ltruml).
wc call the function

exp: tr/ x I/a' -C, exp: (r. O + expt(-r)

the unitersal exponentidl. Obviously, the universal exponeniial is analydc in (jr. {)
and, in particular, is holomorphic as a funciion of thc compler variables 6r .

2. Stat€ment of th€ theorem. We lix a pair (C, C') of dual simple laltice cones in
I/ and f' respectively. wilh verlices at the origin li1 is casl to show that if one of
the cones C or C* is simple laltice, so is the olher).

D€finition 1. A cone G c f is said to be rcduced rclatire to d corecroJ' ( e I/'\{0}
if il is pointed and the function ( c atlains its marimum at exacdy one poin1, the
verlex of thc cone.

For a given poinlcd conc G v/e denole by ft; the lobviously open) set of complcx
coveclo$ { such that G is rcduccd rclative to Re(. We also denote by G(-r) lhe
translation of the cone G by a vector -r € f . and we define the functions

it V t U( *C, ,: (r,6) *

r: I/! Lr.-C. .!: (_r.O-
/ , 

e\p.(r ),/r .

'I 
exp((-r)

(obviously the inlegrals and series converge since the cone is reduced). Furlher. let
P: I/ - C be a polynomial funclion- wc set

t
'P.'.1 1 c "c,p1 yal . ./.,.( - | r'.'pc1

/.r1.1 ri€^.(.(rr

for(€ti so lhal. in particular. i(l.-{,{) : i(r. {) andr{n.).,O=r()..<)- We
nole that the natural identification of t/d with rhe complcxilicd langenl space 4 f'ti
C al any covector ( allo$s us lo interpret the polynomial P as a linear diii'erential
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operator on fd wilh constant coelicients. More precisely, lel ().1 ,..., ).n) and
((,, . , (,) be a pair of dual inlegral coordinatcs on I/ and I/t C l/ct; then the
polynomial P().) = | , . r al xt coresponds to the linear difi-ercntial operator

"(#,
.r \ \- -./''

ac" t k^"'tt,
in the usual multi-index nolalion. We obviously have

/ ,) ,) \Pl .. -' lerp(f ,) P,.....,. erpC ,7.
\u!l ult /

i.e., as in li 1.3, we interpret thc quasipolynomial on I/ as a result ofapplying a linear
differential operator lo the universal exponential.

Let u1 . .. . , r, be the direction veciors of the edges of the cone C.

Proposition 1. (A) Fot dny xeV *e lunction r(-r. {): L1c - C extends ba mera-
morphic funltion on V; ,

< * rJ(-((rr))-' expi(,.).
*-l

t')itu pales in the set ol hyperpldnes (lull : 0, ,t : l , ... , n, and this lunction is
aho denoted il,x,t). Outside aJ this set of hyperplanet far dny palyomiat PtV -c
the|rnction ilP , x , <l e-rtends ta a holomorphic land nerot orphic o V;) lu ction
PIA l Att, ..., A l o<,,)i(.x. t),,hich we also denote br il.P, x, <).

(.8') For any x a L the.functio s(-r,O: tt.- C extends taat ero1lorphk
Jinction an V;

6* lllr exn((tlr)) I exr{(r),
t=r

with poles dlang the hNperplanes ((:'le| =2nr/ 1m, n eZ, 1<l{ a.n,whichwe
denote b) the sume symrol j(r . O . Outside of these hypetplanes lbr any polynomial
P: I. - C the.[unctian slP , .r ,1) extends to a halanarphic lmcranorphic an Ud)

Pld laA , . .. , a/ai,lr(-r , {) .

tthich we alsa denate b, s(P, -r, {).
Proo/. We consider onl)'. pan (A). Pan (B) is completcly analogous. Thc computa-
tions become completcly t vial in a suilable coordinale systcm. we constmct it,

With a pair ( C , C') ol dual simple laltice concs onc can associale in a n alural
way a pair of dual integral coordinate syslems (-ri), ({i) on t' and L' , unique up
to a permutation of the coordinate functions. Namely, iI is uniquely determined by
the conditions that the edges of C' have as direction veclors the vectors (6 : d;r) ,

i = 1,..., r, i.e.,lhe unit coordinate vectors (in other \,!ords, C,: L)i < V: y'"),
and the edges of C are the veclors (r.r = ,'j!), i: l,...,n (in olher words, the
coordinale functions xi e I/' are precisely the direclion vectors of the conc C't
there is a natural one-to-one correspondence between the edges oflhe cones C and
C' . as there is between the coordinales -rj and (t) . In lhe coordinates (-r). (O ,

the lattices A and A'arc Z', C : {(-yj)l-yt < 0}, and C' = {({r) {r >0} .Inthese
coordinates we have for { € l,t (Re6 € IntC')

rL,. ( | | expl < 1 J;.. d1, e,.pf (.r .!r" g 7
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and the integral converges uniformly on compact sets in LIc c I'd , whcreas the inte-
grand is hoiomoryhic with respect to (. The remaining asscnions arc now obvious,
which provcs the proposition.

In passing we point out an importani property of these meromorphic functions.
weset,+(-r,O:/().,{) and i+(P.r,{) : i(P, r, O; l-()r, i) and I (P,t,{)
are the integrals ol the universal exponenlial and quasipolynomial ovcr the cone
C , uanslated by the vector -r, spanned by the veclors rt ,rr2,..,,!,, so that
CUC is the developed cone with vertex space ihe line (r1). weser C0 equal lo the
simple lattice cone in (tr. ... , !,) spanned by u,, ... , u,, , and J+(-!, O = s(-r. {) ,

r+(P.r,O : r(P,r.,{); s (r.<) and sr(-r,O are meromorphic functions on
I/c' , exlending thc functions

r ()i.OillxLI. -C, r (ir,O= I "rp{(y),rea (!lrt\

so(jr,{):,{xari..-C, sn(-t,O: ! exp{(y),
r€Glri.^

and analogously for the quasipolynomiai we define r-(P,ir,O and r0(/',-t,{).
Proposition 2. lot an\ P.Y -(:

,+(P,)r.{)+t (P.-{,6)=0. rf(P.r,{)+r (P.r.{):ro(P,-r,O.
P/oot The verificatjon of these relalions for P = I is an elemenlary computation.
An applcation of Proposition I then completes the prool

Ler ()./) and (f) bc rhc coordinatc systcms naturally associated with ihe cones
C and a' . introduced in the proof of lhc proposition. we define rhe Todd opcrator
ofthe cone C as thc operator Td( : Td(a/a)./).

Theorem I (Riemann-Roch theolem fol a simple conc). Fot an!- polynomidl Plx)
and d y carecbr {: ({r,...,{,) € (A\{0})' such that lli < 21t li.e., o +
<l rr) < 2n) the .fr.tnttion t(P, -rr , . .. , r,, , <) admits the Tadd aperutar Tdc , and

fur (..xt,....,\,) e Z' we hate

Td./1P,.y1,..., t,, Ol",=., : r(P, -rr, ..., -r,, {),
where the seties rcalizing lhe'fadd operulot convryes with r5pett tu < n(btmlll on
compacl sels in lhe domdin 0+ (,1< 2n, i= l,....tt.
3. Proof of the Riemann-Roch theorem. Before we provc Theorem 1, which is not
complicated, we give an aryumetlt (apparenlir- analogous lo the wa-v in which Eulcr
and Maclaurin rvcrc lcd !o thcir formula) which. although noi a proof, is ncvcrtheless
rathcr lmnsparenl and explanatory or lhe inluitional level for why this surprising
trunsformalion of an inlegral to a sum lakes place. Let /: I/ - C bc a function,
l:: f - C its "indeilnlte integral" ovcr the cone C(r) (ihe coordinales (ir) , (i) are
as in thc slatement of the theorem): t(x) = /.,,,"f(r) dt,. Obviousir,

dd_... _1- {_r) : /(r).drj J.(.

We apply the Todd opcralor Td. 10 F(,r) ln the following way:

rd,.F(r) = JI (r -'( *)) (^ *)n'",.
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and the opemlor (1 exp(-A/a).,)) 1 is considered (formally!) as rhe sum of lhe in-
finile series tEoexp( i:r/Ajr'). But ihe operatot expkAlsz) can be inrerprcred
(Taylor's formula) as thc operaior of lrandation by a, \,!hence

To, / .y \- \ ,...,,^-k.1,
(r,. ,r.)€ul

i.e., exactly what \las nceded!
We pass to the flgorous proof of the Riemann-Roch iheorem. It is completely

elemcnlary and is obtained by a combination of the explicir formulas of proposition
I and thc arguments of 81.3. For the universal exponeniial we have

l'.. .r :c.... j(41 erp ) ,;,.;<,,-
t=1

II(1-cxe( (,))
exp t-rr{i,

from x'hich the theorem follolis The general case of arbitrary P lollows from
Lemma L l and ils proof. This compleiely proves the theorem.

!3. CoNrcAL REPRESENTATToNS oF coNvEx cHAtNs

l. Definition of the group of conical chains. Ler (r,  ) be an admissible pair [1]
(i.e., there enisls an rsomorphism f : lRn , relative to which A is either Z, or rF, .

where]?clRisasubfield).Alllhedcfinirionsoflil.laremeaningfulinthisgeneral
case, so lhat in fact thc general case will also be considered in rhis section. To the
delinilions and notalion of gt.l we add thc following new concepts and symbois.

(1)Theserofall A-cones will be denotcd b,v C(,{) . In panicular, rhe ser of all
concs sill be denoted by C(I') .

(2) The set of all 
^-cones 

C € al{,\) such rhar -x € vs(C) will be denolcd by
C{i., r) .

.J lhc.crol dll deleopcd A-cone.$ ll be dcnoled b) a \,
(1) We set C(,\, r): al(,{, ].)f C(A).
(.5.) \cahical chain (rcsp. a.ollical ,\,chain) ts a Z-valued lunclion d:I/-Z

with a represenlatron of the lorm o=t,-/'],lL...where #/<i, Cie C(t) (resp.
C(,{)), /?; € Z, and n. is the characlcristic lunction ofrhc ser ._ The addjrive
group of conical chains (rcsp. of 

^-chains) 
is denored by ZC(y ) (by ZCIL:)) .

o \co'ic- .ha)n . /t I re\p../r A1 rJ,-tl.7ed I l h". lhcrcpre-
sentation

n = !r,n61,
1al

'!i'here the C, e fllr'1 lresp. a (A)) are developed concs. The subgroup ofalevetoped
conrLal char'\ \oe_orcob) /a,l tcsp /t \t .

(7) A conical chain o < Zal.yJ is detelaped at a point x e I,- if ihere exisr a
developed chaln ll . ZCIV) and a neighborhood ti I r such rhal a L, : llu .

(8)Apoint r€ l' is called a reJ./e)r of a chain d € ZC(L_) if ll is not developed
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(9) For ,. €   we set

,.t)

za(.L, r): \a. ZCl.-^., rf) a is dcveloped at t] .

(10) A nonzero covector { € I/'\{0} is tn genenil posiian wilh a cone C €

C(I/, j,:)\a(I/, -r) if the hyperplane ds,, = {} e I'((}): ((ir)} does not,contain

edges of ihe cone C. A covector t is in general position wilh a cone C e C(V , x)
if lt z v. C,. A covecro ( rs in general oo.irron uilh a ch^n a z( V '\
rf rhere e{isr. a reprcsenlalron L.rt n,n, \uch lh"l ( 

' 
l ' and { rs rn

general pos;r,on $rlh ( / /. Finaiil.roranarbrlraDconrcal c^atn '-7CV\
ind a point -r e I/ we set {.i}- € ZC(I/, r.) lobeachain such thal {i1}.lu = o u in
some neighborhood U I r. (this condition delermines {o}' uniquely) A covector

{ is in ge..'neral posilion wiih a conical chain a e ZC(l/) if { is in general position

with {o}' for each point r € I/.
Remdlk For brevity we shall usually consider the case A = f All the arguments

anal asserlions automalically carry ovcr to the general case with the obvious changes

in the slatements and notalion.

Proposition 1. (A) The set of rerices of a canical chain is .fnite
(B) A chai that is dewk)ped at ewry poi is devloped.

Ptoof. P^rr (A) is obvjous. We prove (B). Let o = t,€/ nrXc, - Fix lhis representa-

tion. For xe i we sei 1(-,.) : {l € llvs(C,) = r.} Il l\x):6 for all d€ r'ihen
all the cones Cr are developed and there js nothing to pro\'c. Otherwise there exisls

afiniteset ofpoints -rr,...,-rr € f such thal llxk) + ct ' 1<k<(. Obviously,

I(x)nl(x1) = a for d I l. Since a is developed al cach poinl, we have' lor each

k. 1<k<(,
I r,l,,:L^u,to,,,

i€1{'rl ;€.N;

mkjeZ, Dkr ei(V.r). The chain on the right-hand side is dcveloped. Setting

1' : I\ Uf=, 1(rr) , we obrain

o:!n,16,+lL-rinu,,,
t=t /€,\i

r.e., . is a dereloped charn. a. requrred.

2. Chains that are reduced reletive to a covector.

Theorem 1. ael .r e ZC(V , x) be a conical chain, { € f'\{01 a cotector' and l9t

E a (l d be in generul positio/l. Then thele exists a unique chain T(o. <) t")ith the

tollahiag propt ttier
(i) I(o, {) :t,€/n'nc,, C, € c(l/, r)\c(r, -r)
(ii) {lc, < ((n) anr} H1.,nCi = {x} fot all i e I
In particular, -t is in genenl pal'itia wilh Ci, i € I
iit) a - I'\Lt, 4) € zC(.V , \) .

iBoth the statement and lhe ploafgi"en belov' carly aret without \ny chd ges ta lhe

case of L-chdins.)
Prcaf . Existence. Il is obviously sufrcienl to esiablish the existence of I(o , O for

a chain of ihe form a = trc . where C € C(t/. ).)\C(I/, ir) is a simple (pointed)

(
1Cr \.r {.-f"1, lc -r r,,

l"-I
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cone and ( is in general position *'ith ii. Let Rr . ... . Rr be the edges of the cone
C. Il (R,:{(jr) for all k : 1 , . . . , r( , rhen the re is nolhing io prove. Orherwise

suppose, for cxample. thal ( R, > ((r.) - Let Rr be the ra) with vert€x r opposile to
the ray Rt,andlet Cr be the convex hull ofthe rays Rl,Rt,...,Rr,and Ci lhe
convex hull ol R: , .. . , Xx . Obviousl-v trc, + trc nc, is thc chancteristic function

of the developed conc Cr u C whosc vcrtex space is the slraight line Rr u R1 - Bul
the number of edges of the cones Cr and Ci for which ( > €().J is less than rhis
number for al . Acting in this wa-v, in a finite (< dim ,/) number of steps we obtain
a chain of thc rcquired form.

{,niqueness. This is a less trivial fact. We shall givei transparent proof. It
obviously suffices to establish the following facl. Lel a € ZC\I/, x) be a dcveloped
chain in general position wilh the covector { € I"\{0}. Lei

12.': Iy <,/ +{(r) > {(r)}
be the half-spaces into which H(.r divides f . Then if all,i = 0, then also .! y,. =
0. We shall provc this asserlron.

\\c$rle a-I.67r[, $l.eerhe ( -(-,J .J a-e oe\eloped cone(.3nd the
hyperplane 14,, does not conlain their vertex spaces. Lel H+ = {l a v 5J):
{(r) + 1} be thc hyperplanes parallel to Ha., "above" and "below" respectively.

Le1 Llj bc a linear space of dimension dim/Ii.,and tr/lr +0 a vector such
rhat ((!) : L we fin an isomorphism of afrne spaces a. W ^ 4,,, (plo) : x,
and we set p+: l, - H+ . Q+. 1t) e ql.u) +1, . We consider conical chains on l'f:

a+: a\(al?+) e ZClw).

We know that a- = 0 . We shall sho$ lhat .:l = 0: lhis obviously completes the
prool of the theoren.

(Jn the cones C € C(tl/) we define an operation 6 in the following way: d(C)
is the translation of lhc cone C by lhe vecror \ 21)) , 0(C) : 21] + C, where
tr€vs(C) is any vcclor from the verlex space ofthe cone al.

Lemma l. l?r n, eZ and let Dt e CIW), i ( I, be such that Di.rmiXD,=0.
Then t,.t mtl.otD) = 0 .

Lad ^t'h, p,aaio, lhe treorery qboreue$role I.,"t. {,-i./.\
vs(a'i) I H:.r. we set ,i : aill.C,rt H+), so lhai the representation a+ =
!,er n,trr= hoids. h is noi hard 1() see thal ,a = d(Dl) , so that we will obtain

d = 0 in vie$ of Lemma l, as required.

PraaI of ],enma L we prove ii by decreasing induction on M : min{dimvs(-/)r)
i € Ij. Il M : dim tt . then aU the r, : W, ql.D) : Itl, and the lemma is

obvious. Suppose thc lenma has bccn proved,Iot M > 1x + 1 . We eslabljsh it for
M=m>0.

For an alline subspacc L c It oidimensron ff weset 1(a) :{l€ll=vs(r,)}.
Obviously, there cxists a finite se! lr, ..- , ar of /l1-dimensional afrne planes such

IhaI I(Lk) + a , I < k < (. Weseethal I(L,,)rIl.Lh) =a for d *r. We sel

I
1':1\u/(rr).

l=r

Now 1 is partitioncd into I(+l disjoint subsets 1(ar),..../(Lr),1'. We note
thar vs(d(D)) : vs(r) forany DeC(lt/). By hypolhcsis tiel 'nr!D, =0. From
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this it follows thai for any t, 1< ft< f, there exists a reprcsentarion ofthe form

L n1,nD,: L ^rix",,,rEtlLt) jE^L

where dimvs(Cftr) > m+ I and l,k cvs(crl). Thus

T

I-'1,, +I l m4x6,, = o
teI'

Bu1 it is not hard to check thal

L -,tu,r,., : \ mp xeic,,,,
i.\Lt) j€,\

since il ur € ar is an arbitrary vector, then {ot i a IIL*) and I € 
^rr 

we have
AU)i)=(. 2t)])+Dr and 0(c1r):( 2ui) + Gr| i.e., all lhe cones occurring in rhe
transfomation of the chajn "around" at , are shilred by the same vector. In view
of.lhis we have

r,(
L*'xrp,':L^,tr(,,) +t t m,n11,11,1=1m,na111,1+ f I -u,nrr,,*,r.

But the last chain is equal to zero by the inducrion hypothesis. The lemma is proved.

Corollary l. Ifa nonzero conical chdin .\ e ZCIV) has compact support, i.e., d a
Z(.V) , hen it has al leosl one tertei.

The proof is not hard and is left to thc reader.

Definition 2. (i) A chain d € ZC(r/, x) is rcduced relati|e to a carect ( € ft\{0}
if ( and o are in general position aod a = Z(a, O .

(tt) LeI o e ZC(V) bc a conical chain. A reduced rcprcs€ntatio, ol rhe chain a
relative 10 a covector te /t\{0} isasetofchains {ra e ZCI,V,x1) iel} such
lhat

(l) a,. is reduced relati\-e to ( for each i € 1. and
(2) o t,€ro,, is developed ever_\.ri'here (and thus is de\-eloped).

Proposition 2. (.A,) A reduced rcptese tation of the chain o e ZC(r') relutie to a
Eph n. a\ttat {-/\{0} er./ /. ahd i: unt,tu, .

(B) ,Suppose that the chain .] € 7,C(f ) hds compact support (a e Z(V)) and
{(t. e ZC(,V , xi) i e I} is its reduced reprcsentation relati)e to the coNectut e . fhen

" = Xiero',
Pr.ool. (A)isobviousinviewofTheoreml.Weesrablish(B).Ilisnothardtocheckl
for covectors 4 € I/' sufficienlly close to {, {a,, t € /} will also be n reduced
representation of .] relalive to 4. We consider the chain p = a t,.i a- . By the
abore -emark we ma) as.ume lhat lhi\ (ha n t\ tn general po,irion qrth rhe torector
(. On the other hand, i1 is developcd. Finall_\', since the suppon of .r is compact
and the charns .rr, arc rcduced. we havc fl{,€r nn>a} = 0 for C >> 0. Assume
lhaL I 0. Ler . - eup c\1 lrtTl - 0r dnd I Supp/ 1- /ir- =.1
Then {l}. is a dcveloped chain in general posiiion $ith { and cqual to zero over
the hyperplane l((:l :,i]. According 1{) Theorcm l, {P}.=0,i.e.. l=0 in some
nciglborhood of ir . This contradiction proves the proposition.

Delinition 3. A chain a € ZCI,V) is said to be reduced relatit'e to a covector C eI/'\{0} if d: Iiero,,, where {o.,lt € 1} is rhe reduced representation ofrhe
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chain .r relative to <. The chain o is said to be poirl€d if it is reduced relative to

3, C tedon lor the compactness of s conical chain.

Definition 4. Suppose thal lhe chain d a zC(,I/ , x) is reduccd rclative to a covector
i € t/'\{0} . A ray ,R rilh vertex r, looking strictlv "down" from the hyperplane
H< 

, , , is called an edge of the chain a iffor the hyperplane H ={z <lz)=iJ) 1}
the point Rtlfl, is a venex of the chajn a\ €Z(:UI ).
Proposition 3 (Crircrion for compact support). Let ei e Z(:(y,xi), i € I, be

conical chains, retluced relalite la th? cov€clor ( € f'\{0} . I-ar an alfine line L c V ,

I (L) = Ii € I lxi € L and ei hds an edge Rt,L ( L\ .

The chain a=Li.rdr has compact suppart (i.e-, is a contex chain) ifand only if,for
all alfi e lines L c v such that I(L) + s, the falla\Ning conditian halds. the chain

Lj.t.L), ',di€ZC(v,0) lwhete thdl,x)=olx h)) has no edges lying on the llne
L shifted tu 0.

The proof is not hard and is left to the readcr.

4. To conclude lhis section $,e consider the question of the explicit rccovery of a

convex chain w lo Za(n from irs suppon function-in the lorm in which we

need this to complete ihe proof of lhe Ricmann-Roch theorem. Lct f = {Ci , € 1}
be a simple laltice decomposition of I/' (see $1.1 for the teminology and notation).
\\c\er / / /.$hereI-/ rr drr( -randr./rran_C' n.kl
Ci€C(,^.) betheconcduatlo C,a, t€1.0€vs(Ci). Wc nole that lhe condition
that Cr is pointed or deleloped is exaclly cquivalent to the condition i € I" ot i < I
respectivel'.

Ler f €: Z(V.t) be a convcx chainr then for any I € ./ there exlsts a zerc'
dimensional chain [J, e ZIf] such that, under the idenlification V =V*, P,1..
reallzes the suppofl function oflhe chain , on al'and degp=degp, (see[1],[4).
If i e 1- , lhcn the chain p, ls uniquely delermined, where ,i € ZI,^l for all / € 1'
if and only if rhe chain I is integral, P e Z(.4,, t) .

We write the translalion of the conc C € C(I') on thc zcro-dimensional chain

t=LFtmjlrr) (\,r'hcrc ltrl for 1r € I/ denoles the gcnerator of the group algebra

corresponding to thjs vector) in lerms of chains:

I ninct',,r = | *nc: X( +I

ln lll (Proposition .1.2) il was proved, in parlicular, that

B-Lt t' /i I

iaI.

(a de\clopcd co_ic.rl .h.ri_. I- panrcul.r. mocu o ,zt I A ,'-. ...:r, i.
represented b,v lhe conical chain

t(.tJt. allzt.... , zr)) * xc .

iet.

where lhe parentheses enclosc zero'di mensional chains l, * o, ( -z r , . . . , z N) € ZIt'l .

We explain what o,(.zr , ... , :r') represents.
ln the notation of ljl.l. lr , ... , /,r e A' are inlegral direction vcclors ofthe edges

oflhe decomDosilion :. Let /i ,....1,, bc the direction veclors ofthe edgcs of
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the cone C,* . and the corresponding coordinaies on the space ofvirlual
polylope /*(f .t). The covectors 1i,,...,/r, will bc considered as an integral
coordinate syslem on r. No* we havc Lr,(.21,....2N) = tl.',(:r , ... , 2N)l , where
uilz j, ... , zN) € I/ is a vector such that la\t)i): zi,. We note thal 1ni(zt,.-., zN)
really depends only on the variables

$4. SuMs AND TNTEGRALS oF euAsrr,rrl-yNOMrALS ovER coNrcAL cHArNs

l. Let C € C(f) be a pointcd cone with venex vs(C) € f and complex covec,
lor { € I/a- such thai C is reduced relative io Re(. Then lhe iniegral and lattice
sum ofthe universal exponential over the cone C are defined: J. exp((.r)/-r and
t.Ec.^ exp{(r). we have obtained two functions of two argumlnts: thc cone C
and lhe covector ( € 

';: 
. In the second case (the sum) we shall only consider latlice

cones C € C(A). The studv of both funclions is completcly analogous. and the
proofs are repealed \!ord for word with the sole difference that for the sums all the
work is carried out in the class of intcgral chains- We shall give the deuiled presen-
tation for integrals and only the slalements lor sums. The required changes in ihe
argumcnts for sums reduce to obvious changes in conccpls and notalion (Z CiV) by
ZCIA), the le!1er 1 for the inlegral bv the letter S lor sums, etc-)- We shall de-
nole by "( lV;) and l(r/i) lhe spaces olmeromorphic and holomoryhic funcrions.
respeclively, on fd = Cr .

Proposition l. lA) Th? integrdl afthe unircrsal extanential atet rcL]u&d la it? cones
exlends to a meronalphic--rallkd nledsure on the grcup o,f conicdl chdins. l[ore pre-
cisely, lherc exisls a unique honamorphistn of ahelian groups I : Z C (V ) - .,{ (V; )

'th, ',ttup.Jth, lrn.tloa l-..-/( l .an.t,r,iptp\ c.v,tot ; t: r'1tt-b-
denoted hy I(.', E) to shotten the notdtian) s ch thut

(i) if the pointed co e C is reduced rclalire to P.e(, then

/Lnc, <, - / erpcr, d'.
The tnapping I Nssesses fie follo\ting lropefties.
(ii ) 1(rr,o,{):exp{(l)t(d,4) fo h.v.dnd
liii) I is identically zera on dercloped chains.
I.B) The ld ice sumof the uniwsdl expanential owr reduced ldltice ones extends k)

a meromorphic'ralued tneasure on he grcup afintegrdl @nicalchains. Marc prccisel\
there exists a unique hamamorphisn of abelian grollps S: ZC(L) * .A(r;) Qhe
Mlue af the function SlLi), d . 7-a(A), on d coyectot 4 e U6 )r,ill be denoted bt
S(o , t)) such that

li.) ifthe painted lattice cane C is reduced rcldtirc to Frc€, then

s(nc,{) - t exp(().).
r€C.I

thc ,n0pp'ttg r p.-, ..e, rl, follottng Tupette;
(ii) S(r7,o.{) :exp{(h)SG',1) for heA,and
(.t1) S is idehticallf zera an deNeloped integral chains.

PIoo/. We shall prove parl (A). The proof of (B) is exacll_v lhe same.

Let a € ZC{I/) be a conical chain. reduced relative to the covcclor (0 € ft\{0} .

Then lor (€ I/d such that Re( is close ro {lr,theintegral Jr il(jr) exp ((,r.) di con-
verges absolutely and uniformlir on compact subsels, defining a holomorphic function

t' I c- / ,,'.''pC. ar.-j



A RIEMANN ROCH THEOREM 305

whcre L1., c l.c' is lhc open subset consisting of the covectors ( such thar o is
reduced relative 1(r Re{. It is clear thal o has a represenlation ofthe form d:
t, -/ ,ilL c, , where the Ci arc simple cones, reduced relative to all rhe covcclon Re ( ,

6 e Ll,. Hence,

/ " ' erp< ',a' 5- " / e*o< ',d',. :i r.

lor { € ai" . Bu1 on the righthand side here. as shown in lj2. we have a holomorphic
lunclion on LI,,, erlended to a mer-omorphic function on l/d . Thus, wc havc proved
that for anl, pointed chain thc holomorphic function

extends to a meromorphic funclion on I/d, which we denote by 1(a). We shall
sho\r that thc associalion (lo pointed chains a) o F 1(a) e ./(I/d) exlends in a
unique way to a homomorphism of abelian groups I I ZC(V) * ,6lvi) and ftaI
1 possesses the properl_v ( ii i ). Wc note that because of the existence of the reduced
representation, / is unlquely delermincd by properlies (i) and (iii).

We note that this mapp ing on po inted chains d * 1 (.r ) possesses a "local linearity"
propeny: if a, . i € J , is a finite se1 ofchains such thal all thc oi are simullaneously
reduced relative to the covector {0. then for any 

'?i 
€ Z

The proposilion will be proved if we eslabllsh that "local linearity" exlends to "global
lincarily".

Lemma l, l-el a,, 1. -t, be a linite set of pointed thains strh that the chai tG, Lt,

n de,eloped. Then

I t t."'1 = o e ,t g;1 .

iEt

Lemjin^ 2. Let C, e C(.1',r), i e 2, be pointed co es \,')ith rertex x e V. If
L,e-zm,\c,=0 Jbt nie 7,,th?n L,.rtnill.nc,)=Ae ,e(.y;).

Lemma 3. ler C € a(lr. ).) be a tlercloped ca e. Then there exi pointed canes
Dj€Cl.r:. x), j€/, such that Lte,j.rjtrDj=trc, rt eL, and L j...1, ttI(tr D,) = 0.

Detiwtion of the pnpositian frotn Lemma 1. Ler deZC(.1,) be an arbiirary conical
chain. and {o, e ZCII/ , xi) I € 1} its reduced rcpresenlalion relative to some
common covector. We set ./(o) = L.-r 1(",) € .Z(.V;) . Le'r,li.. 1 guarantees that
this definition does not depend on the choice of the covector. Prope(-\' (i) holds by
construction. (iii) holds by Lemma l, and (ii) is obvious. This proves the proposition.

Derivlion of Lefimd I fram Lemm&\ 2 and 3. Obviousl_v it suflices to prove Lemma
I for the case when all lhe chains have a common ve(ex -r e I/ and do noi have
other vcrlices. Wc shall assume this and undersiand belos,tha! the veftex spaces of
all the cones occurring in the proof conlain the poin! -r -

Each chain o, can be representcd in the form of a linear combination of char-
acterjstic functions of pointed cones Cii . j e 4, o, = t/€r..p,jllcrr , such thal
I(ai) = l6v,ttel\nc,,). Fufthermore, by hypolhesis lier ", : D.i qrnr, with
Dk € a:(.v, x). we apply Lemma 31{) each of the developed cones ,r. t €.ra: let

Ll, r{ * / n1-r)exp((-r)dx

'1r,")=t,/(.,).\;/"*
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Gr, , a € lr , be poinled and such that

L +a\c\": xDt and t 't,I(ncL,) = 0
deAr

Now i! suffces !o verify that

! !r,,r(rc,) |
ial j.4 k€K

t (4rlr")/(n6,,) = o

I DP,rl., I I (qr't,)lc-. =o
i.,I jev; kEK a<.11

by conslnrction, the required equalit-! is a direct consequence of Lemma 2.

Praof of Lemma 2.. It is not hard to conslruct a set of pointed cones -ltl € C(l/. ).) ,

j € -t , such that
(i) In1,4nIntFr,:tz tl a+b.^nd
(ii) for each I € -Z ficre is a distinguished subset J(l) c.t and there exists a

represenladon tr 1, :1,.51,1m11\p, where -4 C Ci lot i e .-tli) .

By the "local iinearity" we now have I(n(,):>arettt)nijI(.nF,),sothal

L mJlc) = \ | lnn,t)rlt,-,).

On the other hand, by the hypothesis of lhe lemma

| | ('";"ra)ln; =o
ieJ )E.tl4

It is no1 hard to verify ihat thanks io property (i) of our set of cones for any flxed
j€-t(l) we have l-jeJ, ie.t\,tm' ;j:0 and lhus Lemma 2 has been proved

Lemma 3 is dcrivcd without dinculty from Proposilion 2.2- we leave lhe delailed
argumenls to the rcader. This compleles the proof of Proposilion 1.

Now let .r € Z(f) be a conical chain with compacl support. Thcn the meromor-
phrc function 1(.!, i) is holomorphic everFvhele on I/c' and

tt 4.c 
ft ^ I e\Pi "d'

Moreover, I(d) € l(rd) il and only if .l € Z(t'). In particular, 11a,0) is the
"volume" of thc chain a.

2. Explicit formulas for th€ integrals and sums of exponentials. The tcchnique de-
vcloped above allows us to write down rather enplicit formulas for the inlegral and
sum of the exponential over a corvcx chain by means of irs suppott function. Let
f ={C," r€1} be a simple latlice dccomposition. Inthe notalion of lll.1 and 3.4,

roracharn y'.lv.L $( hare I f ,-f .n. /; l'..olha

I(.lt ,4J : L IltJt - \., ,4) .

iaI.

we define the valuc ol lhe enponenlial on a zero-djmensional chain l : I,rj[lr]l
by linearity: exp((t) = tnr expi(r;,). Now 1(/, O = tr€r. exp{(1,)1(1c,, {),
where the "coellicienls" 1(1.,,{) depend only on thc decomposition t, but nol
on fhe chain P. ZlV.t). Analogousl-v, for an intcgral chaln I e Z(4, l) we



fJ(r exp((u,r))

(in lhc sccond case I € Z(,\. :)) . These fomulas are irue for a common covector
C € I/d . wc know, however. thal for a convex chain / *e functions 1(r, {) and
S(1, O are globally holomorphic on I/d . Thercfore. in order to obrain the vatue of
1(1. {0) and S(1, (0) lor an arbitrary covecior {0 . we can prcceed as follows. Ler
1€ C be a complex parameier, and 4 € I/"* a common covector. We carry out the
(on\trucl or lo" rhe i-lcgral: lor lLe.unt thcr are enr'rel1 analogous. \\e constder

- - crp((f6 r11 ./r i.i.t tti. L _"

'€l' f[((o(,,,r) + rr(r,;r))
l=l

as a function of the palameter 1. As I - 0 the function remains bounded (a
removable singularity). Thcrefore in each lcrm ofthe above sum we must separate
the term of degree zero in I and sum all such lerms over i € 1". We write the
resuhing cxpressions in a morc crpanded form. Suppose (o vanrshes on the veclors
uip. k e K1, and suppose {o(ri{) l0 if t € ]('i. We set r/i =#/(i. Wc wrire an
explicil representation for the zero-dimensional charn f, : L,et m.Ib.l. h," e V .

\ou. arring arco-di-g to lhe.chene de.cribed dbo!e, $e hnd lhJl / l, {0 ( a,urr
L.r. L.], whose (i, d)th tcrm appears as
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have Sll,():X,e/.exp{(/;)S{nc,,6). Bu1 if tij,...,ri €,\ arc the direction
vectors of the edges of the conc C, . i € 1' , lhen. accordillg ro the results of ji2.

( l)'r(1,.a): and S(1.,. {) :
ll(t exr{(u,r))

((r,,) .1(tj,,,)

so that we eventualiy havc

tsi-)-l)lt''l;l " 
and s,c-t

", C,D. 1, ,

exp ((lr)

nr,, exp (6(0,,)(-r)' xtl.
ll 'r(r;) ll {o(t,,r )

where the squarc brackets contain lhe coefrcrenl of t,', in ihe sedes

; (i' "''#)
This representation depends on ihe choicc of the common col'ectot 4 . An analogous
rcprcscnulior can be oblaincd lor S(f , (o) . The above ibrmulas arc the source of
many more special lormulas and some assc ions. We note some ofthem.

Corollary l. 11 ! : llit. ..jv) dcpenLls line U a arbitldn coordinates O)),
i.e.,allthe bi., i.I-, a.,l,,dependlinearlron(f),rhen,fotlxed4,Ilply),t)
is a quasipall omidl al the lbtm

I e"ptt,(r)lQ,(r' , . . ' -v.) ,

lf 1r'rr,,rl
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tNhere the y dly ) ale linear -functions antl I he Qoly) arc polynomials of degree at most
(r - min{dim CJ i€1, {€Ci}).

ll P e 9"(/,2) is avirtual polylope, then lr=[bi], bi € I/, i € /', so thai
the formulas are simpllfied: the sum over lhe a € ,li vanishes. If (0 = 0, then rhe
formuia can be written explicilly.

V; and B e9'(.V.t)
( t)'l(D;)'

Co lhry 2. Far a camtton covector 4 e

r (.13 ,0) = t nl1(.u^).4(r,,)

is the "-rolume" of he ,/irlual palltope P .

The Iasl loroula has a pairicularly transparenl form for a simple complex polytope
(in the usual sense), since in this case the Di . i € 1' , are precisely its vertices, and

lhe urk are the direction veclols of edges of cones for the 1'c ices,

3.. Integrals and sums of qursipolynomials. Le1 ().1,...,).,) and (<r,...,{,) be

a pair of dual integral coordinates on f and I/' , and consider the ({) as complex
coordinates on I/d . As in !2, we interprel the quasipolynomial

P()r)exp<(r.), P\x): l a1xt, at€L,
I<K

as the result of applying the lincar differential operalor P(a/dO to lhe universal
exponential.

Lel d e ZC(V,X) be a reduced conical chain relative to the covector {o €
,/'\{0}. As above we set U" = {{ € fd o is rcduced relaiive to Re(} . For ( € Ll,
we havc I(n, {) =./"o(r)exp<(r)dx, where the iniegral converges uniformly with
respect 10 { on each compact subset in U" . Therefore. on U" $'e have

/ .1 ,l \ IPl:. .... illr^.{ /.1rP. ....r. erpi/r dr.
\dq oan /

What \le have said carries ovcr in an obvious way io laltice sums, Now from Propo-
sition l, using the uniquencss lhcorem for analytic funclions, we obtain

Proposition 2. (A) aer P(r) be a paly omidl an V with bmplex caelllcient\ the
lntegral af lhe quasipalfnomial P(x)exp<lx) v,ilh respect to contcal chains rcduced
rclatiw to !.ei exten(]s la a meromctrphictahted measurc on the grcup af conical
thains. Mare precisel],, there exists a unique homomaryhism afabelidn groups (lineat
\rith respect to P) I(P). ZC(v) - z\lG) lthe image ofthe chain d u/td its ralue
on a carectar E are denoted by I(P.a) antl I(P,d,4) rcspectirel!) s chthalifthe
painted cone C is reduced rehti'e ta R.e1, hen

I
l1P.n .11 / PlJ e\ptt\lJ'.

J.
The mapping I(P) is identicallJ, zL\o an derclaped chains. Mareorcr, l(P , o,1) :
P(A IAAI@. <), and if a . Z(V) is a chatnwith campdtt suppo , then I(.P,oJe
OIV;) is a global holomarphic function and

t P. ,.1 - / ,r' P ',cxpi., d'.'tt
I pdrlicular, IlP.a,a) is the"integrul of lhe palyot idl P otet lhe chain o".
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(B) The laftice sum of the qudsipob)no itll Pl,x) expC(,x) with respect to inte
grul conical chains reduced lelalite to Pie{ exlends b a meromatphic-ralued mea
sure on the gruup of inlegrcl conical chains. therc exists a unique hamomorphism
S\P):ZCIL) *.&lV() of abelian groups, linear with rcspect tu P (the image af
the chdin d anrl its value an a to'ector < are denoted by S(P , d) and S(.P , d,1)
rcspeclirely), such that if the pointed cone C € C\L) is rcduced relatite to Re<, then

.t(P, lc, {) = t P(')exp((r).
r€C.,\

7'he mdpping SIP) ls idenlicatly zera on deteloped chains. Mareovet, S\P , d, €J =
P(d/at)S(o, () , dnd iI a e Z(,L) is a cha[n with compact support, then S(P . d) .
e(V6) is d holomoryhic funcion arul

,t(P, o, {) = t o(r)P(x) exp <{r.) .

r€A

In particular, S(.P,d.0) is the"ldiice sum ofthe polynomidl P oret lhe chain d".

Explicit fomulas for the integrals and sums of quasipolynomials over convex
chains, analogous to the formulas of l]4.2, are obtained from the lalter by apply-
ing thc ditrerential opeftIor P@ l0€) and, as a consequence, lend thcmselves badly
10 development, We note only some features of the computations. For a chain
l] e Z(V ,L) in the notation of !,1.2 we have

(1)',1(P, p, c) =L P(St.-06{f,)6-'t,,,'l . <'t,.lr)

(and correspondingly for sums).

Corouary 3. If f: llly,.-.,yM) depends linearly on the coordinates lt), then,fot
fLxed <,I(P.8o),1) ls a qudstpalynomial of lhe fotm

I e*PIi'(r)lQ"(Y' ' ' -vw)'

\there the h0) are linear functions and the Q,0) arc palynomiak of degrce not

degP+ (, - min{dimCil i € 1, { € Ci}).

Ihe d-alogou' resull rs also true for lattice <ums.

Corollary 4. Let Plx) b?a homage eous polynomial ofdegtee p,dnd f .g"lv,L)
a vitual palytope. In lh? nolalLa af\1.2,

i P r o, \- 
-P(r 

\ 4h"
' .1. " . p\t \d4t ,l "t) ...,1 , . 14 ,

' herc 1 . rt ir^ a camman carectar. In particulat, iJ f Q.e., aLl the b,, i e I')
depends l1nea , an th? coordinates ly), fuen the integral of the pollnamial P orer
the irtual polytupe f depewls polynomially on ly) of degree < n + p .

We note thal we have rc-prcvcd a special case of Proposition 2.5 ol [1] lor the
finitely additive measure \yhich is lhe inlegral ola polynomial over a virtual polytope-
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55. PRooF oF THE RTEMANN-RoCH THEoREM

L We shall use the notation of thc prcceding secrions withour special reference. As
was shown in Ii3.4, modulo Za(.y) Ihe chain P * a(.zt . .. .. zN) has the rcpresen-
lation

Llt ,.t-.....r\-,1.
i€I,

where the vector urr(:r,...,:N) € f is defined by rhe reiarions /,^lu,) : zi
k:1,.-., n:the /ir arc the direction vectors oflhe edges oflhe cone a'r-. As was
shown in $4, for coveclors { € t:r' lying outside the h-vperplancs l.t r,t):2tt./ |m,
tfi € Z, we have the representations

slP.t"a(.4.1)= expi(/, + Itr,l)

fli ,(r e*n({r,*))'
thelast of these for P, a € ZIL,L). Weknowthatthe ith term in each of ihese
sums depends only on On the other hand, developing !: L,.a m,.[bi,]
dnd apphrng lhc re'-ll. ol 92. we obldin lhar lor ,mcll ( for each 1 - / lhe /lh
term ofthe above rcprcsentation fot IU',13 +a(z),t) admits rhe Todd operator
"ld.(,Al0zt,...., a/azi,,), and rhe result ofthis proccdure for (-?,,,..-,zh)eZn is
likewise the ith tem ol lhe represenlation for S(P, B+d(z),1). Usinsthe prop-
erties of the Todd mapping (11.3), we will oblain rhe Riemann-Roch theorem for
compler coveclors { outside somc scl of hyperplanes, which are suliciently small in
modulus. We fomulate \.!hat we have prcved as follows: rhere exists a small neigh-
borhood of zero U c I/d . not intcnecling the afrne hyperplanes liq *) = 27t \/ -lm .
lx € Z\{0}, such thai if

,y:un U {({.r,k) =o},
i€r', l!t<n

rhen for { € LI\,f and an arbitrary polynomial P(x) for / = rg1p61-.1 th" 1un"-
tion 4(p +a(zr...., rN)):Rx - C admirs the Todd opcraror Td(iJlrr), and
the result for integer sels (r) is the lunction St(f*a(tt,...,.zx)1. According to
Lemma L l. lhe .ener reali/ing thi xcr'o- ol lhe lodd oper:lo- con\ergcs un.rorml)
on compact sels in LI\.f. Furthcmtore, ilj lclrrs

,t I''' t' B (-D

arc holomatphic.fu dians of ( on U (dnd ev on all of I/,:).
Irdeed, reducing the sum of fractions

\- erpfrl. l.' : ... -.' 
1,+ ;,, (,

to a common denominator, we obtain a funclion of the form Ql.t. <)/L(1), 'NhercZ({) is a product ollincar forms in ( wilh conslant cocmcienrs, and the numerator
has the series expansion

A(,'(): t Lq,e,, ., z'-)1' :LOl',1),
p=0 t =! t,=0

where deg4/ < I + M , M is some constanl, and the coefficienis of the series for

* It ,l)
(t..,,

p,

J!t (P, ti + a(z). t) =,',," (*),
and

r-, /d \3. roc t
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zr{1 have order (c/(I + J))t+t as 1l+lJ -e. Since /(l*d(:),{) is globally
holomorphic \,!ith respect io ( for any (zl. wc obviously have L(4)lQpk, C) fo(
any p.Z+. Hence /(l:a(r).{) expands in a power series in (2, {) with infinite
radius of convergence. and hence the same is true for 1(P. / * .r(z) . i) , and rve
obtain our claim.

The sum "t_f(l * a(-z)) of the Todd series is also holomomhic as a function of {
for fixed (:r , . - , :N) - From thls. by clemcnlary mcthods of complex analysis it is
easy lo deduce ihat llll * o(.4) admits Td(a/az) everywhcrc on Lr f {, and the
corresponding series converges uniformly on compact subsels of U (wi1h respect to
O, and its sum for (z\,...,2N)ez\ is Sp(p*o(:)).

Tl'i. complctc. tqc proof of I he R remann-Ro, h rheorer .

2. Concluding remarks. Some lhcmes that could naturally have been included rc-
main beyond lhe scope ofthis papcr. These iflclude the algebro-geometric lopic, only
menlioned in $ l, of describing relations in thc group of latlicc polylopes (see 92 of
lll), and thc more dclailed sludy ol the jntegrals and lattice sums of pol,vnomials orer
virtual pol]1opes. Moreover, similar io the wa-v a holomorphic funclion can bc cx-
panded i n a po\rer series around an!'. point at lvhich il is dcll ned, thc serics Td(a / A : J

can be written ai any point of holomorphv of the Todd mapprng. Thrs allows us to
"analylically continue" the Todd operator so that the Rremann-Roch theorem will be
rue nol for small ( € f.' but for { € I;\I, where I is the union of a countable
sel of conpler hr'perplanes. 0 + ,Y. These questions will be considered elsewhere.
Here we louch upon another rheme, linking this paper with its predecessor l1l.

Thc basic nolif of our arguments in this paper is the "decomposition" ofconcrete
measures (integrals and lattice sums of quasipolynonials) ovcr concs for thc vcflices
of chains. The following queslion ariscsr can onc do thjs lor an arbilrary jinitely
additive measure p that is pol]'nomial relatl\,€ to a translalion? The ans*'er js "yes"
in some sense. We outline the main ideas. Le1 : = {Cr I € I} be a partition of
the space f'. Then lhere exisis a covector i € I/'\{0} relative to which all the
chains o € Z(V Z) ate reduced. Therelbre for a measure of a chain ^ to be
expandcd in thc sum of the measures of the chains {o}r over all the verlices -y oI
the chain o. il is suffcienl to dennc a suilablc mcasurc on concs lhal arc reduced
rcla1ive to {. Let ,r/.,0 be a hyperplane dcfrncd b) an equation {(li) = 0. Then
for a cone a that is reduced relalive 10 (. *hose vertex lies above H<,0, we set

A(.C) : q(.C n {x <(r) > 0} . ft is not hard to 1'erit-v that p will be polynomial
relarive to translaiions of C by a vector , such thal t(h + <(vs(C)) > 0. HeDce,

I can be extended in a unique wa-v. wrth polynomiality being preseNed, to all cones
ollhe form h+C. ha l.'. Thrs mcasure on reduced cones relative to ( can be
un iquely extend ed ro the se1 of conical chai n s in general posil ion * i1h { , by req uiring
it to vanish on devcloped chains. The resulting measure is poltnomial rclalive to
tmnslalions, and solves thc problcm posed above for chains in general positron wilh
the covector ( . This series of problcms sill bc considered in more detail elsewhere.
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