Russian Math. Surveys 33:6 (1978), 237-238

NEWTON POLYHEDRA AND THE EULER-JACOBI FORMULA

A. G. Khovanskii

The Euler-Jacobi formula [1] is valid for non-degenerate systems of polynomials of fixed degrees. Here we give a generalization of this formula, which is valid for non-degenerate systems of polynomials with fixed Newton polyhedra. I am grateful to V. I. Arnol'd for posing the problem and for his interest.

1. General Lemmas. Let M be an *n*-dimensional compact complex analytic manifold and D_1, \ldots, D_n non-singular transversal analytic hypersurfaces in M. Let $M_0 = M \setminus D_1 \cup \ldots \cup D_n, M_1 =$ $= D_1 \setminus D_2 \cup \ldots \cup D_n, \ldots, M_n = D_1 \cap \ldots \cap D_n$. The set M_n consists of separate points $a_k, M_n = \{a_k\}$ $(k = 1, \ldots, N)$. Let T_1, \ldots, T_N be the real *n*-dimensional tori in M_0 that "run around" all the surfaces D about the points a_1, \ldots, a_N . More precisely, let $T_k = \delta a_k$, where δ is the Leray complex coboundary (see [2], p. 57).

LEMMA 1. The cycle $T_1 + \ldots + T_N$ is homologous to zero in M_0 .

PROOF. Let $H_*(M_n) \to H_*(M_{n-1}) \to \ldots \to H_*(M_0)$ be the Leray coboundary sequence, and $\delta = \delta_1 \circ \ldots \circ \delta_n$. Let $\gamma_1, \ldots, \gamma_N$ be real curves "running around" the points a_1, \ldots, a_N on the complex curve $\overline{M}_{n-1} = D_1 \cap \ldots \cap D_{n-1}$. More precisely, let $\gamma_k = \delta_n a_k$. The cycle $\gamma_1 + \ldots + \gamma_N$ is homologour to zero in \overline{M}_{n-1} . For it bounds the film that is obtained from M_{n-1} after rejecting the discs B_k with boundaries γ_h . This completes the proof of the lemma, since $\Sigma T_k = \delta_1 \circ \ldots \circ \delta_{n-1} \Sigma \gamma_h = 0$.

boundaries γ_k . This completes the proof of the lemma, since $\Sigma T_k = \delta \Sigma a_k = \delta_1 \circ \ldots \circ \delta_{n-1} \Sigma \gamma_k = 0$. Let $z = z_1, \ldots, z_n$ be local coordinates on M about the point a_k and $P_1 = 0, \ldots, P_n = 0$ the local equations of D_1, \ldots, D_n about this point. We denote by $\partial P/\partial z$ the determinant of the corresponding Jacobian matrix. We consider the meromorphic form $\omega = f/(P_1 \cdot \ldots \cdot P_n) dz_1 \wedge \ldots \wedge dz_n$, where f is a holomorphic function in a neighbourhood of a_k .

LEMMA 2.
$$\left(\frac{1}{2\pi i}\right)^n \int_{T_k} \omega = \left(f / \frac{\partial P}{\partial z}\right) \Big|_{a_k}$$

Lemma 2 is called the complex residue formula. It is proved by applying Cauchy's residue formula n times.

2. Theorem. Let P_1, \ldots, P_n be a non-degenerate system of Laurent polynomials with Newton polyhedra $\Delta_1, \ldots, \Delta_n$ (see [3]). Let Q be an arbitrary Laurent polynomial whose Newton polyhedron $\Delta(Q)$ lies strictly inside $\Delta_1 + \ldots + \Delta_n, \Delta(Q) < \Delta_1 + \ldots + \Delta_n$.

THEOREM (the generalized Euler-Jacobi formula). The sum $\sum_{\{a_k\}} (Q/z_1 \cdot \ldots \cdot z_n \cdot \partial P/\partial z)|_{a_k}$ is zero.

The summation is over the set $\{a_k\}$ of roots of the system of equations $P_1 = \ldots = P_n = 0$ in $(C \setminus 0)^n$ (that is, $z_1 \neq 0, \ldots, z_n \neq 0$).

PROOF. We consider the toric compactification M of $(C \setminus 0)^n$, which is complete enough for $\Delta_1, \ldots, \Delta_n$ (see [3]). Let D_1, \ldots, D_n be the closures in M of the hypersurfaces in $(C \setminus 0)^n$ given by the equations $P_1 = 0, \ldots, P_n = 0$. We extend to M the meromorphic form ω defined in $(C \setminus 0)^n$ by the

formula $\omega = \frac{Q}{P_1 \cdots P_n} \cdot \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}$. It is not difficult to show that ω is regular outside

 D_1, \ldots, D_n . Consequently, $\sum_{T_k} \int_{T_k} \omega = 0$, since by Lemma 1 the cycle $T_1 + \ldots + T_n$ is homologous to zero in $M_0 = M \setminus D_1 \cup \ldots \cup D_n$. Moreover, by Lemma 2, $\sum_{\{a_k\}} \int_{T_k} \omega = \sum_{\{Q/z_1 \cdot \ldots \cdot z_n \cdot \partial P/\partial z\}} |_{a_k}$.

COROLLARY (the Euler-Jacobi formula). Let P_1, \ldots, P_n be a general system of polynomials of degree m_1, \ldots, m_n , and \widetilde{Q} any polynomial of degree less than $\Sigma(m_i - 1)$. Then $\Sigma(\widetilde{Q}/\partial P/\partial z)|_{a_L} = 0$.

PROOF. If no roots lie on the coordinate planes, the corollary is obtained by direct application of the theorem for $Q = z_1 \cdot \ldots \cdot z_n \cdot \widetilde{Q}$. It is easy to get rid of the additional restriction by a small change in the coefficients of the system of equations $P_1 = \ldots = P_n = 0$.

3. Remarks. We note that in the case of polyhedra $\Delta_i = \Delta(P_i)$ of full dimension the theorem does not admit any improvement: in this case any function f on the roots $\{a_k\}$ subject to the generalized Euler-Jacobi condition $\Sigma f(a_k) = 0$ can be obtained as a residue of some form

 $\frac{Q}{P_1 \cdots P_n} \cdot \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}, \text{ where } \Delta(Q) < \Delta_1 + \cdots + \Delta_n. \text{ This assertion follows easily from}$

the cohomology calculations of [4]. We note that the case of zero-dimensional complete intersections is exceptional: for complete intersections $P_1 = \ldots = P_m = 0$ of positive dimension (m < n) any holomorphic form of higher degree can be obtained as a residue of some form

 $\frac{Q}{P_1 \cdots P_m} \cdot \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}, \quad \text{where } \Delta(Q) < \Delta_1 + \ldots + \Delta_m [3].$

In conclusion we mention that the Euler-Jacobi formula is applied in real algebraic geometry [5]. The generalized formula undoubtedly has a similar application.

References

- [1] L. Kronecker, Über einige Interpolationformeln für ganze Funktionen mehrerer Variabeln, Gesammelte Werke 1, Teubner, Leipzig, 1895, 133-141.
- F. Pham, Introduction à l'étude topologique des singularités de Landau, Mém. Sci. Math. 164, Gauthier-Villars, Paris 1967. MR 37 # 4837.

Translation: Vvedenie v topologicheskoe issledovanie osobennostei Landau, Mir, Moscow 1970.

 [3] A. G. Khovanskii, Newton polyhedra and toric manifolds, Funktsion. Anal. i Prilozhen. 11:4 (1977), 56-67.

= Functional Anal. Appl. 11 (1977), 289-296.

- [4] ———, Newton polyhedra and the genus of complete intersections, Funktsion. Anal. i Prilozhen. 12:1 (1978), 51-61.
- Functional Anal. Appl. 12 (1978), 38-46.
 [5] I. G. Petrovskii and O. A. Oleinik, The topology of real algebraic surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 18 (1949), 389-402. MR 11-613.
 Amer. Math. Soc. Transl. (1) 70 (1952). MR 13-978.

Received by the Editors 20 September 1977

238