
all tend to zero .  The d imension  n of the space  of x coordinates  must  be at l ea s t  three.  
unique in the c l a s s  of functions u(x, t) for  which 

T 

vrai max l u (x, t)l, S .I (I ul~ q- l u= I =) dxdt 
~_J{p,t~[O,T] o Kp 

These solutions a r e  

a r e  finite for  eve ry  T > 0. 

p may be taken equal to oo in the s t a t ement  of this theorem.  The solut ions cor responding  to this value 
a r e  solutions of Cauchy 's  p rob l em  for  (1.8), and K~o = E n. 
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In this paper  we discuss  a genera l  formula t ion  of the pr inciple  of d i f ferent ia l  optimization.  We cons ider  
an economic model  in which the dynamics  is  subjec t  to this pr inciple .  The s y s t e m  of equations of  the model  is  
a s y s t e m  of d i f ferent ia l  equations with lag in which the lag is not speci f ied ,  but is i t s e l f  de te rmined  by a dif-  
ferent ia l  equation. The equations a r e  sufficient  for  the fur ther  development  of the economic s y s t e m  to be de-  
t e rmined  by i ts  p r e s en t  s tate.  We cons ider  some  par t i cu la r  cases  that a r e  in te res t ing  f r o m  the economic point 
of view. In one of them the s y s t e m  of equations s e p a r a t e s  and lends i t se l f  to a comple te  solution, In o ther  
cases  we can  find c h a r a c t e r i s t i c  exponential  solutions.  

Some words  on the economic content: our  model is a s ing le -p roduc t  dynamica l  one with s tocks  that  a r e  
di f ferent ia ted with r e s p e c t  to the momen t  of the i r  creat ion.  Scientific and technological  p r o g r e s s  and the growth 
of equipment  s tocks  lead to a continuous i nc r ea se  in the product ivi ty  of labor  on newly c rea ted  s tocks .  The 
l e a s t  effect ive s tocks  a r e  wi thdrawn f r o m  product ion (and not used  la te r ) ,  and the f reed  labor  r e s o u r c e s  a r e  
d i rec ted  to newly c rea ted  s tocks.  In the model this p r o c e s s  is subjected to the c r i t e r i o n  of d i f ferent ia l  op t imi-  
zat ion,  accord ing  to which the pol icy of withdrawal  of v i r tua l ly  outdated s tocks  is opt imal  if  it ensu res  at each  
moment  a max ima l  r a t e  of growth of the national income.  

P r i n c i p l e  of Different ia l  Optimization. We cons ider  a se t  A of vec to r -va lued  functions 7 of the va r i ab le  
t, 7(t) = {70(t), Tl(t), . . . .  Tn(t)}. A vec to r -va lued  function 7(t) in the se t  A is cal led a t r a j ec to ry ,  and each  
t r a j e c t o r y  d e s c r i b e s  one of the poss ib le  ways in which the s y s t e m  can  develop. We a s s u m e  that  all  the t r a j e c -  
t o r i e s  7(t) a r e  smooth  functions with a finite number  of points of discontinuity.  At a point t o of discontinuity of 
the t r a j e c t o r y  7(t) we cons ider  the two vec tors  

~+ (to) lira 7 (t) and ~- (to) ---- lira y (t). 

The component  T0(t) of the t r a j e c t o r y  7(t) plays a spec ia l  role .  It  is a s sumed  that  70(t) is a continuous function, 
and T0(t) -< t. The in terva l  [T0(t), t] will  be cal led the "influence in te rva l"  of the t r a j e c t o r y  T(t) at  the moment  of 
t ime  t. 

Suppose that a goal function FT(t) is defined on the t r a j e c t o r i e s  and depends on the t r a j e c t o r y  T and the 
t ime  t. We a s s u m e  the following conditions for  F: 
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a) if  the t r a j e c t o r y  T coincides with the t r a j e c t o r y  T on i ts  influence in te rva l  [~/0(t), t] a t  the moment  of 
t ime  t, then F~(t) = FT(t). The condition a) means  that  the functional F does not depend on the future develop-  
ment  of the s y s t e m ,  and is comple te ly  de te rmined  by its pas t ;  

t +  
b) for any t r a j e c t o r y  T the function of the t ime  FT(t) has a r ight  de r iva t ive  F 7 (t). 

Definition 1. The t r a j e c t o r y  T is said to be d i f ferent ia l ly  opt imal  at the point t o with r e s p e c t  to the func- 
tional F if  for any other  t r a j e c t o r y  T such that  ~/(t) = y(t) for T(t 0) -< t <- t o we have the condition: 

F~ + (to) >i F~" (t). 

Definition 2.. The t r a j e c t o r y  y(t) is said to be d i f ferent ia l ly  opt imal  on the in terva l  [a, b] with r e s p e c t  to 
the functional F if  i t  is d i f ferent ia l ly  opt imal  at  each point of this in terva l  [a, b]. We say that the d i f ferent ia l ly  
opt imal  t r a j e c t o r i e s  sa t i s fy  the c r i t e r i on  of d i f ferent ia l  opt imal i ty .  

F igura t ive ly  speaking,  a d i f ferent ia l ly  opt imal  t r a j e c t o r y  a lways moves  in the d i rec t ion  of g r e a t e s t  in- 
c r e a s e  of the functional F. We now give an i l lus t ra t ive  geome t r i c  example .  

Example .  As the t r a j e c t o r i e s  T(t) we cons ider  t r a j e c t o r i e s  with influence in te rva l  of ze ro  length (~/0(t) = 
t) that d e t e r m i n e  continuous p i ecewi s e - s m oo t h  mot ion of the point x(t) in the n -d imens iona l  space  R n, y(t) = 
(t, x(t)), x(t) = xl(t),  x2(t), . . . .  xn(t), with speed not exceeding 1, i .e . ,  

=' (t)~ = V-z', ~ (t) + x~ 2 (t) + . . .  + xJ (t) < ~. 

Let  the goal functional FT(t) be the value of a smooth  function G(x) at the point x(t). In this example  a t r a j ec to ry  
~(t) = {t,  x(t)} is d i f fe rent ia l ly  opt imal  if the point x(t) " r i s e s  along the gradient"  of the function G with speed 1, 
i.e., if 

, grad a (t) 
x (t) ~[~grada(t)i. 

Indeed, we have F~(t) = (d/dt)G(x(t) )= (g rad  G, x'>. For  the t r a j e c t o r y  x ( t ) w e  have [[ x '  (t) II -< 1, t he re fo re ,  
the s c a l a r  product  (g rad  G, x ' )  is g r e a t e s t  if the vec tor  x '( t)  is col l inear  to the vec tor  grad G and equal to 1 
in length. 

Besides  the d i f ferent ia l ly  opt imal  t r a j e c t o r i e s  of motion of a s y s t e m ,  we can a lso  cons ider  the t r a j e c -  
t o r i e s  on which the goal functional at tains a m a x i m u m  at the endpoints of t ime  in te rva ls  of a fixed length a 
(a is the length of the planning period).  Thus,  we say  that  a t r a j e c t o r y  7(t) is opt imal  with planning per iod of 
length a (and or ig in  at t 0) if for any natural  number  n and any t r a j e c t o r y  T(t) such that  T(t) = T(t) for  t o -< t -< 
t o + ( n -  1)a we have the inequali ty F(T(t), t 0, na) _> F(T(t), to, na). It is natural  to expect  that as the length a 
of the per iod converges  to ze ro  an opt imal  t r a j e c t o r y  with planning period a will converge  to a different ia l ly  
opt imal  one. For  example ,  within the f r a m e w o r k  of the geome t r i c  example ,  we need to place only sl ight r e -  
s t r i c t ions  on the goal function G in o rde r  that  this s t a t ement  be true.  Conditions for di f ferent ia l  opt imal i ty  
f requent ly  turn out to be s ignif icant ly  s i m p l e r  and m o r e  natural  than the conditions for  opt imal i ty  with a plan-  
ning period of finite length. 

Descr ip t ion  of the Model. In an economic s y s t e m  that turns  out a s ingle product  (a s i n g l e - s e c t o r  model) 
two main product ion fac to r s  stand out: the product ion s tocks (real ized capital) ,  d i f ferent ia ted with r e s p e c t  to 
the moment s  of the i r  c rea t ion  and m eas u red  in product  Units, and the labor  r e s o u r c e s ,  measu red  in the num- 
be r  of l abor  units.  

Le t  T(t) be the labor  r e s o u r c e s  at the moment  of t ime  t (a given function). We a s s u m e  that  at any moment  
of t ime  t the ef fec t iveness  of product ion is c h a r a c t e r i z e d  by a product ion function U(x, y ,  T) that  e x p r e s s e s  the 
quantity of pure  product  c rea ted  by the labor  y (in a unit of time) with the use  of product ion s tocks  (created at  
the momen t  r) of volume x product  units (r -< t). I t  is a s sumed  that the function U i n c r e a s e s  monotonical ly with 
the a rgumen t  r ,  which e x p r e s s e s  the inc reased  e f fec t iveness  of  newer  s tocks  under the effects  of technological  
p r o g r e s s .  This taking into account of technological  p r o g r e s s  in models  has acqui red  the name " rea l i zed  tech-  
nological p r o g r e s s "  [1-4]. I t  is a s s um ed  that the function U is pos i t ive-homogeneous  and convex in the f i r s t  
two a rgumen t s .  The f i r s t  a s sumpt ion  re f l ec t s  the absence  of an effect  f r o m  the sca le  of production,  and the 
second the fact  that  the function U is based  on opt imal  product ion methods.  

The capi ta l  inves tments  used for  inc reas ing  s tocks and rep lac ing  outgoing s tocks a r e  de te rmined  by the 
intensi ty of the i r  input ~(t) ,  i .e . ,  it is  a s sumed  that the volume of s tocks  introduced into product ion in the t ime  
in te rva l  [t, t + dt] is equal to n(t)dt. Various assumpt ions  a r e  made about the function n(t) in var ious  modif ica-  
t ions {variants) of the model:  the function ~(t) e i ther  is a s sumed  to be an exogeneous va r i ab le  of the model ,  
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i .e . ,  a p r io r i  given, or  it is  a s sumed  that i t  const i tutes  a constant  pa r t  of the pure  product  produced at  the 
moment  t (more  genera l ly ,  i t  can be a s sumed  that  the function x(t) is de te rmined  by the previous  development  
of the economic s t ruc ture) .  

The quantity of labor  r e s o u r c e s  working on the newly r e l e a s e d  s tocks  is de te rmined  by the intensi ty of 
the i r  introduction r i .e . ,  it is a s s um ed  that the labor  r e s o u r c e s  introduced in the t ime  in te rva l  It, t + dr] 
make up r units.  The function (p(t) in the model is to be de te rmined  (an endogeneous va r i ab le  of the model). 

In the model it  is a s sumed  that  the technological  p r o g r e s s  and the growth of equipment  s tocks  lead to a 
continuous i nc rea se  in the product ivi ty  of the labor  on the newly c rea ted  s tocks .  As a r e su l t  the less  effect ive 
s tocks  a r e  continuously withdrawn f r o m  product ion (and not used la ter ) ,  while the f reed  labor  r e s o u r c e s  a r e  
d i rec ted  to the newly c rea ted  s tocks .  Under the assumpt ion  of a monotonical ly  growing labor  product ivi ty the 
oldest  s tocks  (those having the e a r l i e s t  per iod of c rea t ion  among the s tocks  taking pa r t  in the production p ro -  
ce s s  at  the moment  t) a r e  wi thdrawn f r o m  product ion f i r s t ,  t he re fo re ,  the policy of withdrawing s tocks  in the 
model is cha r ac t e r i z ed  by a function m(t) that  e x p r e s s e s  the moment  of c rea t ion  of s tocks withdrawn f r o m  
product ion at  the moment  of t ime  t (m(t) < t). The function m(t) mus t  be found. 

The quantity of pure  product  produced f r o m  the s tocks  taking par t  in the product ion at  the moment  of t ime  
t (in a unit of t ime) ,  i .e . ,  the national income,  is calculated in the model according  to the following fo rmula  

$ 

P(t)= .I v(~(~), r ,)~T. (I) 
m(t) 

We write out the balance equations for the variables of the model. 
t 

Balance Equation for Labor Resources: S r (')dr = T (t). Assuming full employment, the number of 
t , ~ t )  

l abor  units j" r (~) d~ working with the s tocks  avai lab le  at  the moment  t is equal to the s ize  of the able-bedied  
m( t ) 

population T(t). This re la t ion  can be wr i t t en  in the d i f ferent ia l  f o r m  

r (t) =T'(t)-4-r m'(t), (2) 

in which this equation a lso  has a s imple  economic  meaning: the labor  r e s o u r c e s  connected with the s tocks 
newly c rea ted  in the in te rva l  [t, t +dt]  a r e  made up of the natura l  growth of labor  r e s o u r c e s  dT(t) and the labor  
units taken f r o m  the s tocks that a r e  withdrawn in the in te rva l  [re(t), m(t + dt)], i .e . ,  r units. 

Stocks Balance Equation. This equation a r i s e s  in the va r ian t  of the model in which • is equal to the 
constant  pa r t  of the national income x(t) = TP(t) (0 < T < I is the constant  n o r m  of accumulat ion).  Using the 
fo rmula  (1), we get 

t 

x (t) = V .[ U I• (T), r (~), ~1 dr. (3) 
raft) 

In addition to the balance equations,  the model va r i ab l e s  a r e  subject  to the d i f ferent ia l  opt imizat ion equa-  
tion. This equation e x p r e s s e s  the opt imizat ion c r i t e r ion  used in the model ,  according  to which a policy of with-  
drawing v i r tua l ly  outdated s tocks is opt imal  if it ensures  a maximal  r a t e  of growth of the national income. 
This c r i t e r i on  cons i s t s  in maximiza t ion  of a ce r t a in  functional (the national income) on an infinitely smal l  
(infinitesimal) in terval .  In the previous  sec t ion  we cons idered  the mathemat ica l  p rob l em of finding the dif-  
fe rent ia l ly  opt imal  t r a j e c t o r i e s  of the development  of the s y s t e m  (the pr inciple  of d i f ferent ia l  opt imizat ion),  
and now, using the concepts  introduced in this sect ion,  we give a der iva t ion  of the equation of different ia l  op- 
t imiza t ion  for  the economic model under d iscuss ion.  

In our economic model  the t r a j e c t o r i e s  a r e  the pa i r s  of functions T(t) = { m(t), r subject  to Eq. (2) (for 
the va r ian t  of  the model  in which the function ~(t) is an exogeneous var iab le ) ,  and the t r ip les  of functions Tit) = 
{re(t), r x(t)} subjec t  to Eqs .  (2), (8) (for the var ian t  of the model in which the function x(t) is equal to a con-  
s tant  pa r t  of the national income).  These  t r a j e c t o r i e s  give a balanced (with r e s p e c t  to labor  r e s o u r c e s  and 
stocks) development  of the economic s t ruc tu re .  The influence in te rva l  for  these  t r a j e c t o r i e s  of development  of 
the economic s y s t e m  is the t ime  in terva l  [re(t), t], and the s tocks  c rea ted  in this per iod take pa r t  in the p roduc-  
tion at  the moment  t. The function r is a s sumed  to be a discontinuous p i ecewi se - smoo th  function, and the 
functions m(t) and x(t) a r e  a s sumed  to be continuous p i eeewi se - smoo th  functions. On the t r a j ec to r i e s  we con-  
s ider  the functional PT(t) calculated by the fo rmula  (1): the fo rmula  for computing the national income in the 
medel  at the moment  of t ime  t. 
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We c o n s i d e r  the  equa t ion  r e s u l t i n g  f r o m  the p r i n c i p l e  of d i f f e r en t i a l  o p t i m i z a t i o n  wi th  the funct ional  
Py(t) .  We f i r s t  a n a l y z e  the  mode l  in wh ich  the  funct ion )r i s  g iven  exogeneous !y .  We c a l c u l a t e  the  f i r s t  

v+ d e r i v a t i v e  P3' (t) fo r  the t r a j e c t o r y  T(t) = {m( t ) ,  r a t  an  a r b i t r a r y  point  to: 

P~+ (to) = U [• (to), (p (to), to] - -  V [• (ra (to)), ~ (m (to)), m (to)] m' (to)- 

I f  t r a j e c t o r i e s  co inc ide  up to  the  m o m e n t  to, then  f o r  t h e m  the quan t i t i e s  • , ~o(m(t0)) , and m(t  0) a r e  the 
s a m e .  For  the funct ions  ~<(t) and ~o(t) this  fo l lows f r o m  the f ac t  tha t  m( t  0) < to, and fo r  the  funct ion re(t) f r o m  
i ts  cont inui ty .  The  l a b o r  r e s o u r c e  b a l a n c e  [Eq. (2)] connec t s  ~+(to) and m'+(t0).  Us ing  this  connec t ion ,  P~+(to) 
c a n  be r e g a r d e d  as  a un iqueness  funct ion  of the  a r g u m e n t  m '+ :  

Pv + (to) = U [re (to) , r '  (to) -[- r (m(t0))m' + (to), to] - -  U in (m (to)), tp (m (to)), m (to) ] m' (to). (4) 
v+ We s e e  f r o m  Eq. (4) tha t  the  funct ion P~+ is  convex  in m '+. T h e r e f o r e ,  the m a x i m u m  of  PT is  a t t a ined  a t  a 

point  a t  which  the d e r i v a t i v e  v a n i s h e s .  F r o m  th i s ,  we  ge t  the  fol lowing equation:  

e (P'~+) ov (~ (t), ~+ (t), t) 
dm'* - -  Oq~ o~ (m (t)) - -  U [• (m(t)), ~ (m (t)), m (t)l = 0. 

Thus ,  the equa t ion  of  d i f f e r e n t i a l  o p t i m i z a t i o n  has  the f o r m :  

OU [• !t), q~+ (t). t] __ U ['z (m (t)), ~ (m (t)), m (t)] (5) 
0~ (p [m (t)l 

In  wha t  fol lows we  a r e  i n t e r e s t e d  only in Continuous so lu t ions .  For  such  so lu t ions  (p+(t) = (p(t), and w e  
can  o m i t  the  s y m b o l  fo r  p a s s a g e  to the  l i m i t  f r o m  the r igh t .  F o r  a p roduc t ion  funct ion of C o b b - D o u g l a s  type  
U(~( t ) ,  r  t) = f(t)~t a (t)q43(t), c~ +/3 = 1 [he r e  the  e x o g e n e o u s l y  g iven  funct ion fit) s i m u l a t e s  the  t ec tmolog ica l  
p r o g r e s s  r e a l i z e d  in the s t ocks  of  the  pe r i od  t] the equa t ion  of d i f f e r en t i a l  o p t i m i z a t i o n  has  the fol lowing f o r m :  

~/(t)• = [ ( m ( t )  )•  )cp-~(m(t) ). 

In the  v a r i a n t  of the  mode l  wi th  endogeneous ly  g iven  funct ion ~ (n(t) = TP(t)) the  p r i n c i p l e  of  d i f f e r en t i a l  
o p t i m i z a t i o n  a l s o  l eads  to Eq. (5). Indeed ,  in this  c a s e  the  quan t i ty  P~+ is  g iven  on the  t r a j e c t o r y  Tit) = { a<(t), 
cp(t), re(t)} by the  f o r m u l a :  

P~+ = U [• (t), ~+ (t), tl - -  U [re (m (t)), ~ (m (t)), m (t)] m'+ (t). 

The  funct ion  ~ depends  con t inuous ly  on the  t i m e ,  as  is  c l e a r  f r o m  Eq. (3). Consequen t ly ,  the n u m b e r  ~+(t  0) = 
~( t  0) is  the  s a m e  for  al l  t r a j e c t o r i e s  tha t  co inc ide  for  t < t o and cannot  change.  We a r r i v e  a t  the s a m e  e x t r e m a l  
p r o b l e m  and a t  the  p r e v i o u s  equa t ion  of d i f f e r e n t i a l  op t imiza t ion .  

We t u r n  to  the  economic  m e a n i n g  of  the equa t ion  of d i f f e r en t i a l  op t imiza t ion .  The  l e f t - b a n d  s ide  of  Eq. 
(5) i s  the  l im i t i ng  p roduc t iv i t y  of l a b o r  a t  the  m o m e n t  of t i m e  m(t) ,  o r ,  in o the r  w o r d s ,  the n o r m  of e f fec t iv i ty  
wi th  r e s p e c t  to one of the  p roduc t i on  f a c t o r s :  the l a b o r  r e s o u r c e s .  The  r i g h t - b a n d  s ide  of  Eq. (5) is  the p r o -  
duc t iv i ty  of  l a b o r  on the s t ocks  c r e a t e d  a t  the m o m e n t  of t i m e  t. F o r  the  d i f f e r e n t i a l l y  o p t i m a l  d e v e l o p m e n t  
of  the e c o n o m i c a l  s t r u c t u r e  t h e s e  quan t i t i e s  m u s t  be  equal ,  in view of the  fol lowing qua l i t a t i ve  c o n s i d e r a t i o n s .  
We c o n s i d e r  the  in f luence  on the p roduc t ion  of  output  when  a s m a l l  n u m b e r  of  l a b o r  uni ts  (we denote  it  by AT) 
i s  t r a n s f e r r e d  f r o m  s t o c k s  c r e a t e d  a t  the m o m e n t  m(t) ( taken out of  p roduc t ion  a t  the  m o m e n t  of  t i m e  t) to 
s t oc ks  c r e a t e d  a t  the m o m e n t  of  t i m e  t. On the s t ocks  of  t i m e  t t h e r e  wi l l  be  p roduced  an  addi t ional  

ou [• ~(t). il AT p roduc t  un i t s ,  and on the s t ocks  c r e a t e d  a t  the m o m e n t  re(t) the  p roduc t i on  is  d e c r e a s e d  by 

U l• (m (t)), (p (~n (t)), m (t)l AT p roduc t  uni ts .  If  the l o s s e s  exceed  the addi t ional  p roduc t ion ,  i . e . ,  (0u [• (t), ~ (t), ~1 [m (t)] 0~ AT < 

U Ix (m (t)), ~ (m (t)). rn (t)] AT, then  the t r a n s f e r  of  l a b o r  r e s o u r c e s  to the m o r e  m o d e r n  s t o c k s  is  e c o n o m i c a l l y  un-  

jus t i f i ab le .  But if  the  t r a n s f e r  of  a s m a l l  n u m b e r  of  l a b o r  r e s o u r c e s  to m o r e  m o d e r n  s t ocks  enab les  us to i n -  

c r e a s e  the  to ta l  p roduc t i on  of  output  a t  the m o m e n t  of  t i m e  t,  i . e . ,  (0u [• (t), (p (t). t] AT<" u [• (m (t)). ~(m (t)). m (t)_!AT, 
~ - qp [m (t)l 

t hen  this  po l icy  of  c lo s ing  the v i r t u a l l y  outda ted  s t ocks  is not d i f f e r e n t i a l l y  op t ima l .  Consequen t ly ,  the d i f f e r -  
en t i a l ly  op t ima l  d e v e l o p m e n t  of  the  economic  s t r u c t u r e  r e q u i r e s  the  equal i ty  of  the l imi t ing  p roduc t iv i ty  of  
l a b o r  o n t h e  newly  c r e a t e d  s t o c k s  and on the s t ocks  tha t  a r e  v i r t u a l l y  outda ted  ( leas t  economica l )  a t  th is  m o -  
ment .  The a p p r o p r i a t e  equa t ion  i s  Eq. (5), d e r i v e d  m a t h e m a t i c a l l y  f r o m  the p r inc ip l e  of  d i f f e r en t i a l  o p t i m i z a -  
t ion. 
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The Sys tem of Equations of the Model. Suppose that at  the moment  of t ime  t o we know all the p a r a m e t e r s  
of the model.  The p rob lem is to ca lcula te  the i r  subsequent  behavior .  We f i r s t  dwell on the m o r e  compl ica ted 
var ian t  of the model ,  in which the s t rength  of the input of capital  inves tments  makes  up a constant  par t  of the 
national income.  

At the moment  of t ime  t o the s tocks  c rea ted  in the cour se  of the t ime  in terva l  m(to) - t _< t o take par t  
in the production. There fo re ,  in format ion  on the initial  s ta te  of the economic s t r u c t u r e  impl ies  the p resence  
of the following data: 

a) the numbers  t o and m(to) [ m o r e o v e r ,  m(to) < to]; 

b) the functions ~(t) and go(t) defined on the in terval  m(to) -< t -< to. 

Moreove r ,  for the initial  data we mus t  have the compat ibi l i ty  condition: 

�9 O) U [z (m (to)), Ip (m (to)), m ( t o ) ]  c3U[x (to), Ip (to), to], 
(m (to)) - -  a ~  (to) 

which means  that  the equation of di f ferent ia l  opt imizat ion holds at the initial moment  of t ime to. 

In d i f ferent ia l  f o r m  the equation of the model has the form:  

q~(t) --ep(ra(t) ) = r '  (t), (i) 

u'(t)='f[U(• ep(t), t)]--U[• r m(t)]m'(t), (ii) 

U (z (m (t)), q~ (m (t)), m (t)) __ OU(u (t), q~ (t), t) .  (i i i)  
V (m (t)) Oq~ (t) 

We cons ider  the more  genera l  s y s t e m  

m'(t)=q),[• re(t), t, q~(t), • qD(m(t))], (6) 

•  re(t), t, qD(t), • q~(m(t))], (7) 

r re(t), t, • q~(m(t))], (8) 

where  61, r 63 a re  known functions. To reduce  the or ig ina l  s y s t e m  to this f o r m  it is n e c e s s a r y  to solve 
Eq. (i) opt imal ly  in m'(t)  and subst i tute  the resu l t ing  expres s ion  for  m'(t)  in the r ight-hand side of Eq. (ii). 
Then we mus t  solve Eq. (iii) with r e s p e c t  to r We cons ider  the solution of the s y s t e m  of equations (6)-(8) 
with the following initial data: 

1) the numbers  t o and m(to) a r e  given [with re(to) < to); 

2) the functions ~t(t) and go(t) a r e  given on the in tervaI  m(to) --< t -< to. 

Moreover ,  we a s s u m e  the compat ib i l i ty  condition 

3) go(to) = ~3[x(to), m(to), t 0, ~ (m%)) ,  go(re(to)) I. 

The s y s t e m  of equations (6)-(8) with the initial  data  1)--3) can be solved as follows: we subst i tute  the expres s ion  
for  g0(t) f r o m  Eq. (8) into the r ight -hand s ides  of Eqs.  (6), (7). We get equations of the f o r m  

m'(t)---G,[• re(t), t, • (p(m(t))], (9) 

•215 re(t), t, • (p(m(t))]. (10) 

If  the values  of the function re(t) a r e  contained in the in terva l  [m(to), to], i .e . ,  i f  m(to) --- m(t) -< t 0, then the 
functions • and q~(m(t)) a r e  known f r o m  the ini t ial  data.  The re fo re ,  under  these  assumpt ions  the s y s t e m  
(9)-(10) is a s y s t e m  of o rd ina ry  di f ferent ia l  equations for  de te rmin ing  m(t) and • [with the initial data m(t 0) 
and n(t0) ]. We a s s u m e  that for the solution of the s y s t e m  (9)-(10) the function m(t) is monotonical ly  inc reas ing  
(such an a s sumpt ion  was made for  the simulat ion).  The r ight-hand s ides  of the s y s t e m  (9), (10) a r e  de te rmined  
as long as m(t) is l e ss  than t 0. This s y s t e m  can  be solved on a digital compute r  (by approx imat ion  methods) 
up to the c r i t i ca l  moment  t 1 for which m(t  1) = t 0. After  this ,  we know the functions m(t) and n(t) on the in terva l  

�9 t o -< t --- t 1. Equation (8) now makes  it poss ib le  to de t e rmine  the function g0(t) on this in terval .  Thus,  the func- 
tions vt(t) and (p(t) a r e  now known on the in terva l  t o -< t -< t 1. Substituting them in the r ight-hand sides of the 
s y s t e m  (9), (10), we get a new s y s t e m  of d i f ferent ia l  equations for  m(t),  n(t) on the in terva l  t o -< m(t) -< t 1. It 
is de te rmined  up to the c r i t i ca l  momen t  t~ for  which m(tz) = t 1. Repeat ing this cons t ruc t ion ,  we calcula te  suc -  
ce s s ive ly  the unknown functions on the in te rva l  [t 2, t3], where  m(tz) = t2, and on the in te rva l  [t~, t4], where  
m(t  4) = t~, etc. 
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The variant  of the model for which the function ~(t) is given exogeneously leads to an analogous but 
s imple r  sys tem of equations. The initial data here  are:  

a) the numbers  t o and m(t 0) [with m(t 0) < to]; 

b) the function r defined on the interval  [m(t0), to]. 

The compatibil i ty condition 3) must also be satisfied for the initial data. 

These considerat ions a re  sufficient for the solution of the sys t em of equations on a digital computer.  
We r e m a r k  that in this way it is also possible  to solve the analogous sys t em of equations for vector-valued 
functions v~(t), r i .e. ,  a sys t em in which ~<{t) = ~l(t) . . . . .  ~k(t) is a k-dimensional  vec tor -va lued function, 
r = r . . . .  , ~Vn(t) is an n-dimensional  vector-valued function, and Eqs. (7), (8) a re  also vector  equations: 

~'(t)----r215 m(t) . . . .  ), 

u = r (t), re(t) . . . .  ) 

More general ly,  we can consider  a sys t em in which m(t) = ml(t) , . . . ,  mN(t) is also a vector-valued function. 
The r ight-hand sides of the equations here  can be regarded  as depending on the values ~(t), ~v(t) a~ the points 
t, ml(t) . . . . .  mN(t). 

An investigation of such sys tems  is fair ly difficult. We mention that the theory of equations with de-  
flected argument  t rea ts  s imi la r  sy s t ems ,  but in it the deflection functions m l ( t ) , . . . ,  mN(t) a re  assumed to 
be given (and not determined f rom equations, as in our system).  The method of solution considered here  is 
analogous to the method of steps in the theory of equations with deflected argument.  Apparently,  sys tems  with 
unknown deflection have not been considered before. 

Variant  of Exogeneous Capital Investments  and Constant Labor Resources .  In this sect ion we obtain an 
explicit solution of the sy s t em of equations of the model under the following assumptions:  

1) the production function U(~<, ~, t) is a Cobb-Douglas  function, i .e. ,  U(w., r t) = f ( t ) ~ a ~ ,  ~ + fl = 1; 

2) the labor r e sources  do not change with time, T(t) = const  = To; 

3) the function ~(t) is given on the ray  [t 0, ~> (it is assumed to be positive and continuous). 

It will be convenient for us to use the function II (t) equal to the productivity of the labor on the stocks 

crea ted  at the moment  t. For  II (t) we obviously have the formula  II (t) = v (~(t). ~ (t). t) Under the above assump-  (p (t) " 
tions this formula  takes the form II(t) = f(t)~a(t)~0-~(t). We rewri te  the sys tem of equations (2), (5) for the 
variant  of the model under d iscuss ion in this section: 

cp (t) =cp (m (t)) m'(t), (11) 

](re(t)) x'(m(t)) q~-'(m(t)) = ~!(t)• (12) 

In our notation Eq. (12) can be wri t ten in the fo rm 

II (re(t)) = ~II(t). (13) 

The initial data in our var iant  of the model are:  the initial interval [m(t 0), to] (the "influence interval") 
and the function r on this initial interval.  

Asser t ion.  Suppose that the initial data a re  such that the function [I (t) is continuous and monotonically 
increas ing on the initial interval  [m(t0), t01. For  the initial data suppose that the compatibil i ty condition 
II(m(t0))=~II(t0) holds. F o r  suehini t ia l  data there  exists a unique solution of the sys tem of equations (11), (12). 
This solution is defined on the ray  [to, oo>. For  this solution the function II(t) is monotonically increas ing and 
the function r is positive. The function m(t) is monotonically increasing and for any t remains  less than t 
[m(t) < tl. The function re(t) can be found f rom the equation 

ra(t)  t t t 

m(to) ~0 

Proof.  We assume that the functions cp(t), m(t) sat isfy the sys t em (11), (12), and the initial conditions. 
Rais ing both sides of Eq. (12) to the power 1 / ~ ,  we get 
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Mult iplying this equation by Eq. (11), we get 

I t]= (m (t)) ++ (m (t)) rn' (t) =,I~I]=.W= (t) x (t). (14) 

Equation i14) is a different ia l  equation with s e p a r a b l e  va r i ab l e s  for  the de te rmina t ion  of re(t). In tegrat ing this 
equation, we get 

m~,) t 

/i]= (+) x (+) d+ = pt/+ ~ p]= (+) x (+) O+. (15) 
re(So) to 

I t  is not difficult  to see  that  Eq. (15) has a monotonical ly  inc reas ing  solution n i t )  defined on the r ay  [to, ++). 
F r o m  the posi t ivi ty  of the function f t /~(r)~(T)  and f r o m  the inequali ty 0 < fl < 1 we get  au tomat ica l ly  the in-  
equali ty re(t) < t. 

Le t  m(t) be the solution of Eq. (15). To de t e rmine  the functions r and LI(t) Eqs.  i l l )  and (13) r emain .  
We show that these  equations make it  poss ib le  to uniquely de t e rmine  the functions ~o(t) and II it). Indeed, we 
consider  the t ime  in terva l  [to, T] (T is an a r b i t r a r y  number  l a r g e r  than to). As shown above,  the function t - 
re(t) is posi t ive,  the re fo re ,  on the in te rva l  [to, T] it  exceeds  some  posi t ive constant  e. The c r i t i ca l  points 
tt ,  t2 . . . .  , tk, �9 �9 �9 a r e  de te rmined  r e c u r s i v e l y  f r o m  the equations n i t  l) = to, . . . ,  m(t  k) = tk_l, . . . .  Since 
the function t -  re(t) > e, the c r i t i ca l  points t l, t 2 , . . ,  do not accumula te  on the in terva l  [to, T], and hence,  
for  some  N we have the inequality iN+ 1 > T. We denote by I k the in te rva l  tk_ 1 _ t <- tk and by I 0 the initial 
in terva l  m(t  0) <- t -< t 0. It is c l ea r  that  i f  t ~ Ik, then re(t) ~ Ik_ l, and if  t ~ I 1 ,  then m(t) ~ I 0. There fo re ,  
Eqs. i l l )  and (12) make it  poss ib le  to de t e rmine  the functions r and 11 it) r e c u r s i v e l y ,  f i r s t  on the in terval  
I x, then on I2, and so on. By assumpt ion ,  on the init ial  in te rva l  I 0 the function ~(t) is posi t ive  and the function 
II (t) is monotonical ly  increas ing ,  the r e c u r s i v e l y  de te rmined  functions r and ll (t) obviously have the s a m e  
p rope r t i e s .  The a s s e r t i o n  is proved.  

In the va r ian t  just  analyzed the natural  assumpt ions  of  the s imula t ion  [monotone growth of the product iv-  
i ty of the labor  on the s tocks of the per iod t, the inequality r > 0, the monotone growth of the function re(t), 
and the inequali ty m(t) < t] a r e  au tomat ica l ly  sa t i s f ied  for  the solut ion if  they a r e  sa t i s f ied  on the initial i n t e r -  
val. F u r t h e r m o r e ,  the s tabi l i ty  of the function re(t) under a change in the initial  data  is obvious. In pa r t i cu la r ,  
the function re(t) in the va r ian t  being cons idered  does not genera l ly  depend on the d is t r ibut ion of the labor  r e -  
sources  with r e s p e c t  to the s tocks  of var ious  moments  of  c rea t ion  on the init ial  in terva l  [on the function ~(t) 
for  m(t  0) -< t -< to]. For  a rap id ly  growing function fl/~(t)~t(t) the function mit) rapidly  a s s u m e s  a behavior  that  
does not depend on the length of the initial  period.  Indeed, the equation for  m(t) can (for l a rge  t) be wr i t t en  in 
the f o r m  

to re(t) t 

fila (~) • (~) By ~- j" f'f~ (~) • (T) dv ---- fjl/~ .[/il~ iT) d~. 
m(l~) fo fo 

The init ial  data  m(to), which gives the length of the "influence in te rva l"  [m(t0) , to], a f fec ts  only the f i r s t  t e r m  
to 
.f ft/= (~) • (+) d+, which for l a rge  t is  sma l l  in c o m p a r i s o n  with the r emain ing  t e r m s .  

"m(to) 

We mention that  the s tabi l i ty  of  function n i t )  with r e s p e c t  to a change in the init ial  data  was f i r s t  d i s -  
covered  in numer ica l  exper imen t s  (the approx imate  solution of the s y s t e m  of equations of the model on a digi -  
tal  compute r  for  var ious  variants}.  These  expe r imen t s  indicate  the high s tabi l i ty  of the function m(t) a l so  in 
other  va r i an t s  of the model [in the ease  of exponential  growth of the labor  r e s o u r c e s  and in the ca se  of an endo- 
geneous c h a r a c t e r  for  the function ~it)]. 

We dwell now on the asympto t ic  behavior  of the solutions of the model  as t - -  oo As already, mentioned,  
�9 i / ~  ~ a the asympto t i c  behavior  of the function m(t) depends f i r s t  of all  on the behavior  of the function f (f) it) s 

t -~ co. It can be shown that zf the function f it)~(t) has power growth,  then the funcbon n i t )  zs approxzmately  
l inear :  re(t) ~ at + b, a < 1. More  in te res t ing  is the case  when the function f~/~it)~(t) is  of exponential  fo rm,  
i .e . ,  the case  fl/~(t)~(t) = Ce pt. We dwell on it  in detail .  In this case  Eq. i12) takes  the f o r m  

re(t) t 

.f CeP~ dT = ~i/a +I CeO~ d~ 
m(lo) to 

o r  

{16) 
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f r o m  which  

= i t ln[e  pt --e~ ra (t) -ffff In [~ q- ~ q- [~-~/~e p'~(t~ 

We s e t  A = - ( 1 / p a )  ln/3 (the n u m b e r  A is  pos i t i ve ,  s i nce  In/3 < 0) and B = / 3 - 1 / a e  pm(t0) - ePt0. Then  re(t) = 
( l / p )  l n [ e  ot + ]3] - A. The  funct ion re(t) wi l l  have  an  e s p e c i a l l y  s i m p l e  f o r m  i f  B = fi-1/aePm(to) - ePto is  equal  
to z e r o .  In th is  c a s e  re(t) = t - A. F o r  the  funct ion  ~o(t) we  ge t  the equat ion  ~o(t) = ~o(t - A), which  shows in a 
s i m p l e  way  tha t  the  funct ion  ~0(t) ex tends  f r o m  the  in i t ia l  i n t e r v a l  I 0 as  a p e r i o d i e  function.  We show tha t  the 
s y s t e m  has  an  ana logous  b e h a v i o r  a s  t ~ 0o a l s o  fo r  B ~ 0. We r e w r i t e  the f o r m u l a  for  re(t) in the f o r m  re(t) = 
t - A + ( l / p )  ln [1  § B e - P ~ .  With  g rowing  t the t e r m  Be - o r  b e c o m e s  s m a l l ,  and the funct ion m(t) r ap id ly  goes  
to  a s t a t i o n a r y  mode  

r a ( t ) ~ t - - A ,  A = - -  l---In[5. p~ 

We now c o n s i d e r  the  b e h a v i o r  of the  funct ion ~0(t). F o r  l a r g e  t the equa t ion  ~0(t) = ~0(m(t))m'(t) co inc ides  m o r e  
and m o r e  p r e c i s e l y  wi th  the  equa t ion  r = ~o(t - A),  t h e r e f o r e ,  i t  i s  na tu ra l  to expec t  tha t  the  funct ion  ~0(t) 
p a s s e s  to a pe r i od i c  mode  of  b e h a v i o r  (with pe r iod  A) in  the c o u r s e  of  t i m e .  

We  p e r f o r m  a c a l c u l a t i o n  p rov ing  this  � 9  and enab l ing  us  to c o m p u t e  the  l im i t i ng  pe r iod i c  funct ion 
in t e r m s  of  the in i t i a l ly  g iven  ~0(t) fo r  m( t  0) - t - t 0. The  funct ion m(t) m a p s  the i n t e r v a l  I k into Ik_l ,  in p a r -  
t i c u l a r ,  11 into I 0. The  i n v e r s e  funct ion  t(m) r e a l i z e s  the  i n v e r s e  mapp ing ,  and i ts  k - t h  i t e r a t e  

t (t ( . . .  (t (m)) . . . ))  = t(h)(m) r e a l i z e s  i n p a r t i c u l a r ,  the m a p p i n g  of  the  in i t i a l  i n t e r v a l  I 0 into the  k - t h  i n t e r v a l  
k times 

I k tha t  i s  of  i n t e r e s t  to us .  

F r o m  Eq. (16), r e g a r d i n g  t a s  a funct ion of  m ,  we  ge t  e pt(m) = qe pm + p, w h e r e  q =/3 -1/c~ and p = 
q(ePt0 - ePm(t0)). Subs t i tu t ing  the funct ion t(m) i n s t e a d  of  m in  t h i s  equat ion ,  we  ge t  

e ~  ~ e ~ == qe pt(") ~- p = q*-e" -k- qP q- p. 

C a r r y i n g  out th is  subs t i tu t ion  k t i m e s ,  we  ge t  

F r o m  th i s ,  we  have  an  exp l i c i t  f o r m u l a  fo r  the  k - t h  i t e r a t e  of the  funct ion t(m) 

l t(&)(m) = kA q- -ff hl[e~r~ q- t - t / q ~  

F o r  l a r g e  k w e  get  t (k)(m)~ kA -t- ~ ln[e  p'~ q- --~i~-~_a J .  Nex t ,  i n v e r t i n g  the  equat ions  (p(t) = q~(m(t) )m'( t )and ~ n ( t )  = 

II (re(t)) and iterating k times, we arrive at the equations 

l~kll (t(k) (ra)) = rl (m). 

T h e s e  f o r m u l a s ,  t o g e t h e r  wi th  the exp l i c i t  and a s y m p t o t i c  f o r m u l a  fo r  t (k  ) (m), m a k e  i t  p o s s i b l e  to  obta in  e x -  
p l i c i t  and a s y m p t o t i c  f o r m u l a s  fo r  ~0(t(k)(m)) and lI( t(k)(m)).  F r o m  the a s y m p t o t i c  f o r m u l a  i t  is  not ha rd  to s e e  
tha t  fo r  l a r g e  t the func t ion  ~0(t) r e a l l y  does  pas s  to a pe r i od i c  mode  of b e h a v i o r  tha t  c a n  be  exp l i c i t ly  d e t e r -  
mined.  

Exponen t i a l  Solut ions .  In the p r e v i o u s  s ec t i on  the l a b o r  r e s o u r c e s  w e r e  a s s u m e d  to be  cons tan t .  The  
a s s u m p t i o n  tha t  the  l a b o r  r e s o u r c e s  g row exponen t i a l ly  is  m o r e  r e a l i s t i c .  Le t  T(t) = T0 ept  and fl/c~(t)~(t) = 
Ge pt (here  To, p, G, and p a r e  g i v e n  cons tan t s ) .  In th is  v a r i a n t  the  mode l  equat ions  do not lend t h e m s e l v e s  
to  the  s a m e  c o m p l e t e  i nves t i ga t i on ,  but  the c h a r a c t e r i s t i c  exponent ia l  so lu t ions  c a n  be  found a l so  he re .  Namely :  
i t  i s  not h a r d  to show tha t  the fol lowing funct ions  s a t i s f y  the s y s t e m  of equat ions  of  the  model :  r = r and 
re(t) = t - A, w h e r e  

pTo and A In I~ 
~ 0  ! - -  e - A i ~  p - -  1)" 

We now r e t u r n  to  the  v a r i a n t  of the  mode l  in wh ich  the  cap i t a l  i n v e s t m e n t s  cons t i t u t e  a cons t an t  p a r t  of  
t 

the  na t iona l  i n c o m e ,  i . e . ,  in wh ich  • (t) = 7Ji). U (~ (x), cp (~), ~) dx. We a s s u m e  tha t  U(~ ,  ~o, T) is an  a r b i t r a r y  

C o b b - D o u g l a s  funct ion  U(a<(t), r  t) = eS t~  ~ (t)~o/3(t) and tha t  T(t) = T0ePt. T h e r e  a r e  c h a r a c t e r i s t i c  exponen-  
t ia l  so lu t ions  a l s o  in th is  v a r i a n t .  T h e r e  ex i s t s  a (unique) s e t  of  p a r a m e t e r s  % ,  l, ~0, # ,  and A such  that  the 
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functions ~(t) = %e/t, • = ~0 e~t, and m(t) = t - A sat isfy the sys t em of model equations. In this set  l = p and 
for the form of the function m(t) = t - A follows f rom the exponential form of the functions r (t) and ~(t). We wri te  
out the resul t ing exponential solution: 

m (t )  = t - -  A ,  A ----- - -  ~ I n  

p T o  . 
( t)  = ~oePt, % = ~ ,  

x ( t )  = Xoe(P'l'6/~)t , Xo = .i,l/i;q~o [l 
p + 8 / l ~  J " 

For this solution the quantity A indicates the period of virtual de ter iora t ion of the stocks,  which does not de-  
pend on the moment of creat ion of the stocks and is inverse ly  proportional  to the coefficient 6 (the coefficient 
charac te r iz ing  the ra te  of scientific and technological progress) .  

This exponential solution enables us to get analytic expressions (in the f ramework  of the modification of 
the economic model considered here) for the most  important  macroeconomic  charac te r i s t i cs :  the national in- 
come and the norm of effectivity of capital investments.  The formulas  that are  obtained for calculating these 
economic charac te r i s t i c s  make it possible to es t imate  the influence of technological p rogress  and other p a r a m -  
e te rs  of the model  on these economic charac te r i s t i cs .  
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In recent  yea r s  a number of papers  have appeared which a re  devoted to studying elliptic boundary prob- 
lems in domains with edges on the boundary ([1-11], etc.). In these papers ,  conditions were  studied for bound- 
a ry  problems to be Noetherian in weighted Sobolev spaces  generated by norms in L 2 and in Lp, 1 < p < oo; the 
behavior of solutions near  an edge was also studied. 

In this ar t ic le ,  we consider  a boundary problem for a homogeneous elliptic opera tor  of o rder  2m with 
constant coefficients in an n-dimensional  dihedral  angle. We obtain here  prec ise  est imates  for Green 's  func- 
tions and Poisson kernels ,  which a re  then applied to prove coerc ive  est imates  for solutions in weighted H~tder 
c lasses .  Applications of these resul ts  to elliptic problems in bounded domains with edges will be given in 
another ar t icle .  

�9 1. B o u n d a r y  P r o b l e m  in  a D i h e d r a l  A n g l e  

1. Function Spaces. Let (r, 9) be polar coordinates in the Euclidean plane {y}, y = (Yl, Y2), ~ ~ ' (0 ,  2r] 
and K be the sec to r  {y : 2 ;I oJ I < ~ } with edw T • = {y : 2 ~v = • ~,  I y ] > 0 }. We let ~) denote the dihedral angle 
K •  n - 2 , n - > 3 , w i t h f a c e s  F + = T  • 2 1 5  n-  and e d g e M = { x = ( y , z ) :  y = 0 ,  z ~ R n - 2 } .  

Transla ted f rom Sibirskii Matematieheskii  Zhurnal,  Vol. 19, No. 5, pp. 1065-1082, September-October ,  
1978. Original ar t ic le  submitted November 28, 1977. 
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