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NEWTON POLYHEDRA AND TOROIDAL VARIETIES 

A. G. Khovanskii UDC 513.015.7 

We consider an algebraic variety X defined in space (~ \ 0) ~ by a nondegenerate system 
of polynomial equations f~ = . = fk = 0 with Newton polyhedra A~, ., A k. The gen- 
eral problem consists of calculating the discrete invariants of variety X in terms of poly- 
hedra A (see [i]). Here we carry out the preparation for such calculations. 

Space (C~0) ~ is compactified by means of imbedding in a compact nonsingular toroidal 
-- 

variety M n. Given polyhedra A, we choose a compactification M n such that closure X of vari- 
ety %~7~ ~ is a nonsingular variety manifold that is transversal to all the orbits of var- 
iety M n. 

The toroidal compactification (C~0)~f ~ plays the same role as the projective com- 
pactification ~ P ~  in the classical case. Toroidal varieties are well known [2, 3]. 
It is almost as easy to handle them as projective spaces. In a subsequent paper the geometry 
of toroidal varieties will be used for the calculation of the arithmetic genus and Euler 
characteristic of variety X. Here we discuss the connection of this geometry with the ele- 
mentary geometry of integral polyhedra. 

I have been influenced by [2-8] and by personal contact with V. I. Arnol'd and A. G. 
Kushnirenko. I especially thank D. N. Bernshtein and B. Ya. Kazarnovskii for useful discus- 
sions and V. L. popov for a series of lectures on toroidal varieties. 

§i. Toroidal Compactifications 

In this section we discuss smooth compact toroidal varieties in a form that is neces- 
sary for us. We do not present proofs: they are either contained in Chap. i of [2] or can 
be easily derived from it. 

i. The Torus, Its Characters and One-Parameter Groups. The space (C~0) ~ is the n- 
dimensional complex space C n with coordinates z = zl, . ., z n from which all coordinates 
planes have been removed, i.e., z~(C~0)n~ if zinc0 ..... z~0~ The space (C~0) ~ is an 
algebraic group with respect to componentwise multiplication. Such a group is called an n- 
dimensional torus and is denoted by T n. In (C~0) ~ we fix a system of coordinates z. The 
group T n with the fixed system of coordinates is called a standard torus. 

We consider the group of algebraic characters, i.e.,the algebraic homomorphisms of 
(C \ 0) ~ into the standard torus (~ ~ 0) with coordinate t, ~%: (C \ 0) ~-~ (~ ~ 0). Each 

~ where ~i are any in- such character is a monomial, i.e., a function of form ~ = z~'.....z~, 
tegers. We number the monomials (characters) by means of the integral vectors ~ = ~, . 

~ ~ ~. ~n in the fixed n-dimensional real space Rn and use the brief notation z~.....zn ~ = 

We consider the group of algebraic one-parameter groups, i.e., algebraic homomorphisms 
%:(C~0)-+(C~0) ~, Each such homomorphism has the form z~ ~ ~, ...,z~ ~ ~, where ~i are 
integers, or, briefly, z =t~,~ = ~ .... , ~. We number the one-parameter groups % by inte- 
gral points ~ of the fixed space R n*. The fixing of a system of coordinates z in (C~0) '~ 
fixes systems of coordinates in R n and R n*. One-parameter groups %i of form z~ = ~U will 
be called basic one-parameter groups. 

There is a natural scalar product <%,~>~ between the one-parameter groups ~ and the 
characters X, viz., <%,%> is equal to the degree of the composite homomorphism %~: (C~0)-+ 

All-Union Scientific-Research Institute of System Studies. Translated from Funktsional'- 
nyi Analiz i Ego Prilozheniya, Vol. ii, No. 4, pp. 56-64, October-December, 1977. Original 
article submitted March 25, 1977. 

0016-2663/77/1104-0289507.50 © 1978 Plenum Publishing Corporation 289 



(C \ 0). In the coordinates this product has the standard form <(=, ..... ~n), (~i .... , ~)> = 

~ ~. Therefore, the scalar product <%, ~> can be extended to spaces R n and R n*. From this 

point the elements of space R n will be called vectors and the elements of space R n* covec- 
tors. 

2. Isomorphisms of Standard Tori. Now let T n be another standard torus, located in 
space C~ n with coordinates u ---- up ..... u~, u~ T ~ for ~=0 ..... ~=0. 

• ~ 

We consider an algebraic isomorphism ~ of torus T n into torus (~ ~ 0) '~, ~p: F ~-+ (~ \ 0) ~. 
In the coordinates such an isomorphism is written by the equations z~----e~-....~, where 

A = ~ij is an integral matrix and Idet A I = i. Conversely, for each such matrix A we can 
write an isomorphism ~. With each isomorphism ~ we associate a cone o in space R n*. 

Definition. A simple cone in R n* is a cone ~ consisting of linear combinations ~c~ 

of covectors $~, • ., ~n with nonnegative real coefficients ¢~ ~ 0, if the covectors ~i 
are ~ integral and form a basis in the integral lattice of space Rn*. 

Let covectors ~i number the images ~----~%~ of the basic one-parameter groups %i of 
the standard torus T n under the isomorphism ~. We associate with isomorphism ~ the simple 
cone generated by covectors ~i. 

Conversely, for a given simple cone o it is possible to generate an isomorphism ~p: 

~-~ (~ ~ 0) ~ (to within isomorphisms ~ : F ~-+ F ~' that renumber the coordinates). For this, 
it is necessary simply to number the minimal integral covectors $i on the edges of cone ~ 
and form a matrix A from them. Integral points ~ of cone o have a simple meaning. These 
points label precisely those one-parameter groups %(t) along which the coordinate functions 
ui of point ~-~ % (~) remain bounded as t ÷ 0. A basic role is played by the one-parameter 
groups ~i labeled by covectors $i. Along such one-parameter groups z = ~i(t) and along 
their shifts z --= z~ ~ (~), z~ ~ (~ ~ 0)'~.. function u i is proportional to t, while the remaining 
functions uT, j ~= ~, remain nonzero constants. 

3. The Compactification Associated with the Isomorphisms. Suppose that we are given 
a finite family of isomorphisms ~m of a standard torus ~ ~ into the torus (~ ~ 0) ~. 

Definition. A completion of space (~ ~ 0) ~', compatible with the family %~, is an analy- 
tic variety M n containing (~ ~ 0) ~, such that i) the isomorphisms ~m : F~-+ (~ \ 0) ~ are ex- 
tendible to regular imbeddings ~m :6~ -+7~f ~, 2) the regions ~/m = ~ (~) cover all of Mn.# 
A compact completion is called a compactification. 

No more than one completion M n is compatible with a family of isomorphisms ~m. Fre- 
quently, there are no such completions at all. 

A finite set of simple cones {~m} is called admissible if distinct cones intersect only 
along the faces. An admissible set gives a regular decomposition of space R n* if ~ ~m = 
~ o  

THEOREM. Completion M n compatible with isomorphisms ~m exists if and only if the cor- 
responding set of cones {om} is admissible. The completion is compact if and only if D om = 
~ o 

This theorem makes it possible to associate with each regular decomposition of space 
R n* a compact variety M n. We describe its simplest properties. In regions Um the mapping 
~m :~-+ 7~f ~ gives a local system of coordinates. The imbedding (~ ~ 0)~-+ 7~ '~ is a bira- 
tional isomorphism. The inverse mapping in the coordinates of region Um coincides with ra- 
tional mapping ~m : ~-+ (~ ~ 0) ~. The action of torus (~ ~ 0) ~ on itself can be extended to 
manifold M n (therefore, manifolds M n are called toroidal). Under the action of the torus, 
M n is decomposed into a finite number of orbits. Regions Um are made up of orbits. Under 
the mapping ~: ~fm-+ ~ the orbits correspond to the coordinate planes in C n with the I, 

smallest coordinate planes omitted. Each orbit is a torus of dimension ~ ~.. The closure 
of each orbit is a smooth toroidal variety of the same dimension. The basic role for us is 
played by the orbits of dimension n -- I. There exists a one-to-one correspondence between 

n-i 
orbits T~ of dimension n -- 1 and minimal integral covectors ~ on the edges of a regular 
decomposition of Rn*. Closures ~ of orbits T~ n-~ are transversally intersecting hypersur- 

#We frequently denote by one letter functions and their extensions and restrictions. 
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faces in 7W ~,7~f~= (C~0)n~ O~.. The order of the zero of a meromorphic function f: M n ÷ C on 

O~ is equal to the order of the zero of the function f (z 0 b~ (~)) at the point t = 0. Here 

zo is a general point in (C\0) ~ and ~ is the one-parameter group, labeled by covector {~. 

4. Integral Polyhedra A, Their Support Functions Z, and Sufficiently Full Varieties 
M n. An integral polyhedron A is a convex polyhedron in R n with vertices at integral points. 
In the course of this paper we encounter only such polyhedron. The support function ~A is 
the function on R n* defined by ~ (~) ~ m~n <~. z>. Suppose that we are given a finite set of 

~ A  

polyhedra A i. We say that a regular decomposition of space Rn* into simple cones is suffi- 
ciently fine for the set of polyhedra if the support functions of all the polyhedra are lin- 
ear on each cone of the decomposition. The corresponding toroidal variety M n will be called 
sufficiently full for the po!yhedra A i. By the methods of Chap. 1 of [2], it is not hard to 
prove that for any finite set of polyhedra Ai there is a sufficiently fine decomposition. 
Moreover, this decomposition can be chosen so that the corresponding sufficiently full var- 
iety M n is projective. 

§2. Resolution of Singularities 

i. Nonsingular Systems of Functions ~. For each polyhedron A~R ~ and covector ~ we 
define the polyhedron A6 to be the face of the polyhedron A on which the function <~.~> at- 
tains a minimum (in particular, A ° = A). 

A Laurent polynomial f:(C~0)~-+C is defined to be a finite linear combination of char- 
acters, i.e., f(z) : ~ z% 

The Newton polyhedron A(f) of a Laurent polynomial f is defined to be the convex hull 
of the points ~ ,  for which ¢=~e0. For each Laurent polynomial f and covector ~ we de- 
fine the Laurent polynomial f~, ~ : ~, ¢~z~ (in particular, fo = f). 

~ A ~  
_ 

Definition, We say that a system of Laurent polynomials fl, • -, fk is nonsingular 
for its Newton polyhedra At, ., Ak, if for any covector ~ B  ~ the following condition 
(~) holds: for any solution z of system /} .... :f~ : 0, in (C~0) n, differentials df~ are 
linearly independent in the tangent space to point z. 

2. THEOREM (Resolution of Singularities). The condition of nonsingularity holds for 
almost all systems f~, ., fk with the polyhedra A~, . ., Ak. If the condition of non- 
singularity holds and the variety M n is sufficiently full for the polyhedra A~, ., Ak, 

-- 

then closure X of variety X C~ ~ is a nonsingular variety that is transversal to the orbits 
of variety M n. 

For the proof we need one auxiliary assertion. Let C~ be an n-dimensional complex 
space, C I the set of its coordinate planes (of which there are 2n), and a~: C~-+C~ the set 
of projections. 

Assertion. Let ~:6~--~0 ~ be an analytic mapping. With it we associate the 2 n map- 
pings @~f :(C \ 0)~-~C ~. It is asserted that almost every point ~ C  ~ is noncritical for 
all mappings gzi. For such a point c the variety g-~(c) is nonsingular in C~ and transversal 
to all the coordinate planes. 

The first part of the assertion follows from Sard's lemma, and the second part is eas- 
ily checked. 

We proceed to the proof of the theorem. Let {Om} be a sufficiently fine decomposition 
of space Rn* and M n th~ variety corresponding to it. We take some cone Om of the decomposi- 
tion. We show that conditions ({) hold almost always for ~om and that their satisfaction 

-- 

guarantees the nonsingularity of variety X and the transversality of variety X to the orbits 
lying in chart U~TW ~. 

Let ~i(u) be the Laurent polynomial obtained from fi(zj by the substitution ~ = 9m (~)~ 

and ~i its Newton polyhedron. The polyhedron ~i has a vertex ~i on which all the coordinate 
functions attain a minimum: this follows from the condition of linearity of support, func- 
tion ~Ai on cone ~m. Function ~(~)-~ : ~(~) is thus a polynomial with nonzero free 

term. Let ~(e) : $~(~)--c~, where c i is the free term of polynomial ~i(u). On the torus 
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u~0 ..... u~=0 the system of equations f~ ..... f~ = 0 can be written in the form 
gi(u) = c~. The theorem now reduces to the auxiliary assertion for the mapping g: C~ ÷ C k, 
defined by ci = gi(u); Condition (~) coincides for ~om with the condition that the 
point c is not critical for one of the mappings ~g~r :(C~0)~-+C ,~. 

Remarks. I. It is clear from the theorem that the variety X is nonsingular in the 
general case. The singularity of variety X lies in its noncompactness, and we resolve this 
singularity. 

2. It is clear from the proof that we can attain nonsingularity of the system by chang- 
ing the coefficients of only the monomials corresponding to the vertices of the Newton poly- 
hedra. 

3. Singular systems have real codimension not less than 2. Therefore, it is possible 
to pass continuously from any nonsingular system to any other in such a way that the variety 

-- 

X always remains smooth and transversal to the orbits of the variety M n. Many invariants 
of the variety X do not change under such a deformation: e.g., its differential type and 
the Euler characteristics with coefficients in certain sheaves do not change. Therefore, 
all the invariants of this kind depend on the Newton polyhedra ~, . . ., A k and do not de- 
pend on the specific choice of a nonsingular system of polynomials f~, ., fk. 

4. The local behavior of the system of functions f~, . ., fk around the point 0 in 
C n is determined on the whole by the parts of the Newton polyhedra A~, ., A k that are 
turned to the point zero. These parts are called Newton diagrams (see [9, i0] for a simi- 
lar definition). The definition of nonsingularity can be carried over directly to systems 
of functions with given Newton diagrams. Here it is necessary to require that the condition 
(g) holds for all covectors g with positive coordinates. The theorem on resolution of singu- 
larities also carries over to the local case with the help of a suitable toroidal variety. 
Here it is necessary to take a sufficiently fine decomposition of the positive octant in 
R n*. We note that the subject of Newton polyhedra began precisely from local problems: 
from the rich empirical material and conjectures of V. I. Arnol'd and the first results of 
A. G. Kushnirenko. 

§3. Objects Associated with a Laurent Polynomial f and a Polyhedron A 
under a Toroidal Compactification 

i. General Notation. Let M be a compact analytic variety and D a divisor of it. As- 
sociated with the divisor D we have the sheaf ~{D} of germs of meromorphic functions on M: 
a germ g~Q {D}, if the germ g~ is holomorphic, where ~ =0 is the local equation of 
the divisor D. For the divisor D a one-dimensional analytic fibering V is constructed in 
the standard way. The fibering V with the indicated divisor D is denoted by {D}. The sheaf 
of holomorphic sections of the fibering V is denoted by ~V. The sheaf of germs of sections 
~V and the sheaf of germ s of meromorphic functions ~{D} are isomorphic. The one-dimensional 
Chern class ctV of fibering {D} is realized by the divisor D (we denote by one letter the 
divisor D and the class of twoLdimensional cohomologies that is dual to it). We denote by 
K the one-dimensional canonical fibering on M. The sheaf ~ {D}~K of germs of sections 
of the fibering {D}~K is isomorphic to the sheaf of germs of meromorphic differential 
forms of highest degree on M with coefficients in the sheaf ~{D}. 

2. Now let [:(C ~ 0)~-+C be an arbitrary Laurent polynomial. For this f we construct 
• the Newton polyhedron A(f) and its support function lA: R~*-+R. We now fix an arbitrary 
toroidal compactification M n of space (C~0) ~. The function f can be extended meromorphic- 
ally to space M n, since imbedding (C~0)~--~7~ n is a birational equivalence. 

In the first place we are interested in the divisor D that is the closure in M n of the 
divisor in (C \ 0) ~, defined by the equation f = 0, and the sheaves ~ {~D}, ~ {~D}~K asso- 

ciated with it. 

We define the divisor D= characterizing the behavior of the function f "at infinity." 
Let ~ be the closure in M n of the (n -- l)-dimensional orbit ~-= t, M s = (C ~ 0) ~ ~ O=. Divi- 

= 

sor D~ is the sum of the hypersurfaces 0~. The hypersurface 0~ appears in divisor D~ with 
multiplicity k if the function f has a pole of multiplicity k on this hypersurface, and with 

multiplicity -k if f has a zero of multiplicity k. 
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The Divisors D and D= are Linearly Equivalent. indeed, divisor D -- D~ is the divisor 
of the meromorphic function f. The passage ~rom"~he "curvilinear" divisor D to the "rec- 
tilinear" (i.e., consisting of orbits) divisor D~ is basic for what follows. 

Since the divisors D and D~ are linearly equivalent, the same fibering V corresponds 
to them. The one-dimensional Chern class of the fibering V is realized by the divisor D or 
the divisor D~. The sheaf g{D} is isomorphic to the sheaf ~V and to the sheaf ~{D~}. 

Let ~ be covectors corresponding to the (n -- l)-dimensional orbits T n-1 of the com- 
pactification ~f~O~ = ~-i, and ~ the support function of the polyhedron 4~f). 

Assertion i. D~ -- ~I (~) • O~. 

Assertion 1 is obtained bY considering the asymptotic behavior of the function f(z 0 ~= 
(~)) as t ÷ 0, where zone is the shifted one-parameter group ~ corresponding to the covec- 
tor $~. 

It follows from Assertion 1 that the class of equivalence of the divisor D depends only 
on the Newton polyhedron 4 (for a fixed compactification M n) and does not depend on the con- 
crete choice of the function f. Therefore, we can introduce the following notation: 

[4] is the class of linearly equivalent divisors D corresponding to any Laurent poly- 
nomial f with 4(f) = 4; 

{~} is the one-dimensional fibering corresponding to the class [4]. 

It is convenient to carry out cohomological calculations with the sheaf ~{D=}, which 
is isomorphic to the sheaf ~{D}. Divisor D= is made up of orbits and is invariant with re- 
spect to the action of torus T n. The sheaf ~{D=} is hence also Tn-invarianto With Tn-in - 
variant sheaves there is associated an order function j: a piecewise-linear function on co- 
vectors ~. The definition of this function can be found in [2, pp. 26-27]. The role of the 
order function j lies in the fact that the cohomologies of variety M n with coefficients in 

a Tn-invariant sheaf can be calculated only with regard to the order function j. A purely 
geometric algorithm for such a calculation is given in [2, pp. 42-43]. 

Assertion 2. On covectors ~ corresponding to the (n -- l)-dimensional orbits T~ -~ 

functions j and ~ coincide, ~(~) = ~(~=). On the remaining covectors the function j is re- 
generated by piecewise linearity, i.e., by linearity inside each cone o m of the decomposition 
corresponding to the toroidal closure M n. 

Assertion 2 follows from Assertion 1 and the definition of the order function j. For 
sufficiently full compactifications, Assertion 2 takes a particularly simp!e form. 

Assertion 2'. If variety M n is sufficiently full for variety 4, then the functions j 
and ~ coincide. 

3. Preservation of Structure. The juxtapositions described preserve the natural struc- 
tures: To the product of Laurent polynomials there correspond ~he sum of divisors D, the 
tensor product of fiberings V, the sum of divisors D~, the sum of order functions j, the 
sum of Newton polyhedra A, and the sum of their support functions ~. 

We consider the commutative semigroup A n of convex integral polyhedra in R n with re- 
spect to addition. This is a semigroup with cancellation, i.e., if A~ + A = A~ + A~ then 
4~ = 4=. Therefore, the semigroup A n can be extended to a group ~n" The mapping 4 ÷ [A] 
is a homomorphism of the semigroup An into the group of classes of linearly equivalent divi- 
sors on M n with ~espect to addition, and the mapping A-+{A~ is a homomorphism of An into 
the group of one-dimensional vector fiberings on M n with respect to tensor multiplication. 

- -  

Both of these mappings, can be extended to the group A n . For example, the class of the divi- 
sor [--4] is defined to be the class --[4], and the fibe~ing {--~} is defined to be {A} -~ 

4. We need some definitions connected with convex integral polyhedra. Let A be a k- 
dimensional integral polyhedron lying in the n-dimensional space R n. We construct the k- 
dimensional plane R k in which the polyhedron 4 lies. Points that are limit points both for 
the polyhedron and for its complement ~ A are called boundary points of the po!yhedron~ 
The remaining points are called interior. We mention that for a zero-dimensional polyhedron 
(.) the unique point belonging to it is interior. We say that the polyhedron 41 is strictly 
less than polyhedron 4~, and write 4~ < 4=, if all the points of polyhedron A~ are interior 
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for ~=. We introduce more notation: T(A) is the number of integral points belonging to the 
polyhedron A, B+(A) is the number of interior integral points of the polyhedron A, B(A) = 
(--l)kB+(A), where k = dim A. 

§4. Results of Calculation of Cohomologies a~d Their Geometric Consequences 

i. Let A be a convex integral polyhedron, M n a toroidal compactification of (C\0) ~, 
that is sufficiently full for A, and K the canonical fibering on M n. Further, let f be any 
Laurent polynomial with Newton polyhedron A, and D, D= the corresponding divisors. 

Assertion i. 

1. d i m / ~ ( ~ l  n, {D~}) = ~ r  i > 0 .  

2. The s e c t i o n s  i n  HO(Mn,{D~})  a r e  p r e c i s e l y  t h e  L a u r e n t  p o l y n o m i a l s  P f o r  which  
~ (P) ~_ ~. 

A s s e r t i o n  2. 

= 

1. d i m H  ~(M n , { D ~ } ~ K ) = _  + ( A ) ~ r  i = codim A. 

2. For  p o l y h e d r a  A o f  f u l l  d i m e n s i o n  n ( c o d i m  A = 0) t h e  s e c t i o n s  i n  t t ° ( M n , { D ~ } ( ~ K )  

a r e  p r e c i s e l y  t h e  d i f f e r e n t i a l  f o rms  ~ o f  t h e  fo rm o = P .  dz~ dz,~ w i t h  L a u r e n t  p o l y -  

n o m i a l s  P f o r  which  A(P) < A. 

A s s e r t i o n s  1 and 2 a r e  n o t  h a r d  to  g e t  f rom t h e  g e o m e t r i c  a l g o r i t h m  f o r  c a l c u l a t i o n  of  
c o h o m o l o g i e s  w i t h  c o e f f i c i e n t s  i n  a T n - i n v a r i a n t  s h e a f  and i n  t h e  s h e a f  o f  i t s  d i f f e r e n t i a l s  
a c c o r d i n g  t o  t h e  o r d e r  f u n c t i o n  j ( s e e  [ 2 ] ) .  I n  ou r  c a s e  we a r e  d e a l i n g  w i t h  t h e  s h e a f  
~{D~} ,  t h e  s h e a f  o f  i t s  d i f f e r e n t i a l s  f l { D ~ } ~ K ,  and t h e  o r d e r  f u n c t i o n  j t h a t  i s  e q u a l  t o  
t h e  s u p p o r t  f u n c t i o n  Z o f  t h e  p o l y h e d r o n  A. 

We a r e  i n t e r e s t e d  a l s o  i n  t h e  s h e a v e s  ~ { ~ D ~ }  and fl { ~ D ~ } ~ K .  The c o h o m o l o g i e s  
w i t h  c o e f f i c i e n t s  i n  t h e s e  s h e a v e s  can  be c a l c u l a t e d  a t  once  f rom t h e  A s s e r t i o n s  1 and 2 by 
t h e  S e r r e  d u a l i t y  ( s e e  [ 8 ] ) .  I n  o u r  c a s e  t h e  S e r r e  d u a l i t y  i s  e x p r e s s e d  i n  t h e  i s o m o r p h i s m s  

H ~ (M", {--  D . } )  ~ H ~-~ (M ~, {D.} ® K) 

and 

H i (M n, { - - D . }  ~) K) ~ H ~-~ (M ~, {O.}) .  

Remark.  The c o h o m o l o g i e s  H (Mn,{ - D~}) and H ( M  ~, {- -D~}~)K)  can  a l s o  be  c a l c u l a t e d  
directly from the order function--~. We mention that in the geometric algorithm for calcu- 
lation of the cohomologies of Tn-invariant sheaves from the order function the Alexander 
duality corresponds to the Serre duality. 

The given calculations contain complete .information on the cohomology groups H(f~f n, 
{mA}) ~ H (M ~, {roD}) .~ H (M n, {mD~}) and H (M ~, {mA} (~ K) .~ H (M n, {roD} ® K )  .~. H (M ~, {mD~} 
~ ) K )  for all integers m. We write the part of this information that is useful to us in the 
necessary form. 

THEOREM i. We have 

dim H i (M n, {--  A}) = dim H * (M' ,  {--D}) ---- dim H n-~ (M n, {A} ~ ) K ) =  
0 for i ~  dim A,. 

= dim [I n-'' (3I '~, {D} (~ K) --  B+ (A) for i --  dim A. 

2. 

P d~ 
meromorphic differential forms ~ of the form o-----~-z--~/k.../~ 

A(P) < A. 
" 

3. dim ~ (M ~, {0}) d i m ~  (M '~, {0} @ K) = for. g = O, = for i ~ 0 .  

4.  Z (  M~, {--A}) = B ( A ) ;  Z (  M~, {A}) = T(A) ;  z ( M " ,  {0}) = ~. 

For dim A = n the group of global sections of the sheaf 
dz n 

zn 

~ {D} ~ K consists of the 

with Laurent polynomial P, 
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Proof. Part ! follows from Assertion 2 and the Serre duality. Part 2 follows from 
Assertion 2 and the explicit specification of an isomorphism of the sheaves ~{D~}~K and 
~{D}QK. Part 3 is a particular case of Part 1 for the trivial divisor {0}. In Part 4 
the Euler characteristics of the sheaves ~ {&},~ {~A}, and ~ {0} are calculated~ The first 
of them is obtained from Assertion I. The two others are obtained from Parts 1 and 3. 

2. Corollaries from Elementary Geometry. COROLLARY I. Let At, ., Ak be fixed con- 
vex integral' polyhedra and nl, ., nk nonnegative integers. Then the number ~ (~ ~ ~ ~.. 
+ n~A~) of integral points in the polyhedron A = ~1A~ + .-. + n~A~ depends polynomially on 
n~, ., nk. 

Proof. Let M n ~be a toroidal compactification of (~ ~ 0)~ that is sufficiently full for 
the polyhedra A~, ., Ak. By the theorem (Part 4) 

~ (~1 11 + "'" +1~1~)  = Z (2~n, {f l111+ ... + nRl~}) = Z (~ln, {limB1 (~ ... (~) {IR},'fl). 

By the Riemann--Roch theorem (see [8]), the Euler characteristic of the sheaf of sections of 
the one-dimensional fibering depends polynomially on its Chern class (and on the Chern 
classes of the variety Mn). it remains to observe that the Chern class of the fibering 
{Ai} ~ ~ ... ~ {A~ is equal to ~ [A~] + . . . + n~ [~] and depends linearly on the numbers 
nl, ., n k. 

COROLLARY 2. Under the conditions of Corollary 1 the number B(A), which is equal to 
the number of interior integral points of the polyhedron A = e~A~ + ... +~A~, multiplied by 
(--i) dim A, depends polynomially on nl, ., n k. 

Proof. By the theorem (Part 4), ~ (A) = % (fcf", {-- A~} '~ ... ~ {-- A~;~). Corollary 2 
now follows from the Riemann--Roch theorem. 

From Corollaries 1 and 2 it follows, in particular, that for a fixed polyhedron A the 
functions T(mA) and B(mA) are polynomials for nonnegative integers m. We extend the defini- 
tions of these polynomials T(mA) and B(mA) to any integer m. 

COROLLARY 3. The polynomials T(mA) and B(mA) are interchanged under the involution 
m ÷-m, i.e., T(mA) = B(--m~). 

Proof. We consider the function x(m) of an integer m defined by the formula %(~)=% 
(~f%{A}m). By the Riemann--Roch theorem this function is a polynomial. For ~>0, % (~) = 
%(~f% {A}~) = ~(~A). For I~<0, %(~) = %(~% {--A}~) =B(--~A). The corollary is proved. 
We mention that the proof of this corollary is implicitly based on the Serre duality. 

Remark. The assertions of Corollaries 1 to 3 are not new (see [ii], and also [12]). 
The previous proofs of these assertions were geometric. The connection with algebra (with 
the Riemann--Roch theorem and the Serre duality) was unknown. 
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SERIES IN THE ROOT VECTORS OF OPERATORS THAT ARE VERY CLOSE 

TO BEING SELF-ADJOINT 

M. S. Agranovich UDC 517.43 

This note is related to [1-3]. The meaning of the theorems given here is that the con- 
vergence of the series mentioned in the title is all the better, the closer the operator 
is to being self-adjoint and the more "smooth" the vector being expanded is. Applications 
that have determined the content of these theorems are given in 6. 

i. Let H be a separable complex Hilbert space, and Ao a self-adjoint lower semibounded 
operator in H with discrete spectrum. Let {fj} (j = i, 2, . .) be an orthonormal basis in 
H formed, from the eigenvectors of the operator Ao, A~] i = ~jfj, ~j~vj+t and ~j~ C0f~ for all 
j(Co > 0, p > 0). In particular, we assume, for simplicity, that vj > 0 for all j; it is 
not hard to get rid of this restriction. We consider the operator A = Ao + A~ in H under 
the assumption that the operator A~A7 q is bounded for some q < i. The spectrum of such an 
operator A is discrete, and the system of its root vectors is complete in H (see [4]). We 
set /~a(~).~-(A--~I)-t,l~Ao(~t)-=(A~--~tI)-~. We mention that all the characteristic values ~k of the 

] < Cw,~ ,, G =  II [I. was operator A lie in the union of the disks O~,c---{~:[~--~ ~ _4~A~ (This shown in 
[2, Chap. III, §i] with the aid of the equation IIA~RA0(~)II=sup~IVI--~I -~ for q~0, but the 
proof remains valid for q < 0 (see [3, §I]).) We can assume that operator ATqA~ is bounded 
instead of A~A~ q (with the condition ~ (A~)~ ~ (A~) for q > 0) ; then C =IIA~A~II • 

Let {a~} (l= 0, i,...) be an increasing sequence of real numbers. We call it admissible if 
each of the numbers ~j, Re ~k is contained in one of the intervals (a~, a~+~) (l = 0, i~...). For an 
admissible sequence {al}, we denote by F~ a closed contour lying in the strip {~; a~<Re~< 
a~+~} and enclosing all ~j, ~k in this strip. We introduce the Riesz projections 

"~=-(2~°-~f ~-¢(~)~' ~, =-(~'~°-~ I ~*.(~)~" (1) 
F l F l 

Operators Q~ are orthogonal projections, and f=~,Q~f in H for any f~H and any admissible 
system {~}. By a theorem in [i] (see also [5]), for p(l -- q) > 1 there exists an admissible 

system {~}, such that ~lip~--Q~l~<~, so that {P~H} is a basis of subspaces in H that is 

quadratically close to orthonormal. Theorems 1 and 2 strengthen this theorem under addi- 

tional assumptions. 

First of all, we assume that 

~S=~i # + 0 ( i 9  ~r i - - ~ ,  (2) 

where a>0, p>0, r<p. Equation (2) is imitative of the asymptotic behavior of the eigen- 

values of elliptic operators (see survey [6]). 

Let b>0, p>0. We subject {~} to the inequalities 

bl op < a z  < b(l + t) ~p (l ~ lo) , ( 3 )  

which allows the possibility that P~ and Q~ vanish for some I. 
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