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Real rat ional  functions f(x)  possess  the following finiteness property:  every equation f(x)  = a has only 
finitely many solutions.  We show that an analogous proper ty  is possessed  by all real  Liouville functions. 

Let U be a finite or infinite interval on the rea l  line R 1. We introduce an auxiliary definition. We say that 
f is a ~U-funct ion if: 1) f is defined and analytic in the region U \ O(f) where O(f) is a finite set; 2) f 
has a finite number  of d i sc re te  ze ros  in U \ O(f) .  On each interval of analyticity, a function ei ther  has d i s -  
c re te  zeros  or  else is identically zero .  Therefore ,  the set  of zeros  of every  OU-function consis ts  of finitely 
many points and a finite number  of intervals .  The res t r ic t ion  of a OU-function to an interval  J C U is a OJ -  
function. Let the interval U be a union of finitely many intervals  Ji and a finite number  of points. If the r e -  
s t r ic t ion  of a function f to every  Ji is a OJi-fanction,  then f is a OU-function. A product of ¢U-funct ions is 
a OU-function. If a OU- func t i on f  has no zero  intervals ,  then f - 1  is defined and is a OU-function. By an in- 
tegra l  and exponential integral  of a function f ,  we mean any solutions of the equations y, = f and yT = f y  
analytic at the points of analyticity of f .  Fo r  every  OU-function an integral  and exponential integral  exist  but 
are  not uniquely defined - on every  interval of analyticity of f ,  a rb i t r a ry  constants can be added to the inte-  
gral ,  and the exponential integral  can be multiplied by a rb i t r a ry  constant.  An integral and exponential integral  
of a OU-function are OU-functions.  Indeed, by Rollers theorem the number  of d iscre te  zeros  of an integral  of 
f on each interval  where f is analytic is at most  one g r ea t e r  than the number  of d iscre te  zeros  of f on the 
same interval .  An exponential integral  has no d iscre te  zeros  on intervals  where f is analytic. Sums of ¢ U -  
functions and the derivat ive of a OU-function may fail to be OU-functions.  

Definition. A differential  ring A consist ing of functions in a domain U with the usual differentiation is 
said to have the finiteness proper ty  or be a OU-r ing if A consis ts  only of OU-functions.  

Rings of polynomials and rational functions give examples of ORi- r ings .  The res t r ic t ions  of functions 
in a ~U- r ing  A to a sma l l e r  interval  J C U fo rm a ~ J - r i n g .  We denote this ring by A(J). Let y be a function. 
The extension A[y] of the differential  r ing A by the element y is the smal les t  differential  ring containing A 
and y. The ring A[F] consis ts  of polynomials with coefficients in A in the function y and all its der ivat ives .  

THEOREM. Let the ring A have the finiteness proper ty .  In the following cases  the extension A[y] also 
has the finiteness property:  I) y is invertible over A, i.e., y = f - i ,  where f E A; II) y is an integral  over  A, 
i .e. ,  yV = f ,  where f E A; III) y is an exponential integral over  A, i.e., y '  = f y ,  where T E A. 

Proof .  I) Let y = f - i ,  where f E A. The ring A[y] is formed by elements of type pyn where pEA. The 
function pyn is a product of ~U-funct ions and hence is a ~U-funct ion.  II) Let yt = f where f E A .  The ring 
A[F] consis ts  of all polynomials P in y with coefficients in A. Assume by induction that every  polynomial of 
degree <k in every  integral  of y over every CV-r ing  B is a CV-function. Consider  a polynomial P = f k y  k +... + 
f0  of degree k where the f i  E B. Let J1 . . . . .  Jl be the intervals  on w h i c h f k  is analytic and identically equal to 
zero ,  and let I 1, .... I m be the remaining intervals  on which f k  is analytic. The res t r i c t ion  of the function P 
to the interval  gi is a polynomial of degree <k of an integral  over  the CJ i - r ing  B(Ji). By induction, the r e s t r i c -  
tion of P is a CJi-funct ion.  We now r e s t r i c t  P to the interval  I i and consider  it as a polynomial over the ring 
B(I')[1 f...~l] BYklwhat has been proved, this ring is a ~ I i - r i ng .  The element Z = p f ~ l  sat isf ies the equation... 
Z = y k + a k _ l y  - + . ' '  + a 0  over this ring, w h e r e a i  = f i f k  1. We put L = Z  !. Then L = b k _ l y  k - l +  + b  0, 

= ' (i + where b i a i + 1)ai+p r. By the induction assumption (applied to the ring B(I i) [f~l]) the polynomial L of 
degree <k is a ~I i - funct ion.  Since it is an integral  of the ~Ii-funct ion L, Z is a ¢I i - funct ion.  Next, P is* a 
~I i - funet ion since it is the product of the ~I i - funct ions  Z and fk "  Thus the res t r ic t ion  of the function P to all 
the intervals  11 . . . .  , I l and J1 . . . . .  Jm  has the finiteness proper ty .  Therefore ,  P has the finiteness proper ty  on 
the interval  U. The proof by induction is complete .  IH) Now let yV = f y  where f E A .  This ease is analogous 
to the preceding one. Induction on the degree k shows that every  polynomial P = f k y  k + ... + f0  is a CU-func-  
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tion. In order to show this, we consider the functions Z and L = Z' (in the appropriate rings), where Z = 

pf~l =akyk+ ... + I, a i = fif~ I. The function L is equal toy(bl~V k-1 + ... +bl), where b i = a~ + iaif. The 

polynomial Ly -I has degree < k and y is a ~U-function since it is an exponential integral of f. This makes 

it possible to carry out the inductive step. The theorem is proved. 

A ring B D_ A is called a Liouville extension of A if there exists a chain of rings A = A 0 C_ ... ~ An = B 

in which each ring Ai+l is obtained from A i by adjoining an inverse element over A i, an integral over A i, or 

an exponential integral over A i. A function f is called a real Liouville function if it lies in some Liouville 

extension of the ring of real constants. Examples of Liouville functions are the rational functions, e x, lnl xl, 

I xl ~, arctan x. The class of real Liouville functions is closed under superposition of arithmetic operations, 

integration, and exponentiation. 

COROLLARY. A Liouville function can be characterized by its complexity, i.e., by the number of arith- 

metic, integration, and exponentiation operations required to obtain it from the constants. It fellows from our 

arguments that the number of discrete zeros of a Liouville function is estimated from above in terms of some 

function of its complexity. In other words, a Liouville function defined by a simple formula has few zeros. It 

would be of interest to obtain more precise estimates of this type. 

Remark 2. The function cos x is a Liouville function over the field of complex constants C: 2 cos x = 

e ix + e -ix, i.e., cos x lies in an extension of the ring C by the element e ix satisfying the equation y' = iy. We 

note that complex Liouville functions also have special geometric properties (cf. [I]): the set of singularities 

of such functions in the complex plane is at most countable and the monodromy group is solvable. 

Remark 3. The fact that cos x is not Liouville over the reals can evidently also be explained from the 

viewpoint of differential Galois theory [2]. The Galois group of the equation y" + y = 0 over the field l~ is a 

circle. This circle has a normal tower of subgroups with quotient groups isomorphic either to the additive or 

the multiplicative group of the field R. In order to completely justify this explanation, it is necessary to modify 

the differential Galois theory somewhat - the theory is usually constructed for differential fields with an al- 

gebraically closed field of constants. 
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1. In this note we state some proper t ies  of au tomorphisms of fac tors  which are  then used to descr ibe  
approximately finite (a.f.) fac tors  M of type HI 1 which possess  a F -a lmos t -pe r iod ic  weight q~, where F is a 

, 
countable subgroup of R+ (cf. Proposi t ion  1.1 in [1]). In fact,  a sketch is given of the proof of the following 
theorem.  

THEOREM 1.1. If M is an a.f. type III i fac tor  admitting a faithful normal  (f.n.) semifinite F - a l m o s t -  
periodic weight, then M ,~ t ~ ,  where 1~  is an A r a k i - W o o d s  fac tor  of type III 1 (cf. [2]). 

By Lemma 4.9 in [I], every  such algebra  M can be represen ted  as a c ros sed  product  M = R(N, F) of a 
type II~ a lgebra  N with an f.n. semifinite t r ace  ~- by a group F of automorphisms of N with genera tors  Oi (1 <_ 
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