Uspekhi Mat. Nauk 33:6 (1978), 237-238
Russian Math. Surveys 33:6 (1978), 237-238

NEWTON POLYHEDRA AND THE EULER-JACOBI FORMULA

A. G. Khovanskii

The Euler-Jacobi formula [1] is valid for non-degenerate systems of polynomials of fixed degrees. Here we give a generalization of this formula, which is valid for non-degenerate systems of polynomials with fixed Newton polyhedra. I am grateful to V. I. Arnol'd for posing the problem and for his interest.

1. General Lemmas. Let M be an n-dimensional compact complex analytic manifold and D_{1}, \ldots, D_{n} non-singular transversal analytic hypersurfaces in M. Let $M_{0}=M \backslash D_{1} \cup \ldots \cup D_{n}, M_{1}=$ $=D_{1} \backslash D_{2} \cup \ldots \cup D_{n}, \ldots, M_{n}=D_{1} \cap \ldots \cap D_{n}$. The set M_{n} consists of separate points $a_{k}, M_{n}=\left\{a_{k}\right\}(k=1, \ldots, N)$. Let T_{1}, \ldots, T_{N} be the real n-dimensional tori in M_{0} that "run around" all the surfaces D about the points a_{1}, \ldots, a_{N}. More precisely, let $T_{k}=\delta a_{k}$, where δ is the Leray complex coboundary (see [2], p. 57).

LEMMA 1. The cycle $T_{1}+\ldots+T_{N}$ is homologous to zero in M_{0}.

$$
\xrightarrow[\rightarrow]{\delta_{n}} H_{*}\left(M_{n-1}\right) \rightarrow \ldots \xrightarrow{\delta_{1}}
$$

PROOF. Let $H_{*}\left(M_{n}\right) \xrightarrow{\delta_{n}} H_{*}\left(M_{n-1}\right) \rightarrow \ldots \xrightarrow{\delta_{1}} H_{*}\left(M_{0}\right)$ be the Leray coboundary sequence, and $\delta=\delta_{1}{ }^{\circ} \ldots{ }^{\circ} \delta_{n}$. Let $\gamma_{1}, \ldots, \gamma_{N}$ be real curves "running around" the points a_{1}, \ldots, a_{N} on the complex curve $\bar{M}_{n-1}=D_{1} \cap \ldots \cap D_{n-1}$. More precisely, let $\gamma_{k}=\delta_{n} a_{k}$. The cycle $\gamma_{1}+\ldots+\gamma_{N}$ is homologoui to zero in \bar{M}_{n-1}. For it bounds the film that is obtained from M_{n-1} after rejecting the discs B_{k} witl. boundaries γ_{k}. This completes the proof of the lemma, since $\Sigma T_{k}=\delta \Sigma a_{k}=\delta_{1}{ }^{\circ} \ldots{ }^{\circ} \delta_{n-1} \boldsymbol{\Sigma} \gamma_{k}=0$.

Let $z=z_{1}, \ldots, z_{n}$ be local coordinates on M about the point a_{k} and $P_{1}=0, \ldots, P_{n}=0$ the local equations of D_{1}, \ldots, D_{n} about this point. We denote by $\partial P / \partial z$ the determinant of the corresponding Jacobian matrix. We consider the meromorphic form $\omega=f /\left(P_{1} \cdot \ldots \cdot P_{n}\right) d z_{1} \wedge \ldots \wedge d z_{n}$, where f is a holomorphic function in a neighbourhood of $a_{\boldsymbol{k}}$.

LEmMA 2. $\left(\frac{1}{2 \pi i}\right)^{n} \int_{T_{k}} \omega=\left.\left(f / \frac{\partial P}{\partial z}\right)\right|_{a_{k}}$.
Lemma 2 is called the complex residue formula. It is proved by applying Cauchy's residue formula n times.
2. Theorem. Let P_{1}, \ldots, P_{n} be a non-degenerate system of Laurent polynomials with Newton poly. hedra $\Delta_{1}, \ldots, \Delta_{n}$ (see [3]). Let Q be an arbitrary Laurent polynomial whose Newton polyhedron $\Delta(Q)$ lies strictly inside $\Delta_{1}+\ldots+\Delta_{n}, \Delta(Q)<\Delta_{1}+\ldots+\Delta_{n}$.

THEOREM (the generalized Euler-Jacobi formula). The sum $\left.\sum_{\left\{a_{k}\right\}}\left(Q / z_{1} \cdot \ldots \cdot z_{n} \cdot \partial P / \partial z\right)\right|_{a_{k}}$ is zero.
The summation is over the set $\left\{a_{k}\right\}$ of roots of the system of equations $P_{1}=\ldots=P_{n}=0$ in $(C \backslash 0)^{n}$ (that is, $z_{1} \neq 0, \ldots, z_{n} \neq 0$).

PROOF. We consider the toric compactification M of $(C \backslash 0)^{n}$, which is complete enough for $\Delta_{1}, \ldots, \Delta_{n}$ (see [3]). Let D_{1}, \ldots, D_{n} be the closures in M of the hypersurfaces in ($\left.C \backslash 0\right)^{n}$ given by the equations $P_{1}=0, \ldots, P_{n}=0$. We extend to M the meromorphic form ω defined in $(C \backslash 0)^{n}$ by the formula $\omega=\frac{Q}{P_{1} \cdot \ldots \cdot P_{n}} \cdot \frac{d z_{1}}{z_{1}} \wedge \ldots \wedge \frac{d z_{n}}{z_{n}}$. It is not difficult to show that ω is regular outside D_{1}, \ldots, D_{n}. Consequently, $\Sigma \int_{T_{k}} \omega=0$, since by Lemma 1 the cycle $T_{1}+\ldots+T_{n}$ is homologous to zero in $M_{0}=M \backslash D_{1} \cup \ldots \cup D_{n}^{T_{k}}$. Moreover, by Lemma $2, \sum_{\left\{a_{k}\right\}} \int_{T_{k}} \omega=\left.\Sigma\left(Q / z_{1} \cdot \ldots \cdot z_{n} \cdot \partial P / \partial z\right)\right|_{a_{k}}$.

COROLLARY (the Euler-Jacobi formula). Let P_{1}, \ldots, P_{n} be a general system of polynomials of degree m_{1}, \ldots, m_{n}, and \widetilde{Q} any polynomial of degree less than $\Sigma\left(m_{i}-1\right)$. Then $\left.\Sigma(\widetilde{Q} / \partial P / \partial z)\right|_{a_{k}}=0$.

PROOF. If no toots lie on the coordinate planes, the corollary is obtained by direct application of the theorem for $Q=z_{1} \cdot \ldots \cdot z_{n} \cdot \tilde{Q}$. It is easy to get rid of the additional restriction by a small change in the coefficients of the system of equations $P_{1}=\ldots=P_{n}=0$.
3. Remarks. We note that in the case of polyhedra $\Delta_{i}=\Delta\left(P_{i}\right)$ of full dimension the theorem does not admit any improvement: in this case any function fon the roots $\left\{a_{k}\right\}$ subject to the generalized Euler-Jacobi condition $\Sigma f\left(a_{k}\right)=0$ can be obtained as a residue of some form
$\frac{Q}{P_{1} \cdot \ldots \cdot P_{n}} \cdot \frac{d z_{1}}{z_{1}} \wedge \ldots \wedge \frac{d z_{n}}{z_{n}}$, where $\Delta(Q)<\Delta_{1}+\ldots+\Delta_{n}$. This assertion follows easily from the cohomology calculations of [4]. We note that the case of zero-dimensional complete intersections is exceptional: for complete intersections $P_{1}=\ldots=P_{m}=0$ of positive dimension ($m<n$) any holomorphic form of higher degree can be obtained as a residue of some form
$\frac{Q}{P_{1} \cdot \ldots P_{m}} \cdot \frac{d z_{1}}{z_{1}} \wedge \ldots \wedge \frac{d z_{n}}{z_{n}}, \quad$ where $\Delta(Q)<\Delta_{1}+\ldots+\Delta_{m}[3]$.
In conclusion we mention that the Euler-Jacobi formula is applied in real algebraic geometry [5]. The generalized formula undoubtedly has a similar application.

References

[1] L. Kronecker, Über einige Interpolationformeln für ganze Funktionen mehrerer Variabeln, Gesammelte Werke 1, Teubner, Leipzig, 1895, 133-141.
[2] F. Pham, Introduction à l'étude topologique des singularités de Landau, Mém. Sci. Math. 164, Gauthier-Villars, Paris 1967. MR 37 \# 4837. Translation: Vvedenie v topologicheskoe issledovanie asobennostei Landau, Mir, Moscow 1970.
[3] A. G. Khovanskii, Newton polyhedra and toric manifolds, Funktsion. Anal. i Prilozhen. 11:4 (1977), 56-67.
$=$ Functional Anal. Appl. 11 (1977), 289-296.
[4] - Newton polyhedra and the genus of complete intersections, Funktsion. Anal. i Prilozhen. 12:1 (1978), 51-61.
$=$ Functional Anal. Appl. 12 (1978), 38-46.
[5] I. G. Petrovskii and O. A. Oleinik, The topology of real algebraic surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 18 (1949), 389-402. MR 11-613.
$=$ Amer. Math. Soc. Transl. (1) 70 (1952). MR 13-978.

