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Introduction

Let G be a connected reductive group over a local field of characteristic 0. The

trace formula leads directly to the study of a certain family of distributions on G(F ).

An important problem is to understand how these distributions change as G varies. A

satisfactory solution of the problem would allow one to compare fundamental spectral data

in different trace formulas, and would go a long way towards establishing new reciprocity

laws between automorphic representations. In a paper [8], we stated a conjecture on the

comparison of these distributions on different groups. The purpose of this paper is to lay

the foundations for a general comparison of trace formulas. In the process, we shall obtain

three pieces of evidence for the conjecture.

The distributions in question come from weighted orbital integrals

JM (γ, f) = |D(γ)|
1

2

∫

Gγ(F )\G(F )

f(x−1γx)vM (x)dx , γ ∈M(F ) ∩Greg, f ∈ C(G),

in which M is a Levi subgroup of G. These are the terms on the geometric side of the

local trace formula [4]. They are also the primary local terms on the geometric side

of the global trace formula. We are speaking of the basic non-invariant trace formulas,

whose individual terms change if f is replaced by a G(F )-conjugate. (The noninvariance

is a general consequence of the truncation operations used in the derivation of the trace

formulas; in JM (γ, f) it arises from the weight factor vM (x).) However, the original trace

formulas have been refined so as to make their individual terms invariant [2], [5]. The

process replaces JM (γ, f) by a natural invariant distribution

IM (γ, f) = IG
M (γ, f) = JM (γ, f)−

∑

L6=G

ÎL
M

(
γ, φL(f)

)
,

with correction terms in the sum constructed from spectral analogues of weighted orbital

integrals. It actually is the invariant distributions IM (γ, f) whose transfer properties we

seek.
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In §3 we shall state Conjecture 3.3, an expanded version of the main transfer conjec-

ture of [8]. It takes the form of two conjectural identities, satisfied by two new families of

distributions IEM (γ, f) and SG
M (M ′, δ′, f). Each of the new distributions is defined induc-

tively from stable distributions on endoscopic groups G′(F ). We recall that the endoscopic

groups {G′} for G are quasisplit groups introduced by Langlands to measure the difference

between conjugacy and stable conjugacy in G(F ). The distributions SG
M (M ′, δ′, f) are

defined only when G is quasisplit. Conjecture 3.3 asserts that they often vanish, and are

always stable. They are to be regarded as stable analogues of the original distributions.

The distributions IEM (γ, f) can be regarded as “endoscopic” analogues of the original ones,

since they ultimately come from distributions IG1

M1
(γ1, f1) on groups G1(F ) obtained from

G by a succession of endoscopic groups. In this case, Conjecture 3.3 asserts that IEM (γ, f)

equals IM (γ, f).

The original distributions IM (γ) can be extended to a product of several copies of

G. In this compound form, they satisfy a well known splitting formula. If γ belongs to a

proper Levi subgroup of M(F ), IM (γ, f) also satisfies a descent formula. The splitting and

descent formulas together reduce the study of the compound distributions to the special

case of the simple ones, in which γ is elliptic in the corresponding Levi subgroup. One

of our main tasks will be to extend these results to the new distributions. After some

preparation in §4, we shall construct compound forms of SG
M (M ′, δ′) and IEM (γ) in §5. We

shall then establish splitting formulas for the new distributions in §6, and descent formulas

in §7. The splitting and descent formulas for IEM (γ) will be seen to be identical to those

for IM (γ). The formulas for SG
M (M ′, δ′) will also be of the same general form, apart from

the introduction of some new coefficients. We recall that it is actually the compound form

of the distributions IM (γ) that occurs in the trace formulas. We would expect the same to

be true of the new distributions. The fact that they all have similar splitting and descent

properties is strong circumstantial evidence for Conjecture 3.3.
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We shall find evidence of a different sort in §8. In this section, we shall establish

two local vanishing theorems. These theorems, which apply to the case that G is not

quasisplit, generalize results for inner forms of GL(n) [3] that were required for base change

[9]. They are purely combinatorial. However, they are more subtle than the results in [3].

Unlike the special case of GL(n), the general vanishing theorems depend on the unexpected

cancellation of various terms. The cancellation will in fact be forced on us by some internal

signs in the Langlands-Shelstad transfer factors.

In §9, we shall apply one of the vanishing theorems to the local trace formula. Recall

that the geometric side of the local trace formula is an expansion of a certain distribution

I(f) , f ∈ C(G) × C(G),

on G(F )×G(F ) in terms of the compound distributions IM (γ, f). In §9, we shall stabilize

this distribution. More precisely, we shall construct distributions SG(f) and IE(f) from

I(f), and we shall establish expansions for SG(f) and IE(f) in terms of the compound

distributions SG
M (M ′, δ′, f) and IEM (γ, f). Conjecture 3.3 would then imply that SG(f) is

stable and that IE(f) equals I(f). The construction is a local generalization of results in

[9] on the comparison of global trace formulas related to GL(n). One of the goals of the

global comparison in [9, Chapter 2] was to deduce Conjecture 3.3 in the special case of

inner forms of GL(n). The results in §9 here can thus be regarded as further evidence for

the conjecture.

We shall conclude the paper in §10 with an application of the stabilization of §9. We

shall establish Conjecture 3.3 for cuspidal functions on G(F ), subject in the p-adic case to

the fundamental lemma. The result holds unconditionally for real groups, and also for p-

adic inner forms of the groups SL(n), Sp(4) and GSp(4). The proof is a simple illustration

of how a comparison of trace formulas can lead to information on the conjecture.
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The results of this paper will sometimes appear more complicated than we have in-

dicated in the introduction. There are three technical reasons for this. We shall briefly

discuss each of them in turn.

The first is peculiar to the case F = R, and has origins in properties of the Galois

cohomology of G. Vogan observed some years ago that missing elements in the L-packets

of Shelstad [16] could be recovered by treating several groups simultaneously. The idea

played an important role in the volume [1]. When Kottwitz learned of Vogan’s idea, he saw

how to apply it to the Langlands-Shelstad transfer factors. In this paper, the vanishing

theorems we have described also require that we treat more than one real group at a time.

This forces us to take G to be a disjoint union
∐
α
Gα of several connected groups. We

shall introduce objects of this sort in §1, and we shall endow them with extra structure,

following the suggestions of Kottwitz. In §2 we shall see that a special case of the objects

of §1 provides a natural domain for the transfer factors. This special case, which we shall

call a K-group, will be the setting for the results of the rest of the paper.

A second technical concern is related to the splitting formulas. For reasons of in-

duction, the construction of the compound versions of SG
M (M ′, δ′, f) and IEM (γ, f) in §5

requires that the original compound distributions be defined in considerably greater gen-

erality. In §4 we shall define distributions IM (γ) on a product of groups Gv, or rather

K-groups, that are only distantly related to G. The original objects (F,G,M) will be

retained only to index the weight factor vM (x). To describe the general class of K-groups

Gv we can use, we shall introduce the notion of a satellite of (F,G,M). The compound

distributions and splitting formulas will then exist for any finite set {(Fv, Gv,Mv)} of

satellites of (F,G,M).

The induction hypotheses themselves are a factor that tends to complicate the dis-

cussion. The definition of even the basic distributions of §3 is inductive. It requires that

the stability part of Conjecture 3.3 hold for proper endoscopic groups of G. Since we

cannot establish the conjecture in this paper, we shall have to treat such hypotheses with
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care. We shall carry them throughout the paper, in a form that is suitable for the general

comparison of trace formulas. We shall study the stabilization of the global trace formula

in a future paper. At that point we will be able to resolve the induction hypotheses taken

on in this paper.
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1. Multiple groups

Throughout the paper, F will be a field of characteristic 0. Suppose for a moment

that G is a connected reductive algebraic group over F . Following standard notation, we

write Z(G) for the center of G, Gsc for the simply connected cover of the derived group of

G, and Gad for the adjoint group of G. Suppose that M ⊃ Z(G) is an algebraic subgroup

of G over F . We shall generally write Msc for the preimage of M in Gsc and Mad for

the image of M in Gad. Usually M will be a Levi subgroup of G, by which we mean an

F -rational Levi component of a parabolic subgroup of G over F . In this case, Msc is a

Levi subgroup of Gsc, and Mad is a Levi subgroup of Gad.

It will be useful in this paper to work with several groups simultaneously. We shall do

so by letting G stand for an algebraic variety whose connected components are reductive

algebraic groups over F . We shall write π0(G) for the set of connected components of

G, as usual, but we shall generally treat π0(G) as a set of indices for the components in

question. We assume that for every pair α, β ∈ π0(G), the connected reductive groups Gα

and Gβ are isomorphic over an algebraic closure F of F .

Given G, we consider families of objects

(ψ, u) =
{
(ψαβ, uαβ) : α, β ∈ π0(G)

}
,

where ψαβ: Gβ → Gα is an isomorphism over F , and uαβ: Γ → Gα,sc is a locally constant

function from the Galois group Γ = Gal(F/F ) to Gα,sc. We require that a family satisfy

the compatibility conditions

(i) ψαβτ(ψαβ)−1 = Int
(
uαβ(τ)

)
,

(ii) ψαγ = ψαβψβγ ,

and

(iii) uαγ(τ) = ψαβ,sc

(
uβγ(τ)

)
uαβ(τ),
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for any α, β, γ ∈ π0(G) and τ ∈ Γ. Observe from (ii) that ψαα = 1, and from (iii) that

uαα(τ) = 1. Notice also that if α is fixed, there are no constraints on the choice of

{
(ψαβ, uαβ) : β ∈ π0(G)

}

other than (i). The entire family is then uniquely determined by this subset and the

conditions (ii) and (iii). We shall say that two such families (ψ, u) and (ψ′, u′) are equivalent

if there are elements gαβ ∈ Gα,sc such that

ψ′
αβ = Int(gαβ)ψαβ ,

and

u′αβ(τ) = gαβuαβ(τ)τ(gαβ)−1 ,

for any α, β ∈ π0(G) and τ ∈ Γ. It is easy to see that if such a set of elements exists, it

satisfies

gαγ = gαβψαβ(gβγ) , α, β, γ ∈ π0(G).

In particular, it is determined by the subset

{
gαβ : β ∈ π0(G)}

attached to any α. The equivalence classes {(ψ, u)} may therefore be identified with orbits

of the group G
|π0(G)|−1
α .

We define a multiple group over F to be a variety G as above, together with an equiv-

alence class of objects {(ψ, u)}. We shall call a representative (ψ, u) from the equivalence

class a frame for G. Observe that if I is any subset of π0(G), we obtain a multiple group

GI from G by deleting the components in the complement of I in π0(G) (as well as the

superfluous pairs from each frame). We shall say that a morphism θ: G→ G1 of multiple

groups over F is an F -homomorphism if it has the following two properties:
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(i) For any α ∈ π0(G), and for α1 = θ(α) the image of α in π0(G), the restriction

θα: Gα → G1,α1
is an F -homomorphism of connected algebraic groups.

(ii) There are frames (ψ, u) and (ψ1, u1) for G and G1 that are θ-compatible, in the sense

that θα ◦ ψαβ = ψ1,α1β1
◦ θβ and u1,α1β1

= θα,sc(uαβ), for any α, β ∈ π0(G).

We shall call an invertible F -homomorphism an F -isomorphism.

There is at least one example that will be familiar. The transfer factors in [15, §3]

for a connected reductive group G over a local field F are defined in terms of a quasisplit

inner twist ψ: G→ G∗ of G, and also a function u: Γ → G∗
sc such that

ψτ(ψ)−1 = Int
(
u(τ)

)
, τ ∈ Γ.

The transfer factors depend only on the G∗-conjugacy class of (ψ, u), so the underlying

structure can be regarded as a multiple group with two components. More generally,

suppose that G is an arbitrary multiple group. By a quasisplit inner twist of G, we mean

an embedding of G into a multiple group G
∐
G∗, with G∗ quasisplit over F . A frame for

G
∐
G∗ then includes a family of isomorphisms ψα: Gα → G∗, as well as a corresponding

family of functions uα: Γ → G∗
α,sc.

Let G be a fixed multiple group. If Mα is a Levi subgroup of Gα, for α ∈ π0(G), let

I(Mα) denote the set of β ∈ π0(G) such that Mβ = ψβα(Mα) is a Levi subgroup of Gβ

(and is in particular defined over F ), for some frame (ψ, u). We define a Levi subgroup of

G to be a multiple group M over F , together with an embedding π0(M) ⊂ π0(G), with

the following properties:

(i) For any α ∈ π0(M), Mα is a Levi subgroup of Gα such that π0(M) equals I(Mα). In

particular, the restricted multiple group GM = GI(Mα) is independent of α.

(ii) The injection M ⊂ G defined by the embeddings Mα ⊂ Gα of components α ∈ π0(M)

is an F -homomorphism of multiple groups.

It is clear that if L is a Levi subgroup of G and M is a Levi subgroup of L, then M is a

Levi subgroup of G.
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Levi subgroups of G are easy to construct. We claim that a Levi subgroup Mα of a

connected component Gα can be embedded in a Levi subgroup M of G. By assumption,

there is a frame (ψ, u) for G such that for any β ∈ I(Mα), uαβ(τ) takes values in the

subgroup Mα,sc of Gα,sc. It is easy to see that the derived group (Mα,sc)der is simply

connected, and that the quotient Mα,sc/(Mα,sc)der is an induced torus. It follows from

Shapiro’s lemma that H1
(
F, (Mα,sc)der

)
maps surjectively onto H1(F,Mα,sc). The frame

(ψ, u) may therefore be chosen so that uαβ(τ) takes values in the subgroup (Mα,sc)der of

Mα,sc. Such a frame can then be used to construct a multiple group M from Mα, such

that π0(M) = I(Mα), and such that M is a Levi subgroup of G. This was the claim.

Suppose that M is a Levi subgroup of G. For each α ∈ π0(M), we can form the usual

real vector space

aMα
= Hom

(
X(Mα)F ,R

)
.

Any frame for M gives a compatible family of linear isomorphisms aMβ

∼
−→aMα

, for α, β ∈

π0(M), which are independent of the choice of frame. We can therefore define a vector

space aM = lim
←−

α

aMα
which is canonically isomorphic to each space aMα

. We can also form

a Weyl group

W (M) = WG(M) = lim
←−

α

WGα(Mα) = lim
←−

α

NormGα
(Mα)/Mα ,

that operates on aM . We shall sometimes assume implicitly that aM has been equipped

with a W (M)-invariant Euclidean inner product, together with the corresponding Haar

measure.

By a parabolic subgroup of G over F with Levi component M , we mean a variety P

with π0(P ) = π0(M), such that for each α ∈ π0(M), Pα is a parabolic subgroup of Gα

over F with Levi component Mα, and such that the chambers

{
a
+
Pα

⊂ aMα
: α ∈ π0(P )

}
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coincide under the isomorphisms above. The space aM obviously inherits chambers from

any aMα
. We see that there is a bijection P → a

+
P from the set P(M) of parabolic

subgroups of G over F with Levi component M , and the set of chambers in aM .

The space aM also inherits a stratification from any of the spaces aMα
. If G is

connected, the strata in aM are bijective with the set L(M) of Levi subgroups of G that

contain M . If G is not connected, there can be infinitely many such Levi subgroups. To

sidestep this difficulty, let us say that two Levi subgroups L1 and L2 of G are M -equivalent

if they both contain M , and if the restricted multiple groups LM
1 and LM

2 are the same. We

then define L(M) to be the set of M -equivalence classes of Levi subgroups of G. The set

L(M) is canonically bijective with any of the finite sets L(Mα). We define M -equivalence

of parabolic subgroups of G over F in the same way, and we write F(M) for the set of

such equivalence classes. A class Q in F(M) then has a unique M -equivalence class MQ

of Levi components. Any L ∈ L(M) therefore determines a subset P(L) of F(M). It is

clear that F(M) is the disjoint union over L ∈ L(M) of the set P(L). As in the connected

case, we have a stratification

aL ⊂ aM , L ∈ L(M),

of aM by a finite set of subspaces indexed by L(M), and a partition

aM =
∐

Q∈F(M)

a
+
Q

of aM into cones indexed by F(M).

Suppose that G∗ is a quasisplit inner twist of G, which we recall is an embedding of

G into a multiple group G
∐
G∗. By a Levi subgroup M∗ of G∗ corresponding to M , we

shall mean a Levi subgroup of G
∐
G∗ of the form M

∐
M∗. It is easy to see that for any

M , such M∗ exists. The elements in L(M
∐
M∗) then determine a bijection L→ L∗ from

L(M) onto L(M∗). Similarly, there are bijections P → P ∗ and Q → Q∗ from P(M) and

F(M) onto P(M∗) and F(M∗) respectively.
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Recall that any group Gα, α ∈ π0(G), has a canonical based root datum Ψ(Gα) [13,

pp. 614–615], that comes with an action of Γ. For α, β ∈ π0(G), the isomorphism ψαβ:

Gβ → Gα attached to any frame determines a Γ-bijection from Ψ(Gβ) to Ψ(Gα) that is

independent of the choice of frame. We can therefore attach a canonical based root datum

Ψ(G) = (XG,∆G, X
∨
G,∆

∨
G)

to G, together with a canonical Γ-bijection from Ψ(G) to each Ψ(Gα). We can also define

a common dual group Ĝ for each Gα. Then Ĝ is a complex connected reductive group,

with an L-action of Γ, and a Γ-bijection from the dual based root datum Ψ(G)∨ of Ψ(G)

to the canonical based root datum

Ψ(Ĝ) = (X
Ĝ
,∆

Ĝ
, X∨

Ĝ
,∆∨

Ĝ
)

of Ĝ.

Suppose that M is a Levi subgroup of G. The choice of an element P ∈ P(M)

determines a Γ-invariant subset ∆P of ∆G, and a Γ-bijection from

(XG,∆M , X∨
G,∆

∨
M ) , ∆M = ∆G − ∆P ,

to the canonical based root datum Ψ(M) for M . By a Levi subgroup of Ĝ, we shall mean

a Γ-stable Levi component of a Γ-stable parabolic subgroup of Ĝ. For any such group

M̂ , we shall write P(M̂), L(M̂) and F(M̂) as above, with the understanding that the

sets contain only Γ-stable elements. The choice of an element P̂ ∈ P(M̂) determines a

Γ-invariant subset ∆
P̂

of ∆
Ĝ

, and a Γ-bijection from

(X
Ĝ
,∆

M̂
, X∨

Ĝ
,∆∨

M̂
) , ∆

M̂
= ∆

Ĝ
− ∆

P̂
,

to the canonical based root datum Ψ(M̂) for M̂ . We shall say that P and P̂ are dual if

∆∨
P maps to ∆

P̂
under the canonical bijection of Ψ(G)∨ with Ψ(Ĝ). If this is so, M̂ is a

dual group of M . For a given M , a dual Levi subgroup M̂ ⊂ Ĝ for M will mean a Levi

subgroup M̂ of Ĝ that is also a dual group of M , relative to some choice of dual elements

P ∈ P(M) and P̂ ∈ P(M̂). For any such M̂ , there is a canonical bijection L → L̂ from

L(M) to L(M̂) with the property that each L̂ is a dual Levi subgroup for L.
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Lemma 1.1. Suppose that M is a Levi subgroup of G, and that M̂ ⊂ Ĝ is a dual Levi

subgroup. Then

Z(M̂)Γ = Z(Ĝ)Γ
(
Z(M̂)Γ

)0
.

Proof. As usual, Z(M̂)Γ stands for the subgroup of invariants of Γ in Z(M̂). The quotient

Z(M̂)Γ/Z(Ĝ)Γ is a complex diagonalizable group. It is enough to show that this group

is connected. Equivalently, it suffices to show that the finitely generated abelian group

X
(
Z(M̂)Γ/Z(Ĝ)Γ

)
of rational characters of Z(M̂)Γ/Z(Ĝ)Γ is free.

Let Y
Ĝ

be the root lattice for Ĝ, the subgroup ofX
Ĝ

generated by ∆
Ĝ

. Then X
(
Z(Ĝ)

)

is Γ-isomorphic to X
Ĝ
/Y

Ĝ
. Similarly, X

(
Z(M̂)

)
is Γ-isomorphic to X

Ĝ
/Y

M̂
, where Y

M̂

is the subgroup of X
Ĝ

generated by ∆
M̂

. Now, for any finitely generated abelian group

X with an action of Γ, we have the group XΓ = X/X0 of covariants, in which X0 is the

subgroup generated by

{τλ− λ : λ ∈ X, τ ∈ Γ} .

Then

X
(
Z(M̂)Γ

)
∼= X

(
Z(M̂)

)
Γ

= X
(
Z(M̂)

)
/X
(
Z(M̂)

)0 ∼= X
Ĝ
/X0

Ĝ
+ Y

M̂
.

Since X
(
Z(M̂)Γ/Z(Ĝ)Γ

)
is the subgroup of elements in X

(
Z(M̂)Γ

)
which map to 0 in

X
(
Z(Ĝ)Γ

)
, we have

X
(
Z(M̂)Γ/Z(Ĝ)Γ

)
∼= Y

Ĝ
/Y

Ĝ
∩ (X0

Ĝ
+ Y

M̂
) = Y

Ĝ
/Y

M̂
+ (Y

Ĝ
∩X0

Ĝ
) .

The action of Γ on ∆
Ĝ

factors through a normal subgroup Γ1 of finite index in Γ.

Any element λ in Y
Ĝ
∩X0

Ĝ
satisfies

N1λ =
∑

τ∈Γ/Γ1

τλ = 0 .
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Since Γ/Γ1 acts by permutation on the basis ∆
Ĝ

of Y
Ĝ

, a variant of Shapiro’s lemma tells

us that any element λ ∈ Y
Ĝ

with N1λ = 0 actually belongs to Y 0

Ĝ
. Therefore

X
(
Z(M̂)Γ/Z(Ĝ)Γ

)
∼= Y

Ĝ
/Y

M̂
+ Y 0

Ĝ
.

By considering the different Γ-orbits in the basis ∆
Ĝ

, we see easily that the quotient on

the right is a free abelian group. The lemma follows. �
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2. K-groups and transfer factors

Suppose that F is a local field. If G is a connected reductive group over F , Kottwitz

[14, §1] defines a morphism of pointed sets

H1(F,G) −→ π0

(
Z(Ĝ)Γ

)∗
,

that we shall take the liberty of denoting by KG. (We have written π0

(
Z(Ĝ)Γ

)∗
for the

finite abelian group of characters on π0

(
Z(Ĝ)Γ

)
.) The morphism is functorial relative to

a Levi subgroup M ⊂ G, in the sense that the diagram

H1(F,M) −→ H1(F,G)

KM

y KG

y
π0

(
Z(M̂)Γ

)∗
−→ π0

(
Z(Ĝ)Γ

)∗

is commutative. This is a special case of [14, Lemma 4.3], and follows also from the general

results of [10]. The horizontal arrows in the diagram are both injective. This is well known

in the case of the map H1(F,M) → H1(F,G), and follows for the lower horizontal arrow

from Lemma 1.1.

Assume now that G is a multiple group over F , as in §1. Then there is a map

KGα
: H1(F,Gα) −→ π0

(
Z(Ĝ)Γ

)∗

for each α ∈ π0(G). We shall say that G is a K-multiple group, or simply a K-group, if

the functions uαβ : Γ → Gα,sc attached to any frame are 1-cocycles, and the corresponding

sequences

{1} −→
{
uαβ : β ∈ π0(G)

}
−→ H1(F,Gα)

KGα−→ π0

(
Z(Ĝ)Γ

)∗
, α ∈ π0(G),

of pointed sets are exact. In other words, the map that sends uαβ to its image in H1(F,Gα)

is a bijection from {uαβ : β ∈ π0(G)} onto the subset of elements in H1(F,Gα) whose

image under KGα
is the trivial character on π0

(
Z(Ĝ)Γ

)
. If F is p-adic, KGα

is a bijection

[14, Theorem 1.2]. A K-group in this case is therefore just a connected group. If F = R,
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the kernel of KGα
is the image of H1(F,Gα,sc) in H1(F,Gα) [14, Theorem 1.2]. The

number of components of a K-group over R therefore equals the number of classes in this

image.

Suppose that G is a K-group over F , and that M is a Levi subgroup of G. Then for

any α in the subset π0(M) of π0(G), there is associated a Levi subgroup Mα of Gα. A

priori, M is just a multiple group. However, one sees easily from the commutative diagram

for Mα ⊂ Gα and the injectivity of H1(F,Mα) → H1(F,Gα) that M is in fact a K-group.

For the rest of this section, G will be a fixed K-group over F . We shall say that G is

an inner K-form of a quasisplit group G∗ if G∗ is a quasisplit inner twist of G (in the sense

of §1). We fix such a G∗. Then for any α, the projection of uα onto G∗
ad is a 1-cocycle.

The corresponding image uα,ad of uα in H1(F,G∗
ad) is the class which determines Gα as

an inner twist of G∗. Set

(2.1) Ẑsc = Z(Ĝsc) ∼= XG∗
sc
/XG∗

ad
.

Then

(2.2) ζG = KG∗
ad

(uα,ad)

is a character on the finite group ẐΓ
sc that depends only on G. It follows easily from [14,

Theorem 1.2] that α→ uα,ad is a surjective map from π0(G) onto the preimage K−1
G∗

ad

(ζG)

of ζG in H1(F,G∗
ad).

We will need to know that K-groups have minimal Levi subgroups with properties

similar to those in the connected case. Any α ∈ ∆G determines a fundamental dominant

weight $α ∈ XG∗
sc

, whose Γ-orbit matches the Γ-orbit of α in ∆G. Let $Γ
α be the sum of

the elements in the Γ-orbit of $α. Then $Γ
α is a Γ-invariant element in XG∗

sc
that depends

only on the Γ-orbit of α. Let zα ∈ ẐΓ
sc be the image of $Γ

α under the composition of the

maps

XΓ
G∗

sc
→ XΓ

G∗
sc
/XΓ

G∗
ad

↪→ (XG∗
sc
/XG∗

ad
)Γ ∼= ẐΓ

sc .

We obtain in this way a map α→ zα from the set ∆G/Γ of Γ-orbits in ∆G to ẐΓ
sc.
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Lemma 2.1. Suppose that ∆ is a Γ-stable subset of ∆G. Then there is a parabolic

subgroup P of G over F with ∆P = ∆ if and only if ∆ is contained in the subset

∆0 =
{
α ∈ ∆G : ζG(zα) = 1

}

of ∆G.

Proof. Since ∆ is Γ-stable, there is a parabolic subgroup P ∗ of the quasisplit group G∗

over F such that ∆P∗ = ∆. Let P̂ ⊂ Ĝ be a dual parabolic subgroup, and let M ∗ ⊂ P ∗

and M̂ ⊂ P̂ be Γ-stable Levi components. We shall investigate the subgroup

ẐΓ
sc ∩

(
Z(M̂sc)

Γ
)0

of ẐΓ
sc.

The lattice X = XG∗
ad

has a Γ-stable basis ∆G∗
ad

, while X̃ = XG∗
sc

has a Γ-stable basis

composed of the fundamental dominant weights. By a simple application of Shapiro’s

lemma, the map

H1(Γ, X) −→ H1(Γ, X̃)

is injective. It follows from the exact sequence of cohomology that

X̃Γ/XΓ = (X̃/X)Γ ∼= ẐΓ
sc .

Now {$Γ
α : α ∈ ∆G/Γ} is a basis of X̃Γ. Let X̃Γ

∆ be the subgroup of X̃ spanned by the

elements {$Γ
α : α ∈ ∆/Γ}. We may as well identify X̃Γ/XΓ with ẐΓ

sc. Then X̃Γ
∆ maps

onto a subgroup

X̃Γ
∆ +XΓ/XΓ ∼= X̃Γ

∆/X̃
Γ
∆ ∩XΓ

of ẐΓ
sc. But X̃Γ

∆ ∩ XΓ equals the lattice X∗

((
Z(M̂sc)

Γ
)0)

of one parameter subgroups of
(
Z(M̂sc)

Γ
)0

. It follows easily that X̃Γ
∆ + XΓ/XΓ equals the subgroup

ẐΓ
sc = ẐΓ

sc ∩
(
Z(M̂sc)

Γ
)0

of ẐΓ
sc. This subgroup is clearly generated by {zα : α ∈ ∆/Γ}. It
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follows that ẐΓ
sc ∩

(
Z(M̂sc)

Γ
)0

lies in the kernel of ζG if and only if ∆ is contained in ∆0.

If this is so, ζG determines a character ζM
G on the group

π0

(
Z(M̂sc)

Γ
)

∼= ẐΓ
sc/Ẑ

Γ
sc ∩

(
Z(M̂sc)

Γ
)0
,

since by Lemma 1.1, Z(M̂sc)
Γ equals ẐΓ

sc

(
Z(M̂sc)

Γ
)0

.

Assume first that ∆ is contained in ∆0. The character ζM
G on π0

(
Z(M̂sc)

Γ
)

is then

defined. We note that the group M̂sc is dual to the Levi subgroup M∗
ad of G∗

ad. It is

a consequence of [14, Theorem 1.2] that ζM
G lies in the image of the map KM = KM∗

ad
.

Indeed, if F is a p-adic field, KM is bijective. If F = R, the image of KM is the set of

characters that vanish on the image of the norm map from π0

(
Z(M̂sc)

)
to π0

(
Z(M̂sc)

Γ
)
.

But ζG is in the image of the map K = KG∗
ad

, and must therefore vanish on the image of

the norm map from Ẑsc to ẐΓ
sc. It follows easily that ζM

G is in the image of KM in this case

as well. Let uM be a 1-cocycle from Γ to M∗
ad whose image in H1(F,M∗

ad) is mapped by

KM to ζM
G , and let u be the image of uM in G∗

ad. Then u is a 1-cocycle of Γ in G∗
ad that

we can use to construct an inner twist G1 of G∗. The corresponding inner twists of P ∗

and M∗ by uM give a parabolic subgroup P1 and a Levi subgroup M1 of G1. Observe that

K maps the image u of u in H1(F,G∗
ad) to ζG. Since α → uα,ad is a surjective map from

π0(G) onto the preimage under K of ζG in H1(F,G∗
ad), there is an α such that uα,ad = u.

Therefore G1 is isomorphic to Gα over F . Choose such an isomorphism, and let Pα and

Mα be the corresponding images of P1 and M1. It follows from the definitions of §1 that

Pα may be embedded in a parabolic subgroup P of G over F , with a Levi component M

that extends Mα. The construction clearly has the property that ∆P = ∆.

Conversely, suppose that there is a parabolic subgroup P of G with ∆P = ∆. Let

M be a rational Levi component of P , with dual Levi subgroup M̂ ⊂ Ĝ. Then for

any α ∈ π0(M), (Gα, Pα,Mα) is an inner twist of (G∗, P ∗,M∗). In particular, the class

uα,ad ∈ H1(F,G∗
ad) that determines Gα as an inner twist of G∗ must be the image of a

class in H1(F,M∗
ad). Since KG∗

ad
is functorial relative to the embedding M ∗

ad ⊂ G∗
ad, the
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character ζG on ẐΓ
sc is the image of a character ζM

G on π0

(
Z(M̂sc)

Γ
)
. Therefore, ζG is

trivial on the intersection of ẐΓ
sc with

(
Z(M̂sc)

Γ
)0

. As we have seen, this is equivalent to

the requirement that ∆ is contained in ∆0. The lemma is proved. �

Corollary 2.2. Suppose that R is a Levi subgroup of G∗, with a dual Levi subgroup

R̂ ⊂ Ĝ. Then R corresponds to a Levi subgroup M of G (with dual Levi subgroup

M̂ = R̂) if and only if ζG is trivial on the subgroup

ẐΓ
sc ∩

(
Z(R̂sc)

Γ
)0

= ẐΓ
sc ∩

(
Z(M̂sc)

Γ
)0

of ẐΓ
sc.

Proof. During the proof of the lemma we established that ζG is trivial on ẐΓ
sc∩

(
Z(R̂sc)

Γ
)0

if and only if the complement in ∆G of the Γ-invariant subset ∆R is contained in ∆0. The

corollary follows. �

If M is a Levi subgroup of G, with dual Levi subgroup M̂ ⊂ Ĝ, we have seen that

ζG is the pullback of a character ζM
G on π0

(
Z(M̂sc)

Γ
)
. We shall be particularly concerned

with the case that M is minimal . This means that for any P ∈ P(M), ∆P equals the set

∆0 of Lemma 2.1. In this case we shall write M0 = M , and we set

ζ0
G = ζM0

G = ζM
G .

The character ζ0
G on π0

(
Z(M̂0,sc)

Γ
)

will play an important role in the vanishing theorems

of §8.

For many purposes, G can be treated as if it were a connected group over the local

field F . In particular, the notation and terminology of [7, §1–§2], which we shall sometimes

adopt without comment, extends to the K-group G. Thus

Γ(G) =
∐

α∈π0(G)

Γ(Gα) =
∐

α

Γreg

(
Gα(F )

)
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is the disjoint union of the sets of strongly regular conjugacy classes in the groups Gα(F ),

and

Γell(G) =
∐

α∈π0(G)

Γell(Gα) =
∐

α

Γreg,ell

(
Gα(F )

)

is the corresponding set of elliptic classes. If γ lies in Γ(Gα), we write Gγ for the centralizer

Gα,γ in Gα of (some representative of) γ. Stable conjugacy classes in G(F ) also make

sense. We define classes γ1 and γ2 in Γ(G), with γi ∈ Γ(Gαi
) for i = 1, 2, to be stably

conjugate if ψα1α2
(γ2) is conjugate in Gα1

(F ) to γ1, for any frame (ψ, u). We can then

write Σ(G) = Σreg

(
G(F )

)
for the set of strongly regular stable conjugacy classes in G(F ).

There is a canonical injection δ → δ∗ from Σ(G) to the set Σ(G∗) = Σreg

(
G∗(F )

)
of

strongly regular stable classes in our quasisplit inner twist G∗(F ).

An endoscopic datum for G is defined entirely in terms of the dual group Ĝ, and is

therefore no different from the case of connected G. As in [7], E(G) will stand for the set

of isomorphism classes of endoscopic data for G that are relevant to G. An element in

E(G) is therefore the image of some elliptic endoscopic datum M ′ ∈ Eell(M), for a Levi

subgroup M of G and a dual Levi subgroup M̂ of Ĝ. The set E(G) embeds into the larger

set E(G∗), which we identify with the collection of all isomorphism classes of endoscopic

data for G. For each G′ ∈ E(G∗), we fix a central extension

1 −→ Z̃ ′ −→ G̃′ −→ G′ −→ 1

of G′ by a central induced torus Z̃ ′ and an L-embedding ξ̃′: G′ → LG̃′, as in [7, §2]. Finally,

we define the sets

Γ̃E
ell(G) =

∐

G′

(
ΣG,ell(G̃

′)/OutG(G′)
)

and

Γ̃E(G) =
∐

{M}

(
Γ̃E

G,ell(M)/W (M)
)
,

as well as their corresponding quotients ΓE
ell(G) and ΓE(G), by copying the construction

of [7, §2]. The index G′ here ranges over the elliptic endoscopic data Eell(G), while {M}
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ranges over the orbits of W (M0) in the set LG(M0), for a fixed minimal Levi subgroup M0

of G. By definition, ΣG,ell(G̃
′) is the subset of elements δ′ ∈ ΣG(G̃′) that are elliptic, in

the sense that the centralizer G̃′
δ′ of (a representative of) δ′ is anisotropic over F , modulo

the center of G̃′. In particular, Γ̃E
ell(G) could be empty if F = R.

A K-group is a natural domain for the transfer factors of [15]. This observation is

due to Kottwitz. We shall consider first the case that G̃′ = G′, for a given G′ ∈ E(G∗).

Suppose that γ, γ ∈ Γ(G) and δ′, δ
′
∈ ΣG(G′). Then γ ∈ Γ(Gα) and γ ∈ Γ(Gα), for indices

α, α ∈ π0(G). The relative transfer factor

∆(δ′, γ; δ
′
, γ) = ∆G(δ′, γ; δ

′
, γ)

is defined to be 0 unless δ′ and δ
′

are images of γ and γ (in the sense of [15, (1.3)]), in

which case ∆(δ′, γ; δ
′
, γ) is defined as a product of four terms

(2.3)
∆I(δ

′, γ)

∆I(δ
′
, γ)

·
∆II (δ

′, γ)

∆II (δ
′
, γ)

·
∆2(δ

′, γ)

∆2(δ
′
, γ)

· ∆1(δ
′, γ; δ

′
, γ) ,

as in [15, (3.7)]. The first three terms are defined for the pairs (Gα, G
′) and (Gα, G

′), as in

the sections (3.2), (3.3) and (3.5) of [15]. For the only truly relative term ∆1(δ
′, γ; δ

′
, γ),

we have to copy the construction in [15, (3.4)].

Letting γ, γ, δ′ and δ
′
stand for representatives within the given conjugacy and stable

conjugacy classes, we define T ′ and T
′
to be the centralizers of δ′ and δ

′
in G′. We have

already fixed a quasisplit inner twist G∗ of G. Choose admissible embeddings T ′ → T and

T
′
→ T of T ′ and T

′
into maximal tori of G∗ [15, (1.3)], and let γ∗ ∈ T (F ) and γ∗ ∈ T (F )

be the corresponding images of δ′ and δ
′
. If (ψ, u) is a fixed frame for G

∐
G∗, and τ

belongs to Γ, we set

v(τ) = huα(τ)τ(h)−1 and v(τ) = huα(τ)τ(h)−1 ,

for elements h and h in G∗
sc such that

hψα(γ)h−1 = γ∗ and hψα(γ)h
−1

= γ∗ .
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Now

uα(τ) = ψα,sc

(
uαα(τ)

)
uα(τ) ,

with uαα(τ) being a 1-cocycle from T to Gα,sc. It follows that

∂v = ∂uα = ∂uα = ∂v ,

each coboundary taking values in the center Z∗
sc of G∗

sc. Then

τ −→
(
v(τ)−1, v(τ)

)

is a 1-cocycle with values in the torus

U = Tsc × T sc/
{
(z−1, z) : z ∈ Z∗

sc

}
,

and defines a class

inv
(δ′, γ
δ
′
, γ

)

in H1(T, U). On the other hand, G′ really stands for an endoscopic datum, composed of

four objects (G′, s′,G′, ξ′). As in [15, p. 246], s′ determines an element s′U in π0(Û
Γ), for

the dual torus

Û = T̂sc × T̂ sc/
{
(z, z) : z ∈ Ẑsc

}
.

The fourth term in the product (2.3) is defined as the Tate-Nakayama pairing

(2.4) ∆1(δ
′, γ; δ

′
, γ) =

〈
inv
(δ′, γ
δ
′
, γ

)
, s′U

〉
.

Having defined the transfer factors by the product (2.3) if G̃′ = G′, we treat the

general case as in [15]. Let

1 −→ Z̃ −→ G̃
r

−→ G −→ 1

be a z-extension of G by an induced torus Z̃. By this we mean a multiple group G̃ with

π0(G̃) = π0(G), such that G̃α is a z-extension [12, §1] of Gα by Z̃ for each α ∈ π0(G),
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and such that for any frame (ψ, u) for G, there is a corresponding frame (ψ̃, ũ) for G̃ with

rαψ̃αβ = ψαβrβ and ũαβ = uαβ , for each α, β. (The groups G̃α,sc and Gα,sc are equal, so

the last condition makes sense.) It follows easily from the triviality of H1(F, Z̃) that G̃ is

also a K-group. Now any element G′ ∈ E(G) determines an element G̃′ ∈ E(G̃) for which

G̃′ is L-isomorphic to LG̃′. Suppose that (δ′, γ) and (δ
′
, γ) are two pairs in ΣG(G̃′)×Γ(G).

The relative transfer factor ∆(δ′, γ; δ
′
, γ) is then given by the definition in [15, (4.4)]. That

is, ∆(δ′, γ; δ
′
, γ) equals 0 unless δ′ and δ

′
are images of elements γ̃ and γ̃ in Γ(G̃) that map

to γ and γ respectively, in which case

∆(δ′, γ; δ
′
, γ) = ∆(δ′, γ̃; δ

′
, γ̃) .

Given the relative transfer factors, we define absolute transfer factors as in [15, (3.7)]

by treating (δ
′
, γ) as a base point. We fix (δ

′
, γ) such that δ

′
is an image of γ, and we

arbitrarily assign ∆(δ
′
, γ) any fixed complex value, that we can assume has absolute value

1. We then define the absolute transfer factor by setting

∆(δ′, γ) = ∆(δ′, γ; δ
′
, γ)∆(δ

′
, γ) , δ′ ∈ ΣG(G̃′), γ ∈ Γ(G).

It depends only on the image of δ′ in the set ΓE(G). We also define the adjoint transfer

factor

(2.5) ∆(γ, δ′) = |Kγ |
−1∆(δ′, γ) , (δ′, γ) ∈ Γ̃E(G) × Γ(G),

where

Kγ = K(Gγ) = π0

(
ĜΓ

γ/Z(Ĝ)Γ
)
,

as in [7, §1].

The next lemma contains adjoint relations that are one of the main reasons for intro-

ducing K-groups. It is a generalization of a result (Lemma 2.2) from [7] that applied only

to the case of p-adic F .
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Lemma 2.3. The transfer factors satisfy

(2.6)
∑

δ′∈ΓE(G)

∆(γ, δ′)∆(δ′, γ1) = δ(γ, γ1) , γ, γ1 ∈ Γ(G),

and

(2.7)
∑

γ∈Γ(G)

∆(δ′, γ)∆(γ, δ′1) = δ̃(δ′, δ′1) , δ′, δ′1 ∈ Γ̃E (G),

for Kronecker delta functions δ(·, ·) and δ̃(·, ·) defined as in [7, p. 516].

Proof. By the discussion at the end of [7, §2], it is enough to consider the case that the

fixed points (γ, γ1) in (2.6) and (δ1, δ
′
1) in (2.7) are elliptic. The sums on the left hand

sides of (2.6) and (2.7) may then be taken over the sets ΓE
ell(G) and Γell(G). We can also

assume that G̃′ = G′ for each G′ ∈ E(G). The relative transfer factors are then defined as

in (2.3) as a product of four terms.

The proof is essentially that of [7, Lemma 2.2]. Since ∆(δ
′
, γ) has absolute value 1,

the summand in (2.6) is independent of the base point (δ
′
, γ). It reduces to

∆(γ, δ′)∆(δ′, γ1) = |Kγ|
−1∆1(δ

′, γ1; δ
′, γ) ,

as in [7, p. 517]. Because δ′ occurs in both of the first and third arguments of the factor

∆1, there is just one admissible embedding T ′ → T to account for. The factor simplifies

to

∆1(δ
′, γ1; δ

′, γ) =
〈
inv
(δ′, γ1

δ′, γ

)
, s′U

〉
=
〈
µT (γ, γ1), sT

〉
,

where µT (γ, γ1) is the class of the cocycle

τ −→ v1(τ)
−1v(τ) , τ ∈ Gal(F/F ),

in H1(F, Tsc), and sT = sT (δ′) is the element in

K(T ) = π0

(
T̂Γ/Z(Ĝ)Γ

)
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defined in [15, p. 241]. (The functions v(τ) and v1(τ) are constructed from the pairs (δ′, γ)

and (δ′, γ1) as above.) The pairing depends only on the image µT (γ, γ1) of µT (γ, γ1) in

H1(F, T ).

Suppose that γ1 is fixed and that δ′ is a fixed image of γ1. Then γ → µT (γ, γ1) is

a bijection from the set of conjugacy classes in the stable conjugacy class of γ1, which is

the same as the set of γ of which δ′ is an image, onto the image E(T ) of H1(F, Tsc) in

H1(F, T ). (This is the assertion that relies on G being a K-group; if G were a connected

group, the image would be only a subset D(T ) of E(T ).) By Tate-Nakayama duality, E(T )

is isomorphic to the group K(T )∗ of characters on K(T ). On the other hand, suppose that

γ∗ is a fixed G∗-regular point in T (F ). If δ′ ∈ ΣG(G′) is an image of γ∗, and T ′ is the

centralizer of (a representative of) δ′ in G′, let T ′ → T be the admissible embedding that

maps δ′ to γ∗. It is this embedding that determines the point sT (δ′) in K(T ). A variant of

[14, Lemma 9.7] asserts that δ′ → sT (δ′) is a bijection from the set of images δ′ ∈ ΓE(G)

of γ∗ onto K(T ). The summations in (2.6) and (2.7) can therefore be taken over finite

groups that are duality with each other. Keeping in mind that Kγ
∼= K(T ), we deduce the

relations (2.6) and (2.7) as in the latter part of the proof of [7, Lemma 2.2]. �
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3. The conjectural transfer identity

In the paper [8], we stated a conjectural identity for the behaviour of weighted orbital

integrals under transfer. The identity relates two new families of distributions, SG
M (δ)

and IEM (γ), that may be regarded as stable and endoscopic analogues of weighted orbital

integrals, or rather the invariant distributions attached to weighted orbital integrals. The

aim of this paper is to study these new distributions. In this section, we shall generalize

the construction to K-groups. We shall also isolate the inductive definitions from the

conjecture, in order to be able to work with the distributions without having proved the

conjecture.

In this section, G will continue to be a K-group over the local field F . As in §2, an

induced torus over F is understood to be a product of tori of the form ResE/F (Gm), for

finite extensions E of F . A central induced torus in G will mean an induced torus Z over

F , together with embeddings

Z
∼
−→ Zα ⊂ Z(Gα) , α ∈ π0(G),

over F that are compatible with the isomorphisms ψαβ : Gβ → Gα. For purposes of

induction, it is convenient to fix such a Z, and also a character ζ on Z(F ). For each α,

ζ determines a character ζα on the central induced torus Zα(F ) in Gα(F ). Having fixed

Z and ζ, we can define spaces of ζ−1-equivariant functions on G(F ). We will be dealing

exclusively with tempered distributions in this paper, so we may as well work with the full

Schwartz space. We set

(3.1) C(G, ζ) =
⊕

α∈π0(G)

C(Gα, ζα) ,

where C(Gα, ζα) is the Schwartz space of ζ−1
α -equivariant functions on Gα(F ). Any element

in C(G, ζ) can then be regarded as a function on G(F ).

The construction begins with weighted orbital integrals and their corresponding in-

variant distributions. The extension of these objects to functions f =
⊕
α
fα in the larger
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space (3.1) is purely a matter of notation. We fix a Levi subgroup M of G over F . If γ

is an element in the set ΓG(M) = ΓG-reg
(
M(F )

)
, let α ∈ π0(M) be the index such that γ

belongs to ΓG(Mα). We define the weighted orbital integral of f at γ simply by

JM (γ, f) = JM (γ, fα) ,

where JM (γ, fα) is the weighted orbital integral on Gα(F ) described in, for example, [8,

§3]. Similarly, we set

IM (γ, f) = IM (γ, fα) ,

where IM (γ, fα) is the invariant distribution on Gα(F ) defined also in [8, §3]. Recall that

IM (γ, fα) is obtained from JM (γ, fα) by adding some correction terms built out of weighted

characters. We assign these weighted characters the canonical normalization defined in [8,

§2].

The Langlands-Shelstad transfer mappings extend to K-groups in an equally simple

fashion. We fix a quasisplit inner twist G∗ of G, and a Levi subgroup M∗ of G∗ corre-

sponding to M . Then Z and ζ determine corresponding objects Z∗ and ζ∗ for G∗. Suppose

that G′ is an element in E(G), with central extension G̃′ as in §2. The transfer map

f −→ f ′(δ′) =
∑

γ∈Γ(G)

∆G(δ′, γ)fG(γ) , δ′ ∈ ΣG(G̃′),

goes from functions f ∈ C(G, ζ) to functions f ′ = fG′ on ΣG(G̃′). As in [7], fG(γ) denotes

the invariant orbital integral JG(γ, f) = IG(γ, f). If f equals
⊕
α
fα, f ′ obviously equals

∑
α
f ′

α. The point of having transfer factors for K-groups is that f ′ depends only on the

one base point (δ
′
, γ), rather than a base point for each Gα. Now the extension G̃′ comes

with a central induced torus Z̃ ′Z in G̃′ and a character ζ̃ ′ζ on (Z̃ ′Z)(F ) [7, p. 529]. The

Langlands-Shelstad transfer conjecture, applied to each of the groups Gα, asserts that f ′

belongs to the space SI(G̃′, ζ̃ ′ζ) of stable orbital integrals of functions in C(G̃′, ζ̃ ′ζ).
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We shall say that the K-group G is quasisplit if it has a connected component that is

quasisplit (over F ). It is easy to see that this property holds for G if and only if it also

holds for the Levi subgroup M , so we shall sometimes speak of the triplet (F,G,M) being

quasi-split. We note that G is quasisplit if and only if the associated character ζG on ẐΓ
sc

is trivial. If G is quasisplit, the canonical injection of Σ(G) into Σ(G∗) is a bijection, and

we can identify the two sets. In particular, we can identify the stable orbital integral

fG(δ) =
∑

γ∈δ

fG(γ) , δ ∈ Σ(G),

with the stable transfer map f → f∗ = fG∗ from C(G, ζ) to SI(G∗, ζ∗). This map is

surjective. In general, we shall say that a ζ-equivariant distribution S on G(F ) is stable if

its value at any f depends only on the image f ∗. In the case that G is quasisplit, there is

a unique linear form Ŝ on SI(G∗, ζ∗) attached to any stable distribution S such that

Ŝ(f∗) = S(f) , f ∈ C(G, ζ).

Next, we recall the set EM ′(G), introduced for connected groups in [8]. The symbol

M ′ represents an elliptic endoscopic datum (M ′,M′, s′M , ξ
′
M ) for M , with M′ being an L-

subgroup of LM and ξ′M the identity embedding of M′ into LM . We fix a Levi subgroup M̂

of Ĝ that is dual to M . In this paper, we shall define EM ′(G) to be the family of endoscopic

data G′ = (G′,G′, s′, ξ′) for G, taken modulo translation of s′ by Z(Ĝ)Γ (rather than the

full equivalence relation defined by isomorphisms of endoscopic data), in which s′ lies in

s′MZ(M̂)Γ, Ĝ′ is the connected centralizer of s′ in Ĝ, G′ equals M′Ĝ′, and ξ′ is the identity

embedding of G′ into LG. For any G′ ∈ EM ′(G), the dual group M̂ ′ of M ′ comes with the

structure of a Levi subgroup of Ĝ′. The group M ′ has an embedding M ′ ⊂ G′ for which

M̂ ′ ⊂ Ĝ′ is a dual Levi subgroup, but this is determined only up to G′(F )-conjugacy.

We fix such an embedding for each G′, thereby identifying M ′ with a Levi subgroup of

G′. Any objects we construct will later be seen to depend only on the G′(F )-orbit of M ′.

Let M̃ ′ be a fixed central extension of M ′ by an induced torus Z̃ ′, with the properties of
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[7, Lemma 2.1]. Then for any G′ ∈ EM ′(G), we have a central extension G̃′ of G′ by Z̃ ′

with the same properties, that contains M̃ ′ as a Levi subgroup. Finally, we have a simple

coefficient

(3.2) ιM ′(G,G
′) =

∣∣Z(M̂ ′)Γ/Z(M̂)Γ
∣∣ ∣∣Z(Ĝ′)Γ/Z(Ĝ)Γ

∣∣−1

attached to any G′ ∈ EM ′(G). We have not required the elements G′ in EM ′(G) to be

elliptic, as we did in [8]. However, if G′ is not elliptic, ιM ′(G,G
′) vanishes.

It is sometimes necessary to treat the case that G is quasisplit separately. To this

end, we write

ε(G) =

{
1, if G is quasisplit,
0, otherwise.

We also define a subset of EM ′(G) by

E0
M ′(G) =

{
EM ′(G) − {G∗}, if G is quasisplit,
EM ′(G), otherwise.

Observe that EM ′(G) contains G∗ if and only if s′M lies in Z(M̂)Γ, or equivalently, if and

only if the endoscopic datum M ′ for M is isomorphic to M∗. In particular, E0
M ′(G) could

equal EM ′(G) even if G is quasisplit.

We shall now construct new distributions SG
M (M ′, δ′, f) and IEM (γ, f) from the in-

variant distributions IM (γ, f) described above. As in [8, §4], the basic definitions of this

section will apply only to classes δ′ and γ which are elliptic for M . We first set

(3.3) IM (δ′, f) =
∑

γ∈ΓG,ell(M)

∆M (δ′, γ)IM(γ, f) ,

for any δ′ ∈ Γ̃E
G,ell(M). Since δ′ is elliptic, we note that there is a unique M ′ ∈ Eell(M) such

that δ′ is the image of an element in ΣG,ell(M̃
′). The rest of the definition is inductive.

We assume inductively that for any M ′ ∈ Eell(M), δ′ ∈ ΣG,ell(M̃
′) and G′ ∈ E0

M ′(G), we

have defined a linear form ŜG̃′

M̃ ′
(δ′) on SI(G̃′, δ̃′δ). We also assume that the Langlands-

Shelstad transfer conjecture holds for each G′. Then ŜG̃′

M̃ ′
(δ′, f ′) makes sense for any
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f ∈ C(G, ζ). With these assumptions, we construct our distributions as follows. In the

case that ε(G) = 1, so that G is quasisplit, we define

(3.4) SG
M (M ′, δ′, f) = IM (δ′, f)−

∑

G′∈E0

M′
(G)

ιM ′(G,G
′)ŜG̃′

M̃ ′
(δ′, f ′) .

In the general case, we define

(3.5) IEM (δ′, f) =
∑

G′∈E0

M′
(G)

ιM ′(G,G
′)ŜG̃′

M̃ ′
(δ′, f ′) + ε(G)SG

M (M ′, δ′, f) .

We then set

(3.6) IEM (γ, f) =
∑

δ′∈ΓE
G,ell

(M)

∆M (γ, δ′)IEM (δ′, f) ,

for any γ ∈ ΓG,ell(M). To complete the inductive definition, we would have to show in the

special case of G quasisplit and M ′ = M∗, that the distribution

SG
M (δ, f) = SG

M (M∗, δ∗, f) , δ ∈ ΣG(M),

is stable. Only then would we have a linear form ŜG∗

M∗(δ
∗) on SI(G∗, ζ∗), with

ŜG∗

M∗(δ
∗, f∗) = SG

M (δ, f) , f ∈ C(G, ζ),

that is the analogue of ŜG′

M ′(δ
′) for (G∗,M∗).

The definitions require some preliminary observations, that we will summarize as two

lemmas. We need to know that IEM (δ′, f) depends only on the image of δ′ in Γ̃E
G,ell(M),

in order for the right hand side of (3.6) to make sense. We shall actually show that the

individual terms in the definition (3.5) each depend only on the image of δ′ in Γ̃E
G,ell(M).

This includes an assertion that the terms are independent of the representative M ′ within
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the equivalence class in Eell(M), something that is not immediately clear from the con-

struction. We shall also investigate how the distributions depend on the base points that

are implicit in the choice of transfer factors.

The first question will be resolved as a special case of the general behaviour of the

distributions under isomorphisms. Suppose that θ is an F -isomorphism from G onto

another K-group G1. For any function f on G(F ), we have a corresponding function

(θf)(x1) = f(θ−1x1) on G1(F ). We also have a bijection γ → θγ from Γ(G) onto Γ(G1).

Let θ̂: Ĝ→ Ĝ1 be a Γ-isomorphism that is dual to θ, and let

Lθ = θ̂ × IdWF
: LG = ĜoWF −→ Ĝ1 oWF = LG ,

be the corresponding isomorphism of L-groups. Then Lθ maps any endoscopic datum

(G′,G′, s′, ξ′) for G to an endoscopic datum (G′
1,G

′
1, s

′
1, ξ

′
1) for G1, the isomorphism class

of which is independent of the choice of θ̂. We also obtain an isomorphism

θ′: G̃′ → G̃′
1 between quasisplit groups over F , whose orbit under right translation by the

group AutG(G′) is also independent of the choice of θ̂. This gives us a bijection

θ′ : ΣG,ell(G̃
′)/OutG(G′) −→ ΣG1,ell(G̃

′
1)/OutG1

(G′
1) .

Putting the endoscopic data together, we obtain a bijection θE =
∐
G′
θ′ from Γ̃E

G,ell(G) onto

Γ̃E
G1,ell(G1). Of course θ maps M to a Levi subgroup M1 = θM of G1, so we also obtain

bijections from ΓG,ell(M) onto ΓG,ell(M1) and from Γ̃E
G,ell(M) onto Γ̃E

G,ell(M1).

Lemma 3.1. (i) For any θ, the distributions satisfy

SθG
θM (θM ′, θδ′, θf) = SG

M (M ′, δ′, f)

and

IEθM (θγ, θf) = IEM (γ, f) .
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(ii) The distributions SG
M (M ′, δ′, f) and IEM (δ′, f) depend only on the image of δ′ in

Γ̃E
G,ell(M).

As for the second question, observe that transfer factors have two roles in the defini-

tions. The transfer factor ∆G(·, ·) for G and G′ is implicit in the function f ′ which occurs

in (3.4) and (3.5). The transfer factor ∆M (·, ·) for M and M ′ occurs explicitly in (3.3) and

(3.6). Since G′ lies in EM ′(G), we can choose a common base point. For each M ′, we fix

elements δ
′
∈ ΣG(M̃ ′) and γ ∈ ΓG(M) such that δ

′
is an image of γ (relative to M). Then

(δ
′
, γ) can serve as a base point for both ∆G(·, ·) and ∆M (·, ·), since M ′ is a Levi subgroup

of G′. We take the preassigned values ∆M (δ
′
, γ) and ∆G(δ

′
, γ) (of absolute value 1) to be

equal.

Lemma 3.2. The distribution IEM (γ, f) is independent of the choice of base points. If G

is quasisplit and δ belongs to ΣG(M), SG
M (δ, f) is the also independent of the base point.

Proof of Lemmas 3.1 and 3.2. We assume inductively that the lemmas hold if G is replaced

by any group G̃′, with G′ ∈ E0
M ′(G). With this induction hypothesis, it is easy to establish

the second part of Lemma 3.1. Any element θ′ ∈ OutM (M ′) can be extended to an outer

automorphism of G̃′ that lies in OutG(G′). Applying Lemma 3.1(i) inductively to G̃′, we

obtain

ŜG̃′

M̃ ′
(δ′, f ′) = Ŝθ′G̃′

θ′M̃ ′
(θ′δ′, θ′f ′) = ŜG̃′

M̃ ′
(θ′δ′, f ′) ,

since θ′G′ = G′, θ′M ′ = M ′ and θ′f ′ = f ′. It follows from the definition (3.3) and the

basic properties of the transfer factor ∆M (δ′, γ) that IM (δ′, f) depends only on the image

of δ′ in Γ̃E
G,ell(M). From (3.4) and (3.5), we conclude that SG

M (M ′, δ′, f) and IEM (δ′, f)

also depend only on the image of δ′ in Γ̃E
G,ell(M). We have established the assertion (ii) of

Lemma 3.1, and in particular, that the definition (3.6) makes sense.

We take care of Lemma 3.2 next. Suppose that the base point (δ
′
, γ) is replaced by

a second point (δ
′

1, γ1) in ΣG(M̃ ′) × ΓG(M), with δ
′

1 being an image of γ1 (relative to

M). The transfer factor for G and G′ ∈ E0
M ′(G) has then to be multiplied by the factor
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∆G(δ
′
, γ; δ

′

1, γ1), in view of [15, Lemma 4.1.A]. The same goes for the image of the transfer

map f → f ′. Replacing G by a z-extension if necessary, we can assume that G̃′ = G′.

The relative transfer factors are then defined by a product (2.3). An inspection of the four

terms in the product reveals that ∆G(δ
′
, γ; δ

′

1, γ1) equals ∆M (δ
′
, γ; δ

′

1, γ1), and that this

number has absolute value 1. If G is quasisplit, we see from (3.4) (together with (3.3))

that the change of base points transforms SG
M (M ′, δ′, f) by the factor ∆M (δ

′
, γ, δ

′

1, γ1).

But if M ′ = M∗, the absolute transfer factor for M and M ∗ is constant. The relative

transfer factor then equals 1, and SG
M (M ′, δ′, f) does not change. To deal with IEM (γ, f),

observe that the change of base point has the effect of multiplying the adjoint transfer

factor ∆M (γ, δ′) by the complex conjugate of ∆M (δ
′
, γ; δ

′

1, γ
′
1). This cancels the effect of

the change on f ′. The invariance of IEM (γ, f) under the change follows from (3.5) and

(3.6). We have proved Lemma 3.2.

Consider finally the remaining part (i) of Lemma 3.1. It is implicit in the first assertion

of (i) that the respective base points (δ
′
, γ) and (δ

′

1, γ1) for M ′ and M ′
1 = θM ′ satisfy

δ
′

1 = θ′δ
′

and γ1 = θγ. Of course this is a restriction only in the case M ′ 6= M∗ not

covered by Lemma 3.2. With the base points so related, it is easy to see that

(3.7) ∆θG(θ′δ′, θγ) = ∆G(δ′, γ) .

We leave the reader to check this point, which follows from an inspection of the various

factors in the product (2.3). From (3.7), we see immediately then (θf)′ = θ′f ′. The

analogue of (3.7) for M is of course also valid. Combined with [8, Lemma 3.3] and the

definition (3.3), it yields an identity

IθM (θ′δ′, θf) = IM (δ′, f) .
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Applying this identity in turn to the definition (3.4), we conclude from our induction

hypothesis that

SθG
θM (θ′M ′, θ′δ′, θf)

= IθM (θ′δ′, θf) −
∑

G′∈E0

M′
(G)

ιθ′M ′(θG, θ
′G′)Ŝθ′G̃′

θ′M̃ ′

(
θ′δ′, (θf)′

)

= IM (δ′, f)−
∑

G′

ιM ′(G,G
′)ŜG̃′

M̃ ′
(δ′, f ′)

= SG
M (M ′, δ′, f) .

This is the first assertion of Lemma 3.1(i). The proof of the second assertion is similar. �

We can now state our main conjecture. It includes the stability assertion required to

complete the inductive definitions.

Conjecture 3.3. (a) If G is arbitrary,

IEM (γ, f) = IM (γ, f) , γ ∈ ΓG,ell(M).

(b) Suppose that G is quasisplit and that δ′ belongs to ΣG,ell(M̃
′). Then the distribution

f −→ SG
M (M ′, δ′, f)

vanishes unless M ′ = M∗, in which case it is stable.

Remarks. 1. If G is quasisplit, the assertion (a) is a consequence of the definitions.

Indeed, (3.4) and (3.5) imply that IEM (δ′, f) = IM (δ′, f), and if we combine this with (3.3),

(3.6) and the adjoint relation (2.7), we see that IEM (γ, f) = IM (γ, f). This identity could

in fact be used in place of (3.4) in the original definition. On the other hand, if G is not

quasisplit, the assertion seems to be quite hard.

2. We gave a similar conjecture in [8] that included a special case of the definitions

(3.3)–(3.6) in its statement. The conjecture here is more general. It includes an implicit

vanishing assertion in (a) (that applies to nonconnected K-groups) and an explicit vanish-

ing assertion in (b), neither of which was a part of the conjecture in [8].
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3. Suppose that G is an inner form of GL(n). Then G is quasisplit if and only if G

is F -isomorphic to GL(n). Since stable conjugacy is the same as conjugacy in this case,

part (b) of the conjecture is trivial. Part (a) is by no means trivial, but has been proved.

It was established by global methods as one of the main results [9, Theorem A(i), p. 108]

of Chapter 2 of [9].
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4. A generalization of weighted orbital integrals

Weighted orbital integrals and their associated invariant distributions can be defined

on a product of several copies of G. In this form, they exhibit important splitting properties

[2, §11], [3, §9]. In order to formulate a splitting property for the distributions IEM (γ) and

SG
M (M ′, δ′), however, we have to consider a generalization. In this section we shall define

weighted orbital integrals and corresponding invariant distributions on products of groups

which can be distinct. In the next section we will see how to generalize the distributions

IEM (γ) and SG
M (M ′, δ′) to the same setting.

We have been working with a triplet (F,G,M). In this section, (F,G,M) will be

demoted to the role of a label, that can satisfy more general conditions. We assume that

the field is arbitrary (of characteristic 0), that G is any multiple group over F , and that M

is a Levi subgroup of G. Consider another such triplet (F1, G1,M1), together with a linear

isometric embedding aM ⊂ aM1
. Let us say that (F1, G1,M1) is a satellite of (F,G,M) if

it satisfies the following two conditions.

(i) For any Q ∈ F(M), the cone a
+
Q in aM is contained in a cone a

+
Q1

in aM1
, for

some Q1 ∈ F(M1).

(ii) The only element L1 ∈ L(M1) with aL1
⊃ aM is M1 itself.

The first condition provides a map Q → Q1 from F(M) to F(M1). It also determines a

map L→ L1 from L(M) to L(M1) with the property that if Q ∈ P(L), then Q1 ∈ P(L1).

In other words, L1 is the maximal element in L(M1) such that aL1
contains aL. The second

condition asserts that M1 is the image of M under this map.

The examples we have in mind come from endoscopic groups. If G′ belongs to the

set EM ′(G) defined in §3, then (F,G′,M ′) is a satellite of (F,G,M). We are dealing

with a transitive relation; if (F2, G2,M2) is a satellite of (F1, G1,M1) and (F1, G1,M1)

is a satellite of (F,G,M), then (F2, G2,M2) is a satellite of (F,G,M). We can therefore

construct satellites of (F,G,M) from chains of successive endoscopic data. There are of

course other examples. If G1 andM1 are extensions of G andM to a field F1 which contains
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F , (F1, G1,M1) is a satellite of (F,G,M). If (F1, G1,M1) is a satellite of (F,G,M) and

L ∈ L(M), then (F1, G1, L1) is a satellite of (F,G, L), and (F1, L1,M1) is a satellite of

(F,L,M). Finally, the triplet (F1, G1,M1) = (F,G × G,M × M), with aM embedded

diagonally in aM ⊕ aM , is a satellite of (F,G,M).

If G is connected, the notion of a (G,M)-family of functions [2, §6] depends only on

the space ia∗M and the chambers {a+
P : P ∈ P(M)}. The notion therefore makes sense for

our general triplet (F,G,M). Suppose that (F1, G1,M1) is a satellite of (F,G,M), and

that

cP1
(λ1) , P1 ∈ P(M1), λ1 ∈ ia∗M1

,

is a (G1,M1)-family. Then if Q1 is any element in F(M1), the function

cQ1
(λ1) = cP1

(λ1) , P1 ⊂ Q1, λ1 ∈ ia∗Q1
,

on ia∗Q1
is independent of P1 ∈ P(M1). If Q belongs to F(M) and λ lies in ia∗M , we define

cQ(λ) = cQ1
(λ) ,

where Q1 is the satellite image of Q. Then

(4.1) cP (λ) , P ∈ P(M), λ ∈ ia∗M ,

is a (G,M)-family of functions. It gives rise to the smooth function

cM (λ) =
∑

P∈P(M)

cP (λ)θP (λ)−1

of λ ∈ ia∗M [2, Lemma 6.2]. This function in turn has an expansion in terms of correspond-

ing functions attached to the original (G1,M1)-family.

To state the expansion at the appropriate level of generality, we take a Levi subgroup

R1 of M1, and we assume that {cP (λ1)} comes from a (G1, R1)-family

cS1
(ν1) , S1 ∈ P(R1), ν1 ∈ ia∗R1

.
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That is,

cP1
(λ1) = cS1

(λ1) , P1 ∈ P(M1), S1 ⊂ P1, λ1 ∈ ia∗M1
.

Then aM is a subspace of aR1
, whose orthogonal complement we denote by a

M
R1

. If L1

belongs to L(R1), we have a map

a
M
R1

⊕ a
L1

R1
−→ a

G
R1
.

We can then define a coefficient dG
R1

(M,L1) as in the special case of [3, §7]. That is, we

set dG
R1

(M,L1) = 0 unless the map is an isomorphism, in which case we define dG
R1

(M,L1)

to be the volume in a
G
R1

of the image of a unit cube in a
M
R1

⊕ a
L1

R1
. Let ξ be a fixed point

in general position in a
M
R1

. If dG
R1

(M,L1) 6= 0, the spaces ξ + a
G
M and a

G
L1

meet in exactly

one point. This point lies in a chamber a
+
Q1

of aL1
, for a unique Q1 ∈ P(L1). Thus, ξ

determines a section L1 → Q1 from

{
L1 ∈ L(R1) : dG

R1
(M,L1) 6= 0

}

to the fibres P(L1). (See [3, §7].) In particular, for any L1 ∈ L(R1), we obtain an

(L1, R1)-family

cQ1

S1∩L1
(ν1) = cS1

(ν1) , S1 ∈ P(R1), S1 ⊂ Q1, ν1 ∈ ia∗R1
.

Lemma 4.1. We have

cM (λ) =
∑

L1∈L(R1)

dG
R1

(M,L1)c
Q1

R1
(λ) .

Proof. The assertion is identical to [3, Proposition 7.1], but we are working under slightly

different conditions. The setting of [3, §7] applies only to the special case here that the

chambers in aM are defined by the intersections of aM with chambers of aM1
, or equiva-

lently, that the map P → P1 from P(M) to P(M1) is injective. However, the proof given

in the appendix of [3] is not dependent on this constraint.
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It is a direct consequence of our definitions that

∑

L1∈L(R1)

dG
R1

(M,L1)c
Q1

R1
(λ) =

∑

S1∈P(R1)

cS1
(λ)rS1,ξ(λ) ,

where

rS1,ξ(λ) =
∑

{L1∈L(R1): Q1⊃S1}

dG
R1

(M,L1)θS1∩L1
(λ)−1 .

This is the analogue of [3, (A.5)]. Almost all of the discussion of the appendix of [3],

including Lemma A.1, is aimed at evaluating rS1,ξ(λ). This discussion applies essentially

without change to the present situation. We shall just quote the final result. That is,

rS1,ξ(λ) vanishes unless S1 is contained in the image P1 of a group P ∈ P(M), in which

case rS1,ξ(λ) is the sum, over all P ∈ P(M) which map to P1, of the functions θP (λ)−1.

Since λ lies in ia∗M ,

cS1
(λ) = cP1

(λ) = cP (λ) ,

for any P that maps to P1. The lemma follows. �

In order to construct products, we shall take several satellites. Suppose that

{
(Fv, Gv,Mv) : v ∈ V

}

is a family of satellites of (F,G,M), indexed by a finite set V . Then we have a map

P −→ PV =
∏

v∈V

Pv

from F(M) to F(MV ) =
∏
v
F(Mv), as well as a map

L −→ LV =
∏

v∈V

Lv

from L(M) to L(MV ) =
∏
v
L(Mv). (We shall often write MV =

∏
v
Mv and GV =

∏
v
Gv.)

We assume that for each v, Fv is a local field of characteristic 0. It will also be convenient

to assume that the range of the absolute value on FV =
∏
v
Fv is closed in R. This means
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that either one of the fields Fv is archimedean, or all of the fields have the same residual

characteristic [3, §1]. We are really interested in the case that Gv is a K-group over Fv.

For this section, however, we may as well assume that each Gv is a general multiple group.

(We take for granted the obvious analogues for Gv of the more elementary definitions of

§2 and §3.) Suppose that for each v ∈ V , Zv is a central induced torus over Fv in Gv, and

that ζv is a character on Zv(Fv). Then ζV =
⊗
v
ζv is a character on ZV (FV ) =

∏
v
Zv(Fv).

We shall construct some linear forms on the Schwartz space

C(GV , ζV ) =
⊗

v∈V

C(Gv, ζv)

of ζ−1
V -equivariant functions on GV (FV ) =

∏
v
Gv(Fv).

If xV =
∏
v
xv is a point in GV (FV ), we can form the (G,M)-family of functions

vP (λ, xV ) =
∏

v

vP (λ, xv) =
∏

v

e−λ(HPv (xv)) , P ∈ P(M),

of λ ∈ ia∗M . It is a product of (G,M)-families of the form (4.1). As usual, we write

vM (xV ) = lim
λ→0

∑

P∈P(M)

vP (λ, xV )θP (λ)−1

for the value at λ = 0 of the function vM (λ, xV ). Suppose that γV =
∏
v
γv is a point in

ΓGV
(MV ) =

∏
v

ΓGv
(Mv), and that fV is a function in C(GV , ζV ). If GV is connected, we

define the weighted orbital integral by the familiar formula

(4.2) JM (γV , fV ) = |D(γV )|
1

2

V

∫

GV ,γV (FV )\GV (FV )

fV (x−1
V γV xV )vM (xV )dxV ,

where GV,γV
(FV ) =

∏
v
Gv,γv

(Fv), and |D(γV )|V =
∏
v
|D(γv)|v. We define the weighted

orbital integral in general by

JM (γV , fV ) = JM (γV , fV,αV
) ,

where fV,αV
is the component of fV relative to the connected component αV of GV that

contains γV . Observe that the weight factor vM (xV ) links the distinct groups {Gv} in
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a nontrivial way. The new distributions are for this reason considerably more general

than the weighted orbital integrals of §3. However, they inherit many of the same formal

properties. In particular, we can make them invariant by combining them with weighted

characters.

To define weighted characters in this context, assume first that GV is connected.

Suppose that πV =
⊗
v
πv belongs to the set Πtemp(MV , ζV ) of (equivalence classes of)

irreducible tempered representations of MV (FV ), with ZV (FV )-central character ζV . Fix

P ∈ P(M). We can then form the (G,M)-family of (operator valued) functions

MQ(λ, πV , PV ) =
⊗

v∈V

MQv
(λ, πv, Pv) , Q ∈ P(M),

of λ ∈ ia∗M , with operators

MQv
(λ, πv, Pv) = µQv

(λ, πv, Pv)JQv
(λ, πv, Pv)

defined as in [8, §2] in terms of Plancherel densities and unnormalized intertwining opera-

tors. Again we have a product of (G,M)-families of the form (4.1), from which we obtain

the operator

MM (πV , PV ) = lim
λ→0

∑

Q∈P(M)

MQ(λ, πV , PV )θQ(λ)−1 .

The weighted character is then defined in the connected case by

(4.3) JM (πV , fV ) = tr
(
MM (πV , PV )IPV

(πV , fV )
)
, f ∈ C(GV , ζV ),

where IPV
(πV ) is the usual induced representation. For the general case, suppose that πV

belongs to the set

Πtemp(MV , ζV ) =
∐

αV ∈π0(MV )

Πtemp(MV,αV
, ζV,αV

) .

The general weighted character is then defined by

JM (πV , fV ) = JM (πV , fV,αV
) ,
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where fV,αV
is the component of fV relative to the connected component αV of GV asso-

ciated to πV . Again the weight factor MM (πV , PV ), this time operator valued, links the

distinct groups {Gv} in a nontrivial way.

Once we have the weighted characters, we can define maps

φL : C(GV , ζV ) −→ I(LV , ζV ) , L ∈ L(M),

by

φL(fV , πV ) = JL(πV , fV ) , πV ∈ Πtemp(LV , ζV ).

(We are really writing L here for a representative of an M -equivalence class of Levi sub-

groups. With this understanding, we have the general space

I(LV , ζV ) =
⊕

αV ∈π0(LV )

I(LV,αV
, ζV,αV

) =
⊕

αV

(⊗

v∈V

I(Lv,αv
, ζv,αv

)
)
,

where I(Lv,αv
, ζv,αv

) is the ζ−1
v,αv

-equivariant version of the invariant Schwartz space

I(Lv,αv
) discussed, for example, in [8, §3].) We then define invariant distributions

IM (γV , fV ) = IG
M (γV , fV ) , fV ∈ C(GV , ζV ),

in the usual inductive fashion by setting

(4.4) JM (γV , fV ) =
∑

L∈L(M)

ÎL
M

(
γV , φL(fV )

)
.

Like the special cases in [3], the distributions we have just defined have familiar descent

and splitting properties. For the descent formula, we assume that V consists of just one

element v. Suppose that (F1, G1,M1) is a satellite of (F,G,M), and that R1 is a Levi

subgroup of M1 over F1. The element v in V is to parametrize a satellite (Fv, Gv, Rv) of

(F1, G1, R1). We shall write

L1 −→ Lv = L1,v , L1 ∈ L(R1),

for the map from L(R1) to L(Rv). This emphasizes the fact that (Fv, Gv,Mv) is also a

satellite of (F,G,M).
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Proposition 4.2. Suppose that γv lies in ΓGv
(Rv) and that fv belongs to C(Gv, ζv). Then

(4.5) IM (γv, fv) =
∑

L1∈L(R1)

dG
R1

(M,L1)Î
L1

R1
(γv, fv,Lv

) .

Proof. This is a variant of [3, Theorem 8.1]. The arguments are identical, with the general

descent formula of Lemma 4.1 taking the place of [8, Proposition 7.1]. The map φL(fv)

that goes into the definition (4.4) is given by the normalized weighted characters of [8],

rather than the weighted characters that went into the earlier definition [3, (2.1)]. One

sees easily from the discussion of [8, §2], however, that the second version of the map has

the same formal properties as the first. �

The restriction we imposed on V in Proposition 4.2 was purely for simplicity. We

could have taken V to contain several elements, each of which parametrizes a satellite

(Fv, Gv,Mv) of (F1, G1,M1). In this generality, the descent formula (4.5) holds as stated,

and is proved in a similar way.

For the splitting property, we assume that V is a disjoint union of V1 and V2, and that

the image of the absolute value on each FVi
is closed in R. To simplify our notation, we

shall allow ourselves to write Li as a subscript, when it is really the image Li,Vi
=
∏

v∈Vi

Li,v

of a Levi subgroup Li ∈ L(M) that is called for. We shall also sometimes write Γ(Li,Vi
)

(without the subscript GVi
) for the GVi

-regular conjugacy classes in Li,Vi
(FVi

). Thus, if

fVi
belongs to C(GVi

, ζVi
), fVi,Li

is the function

fVi,Li,Vi
(γVi

) = IG(γVi
, fVi

) , γVi
∈ Γ(Li,Vi

),

in I(Li,Vi
, ζVi

).

Proposition 4.3. Suppose that γV = (γV1
, γV2

) lies in Γ(MV1
) × Γ(MV2

) and that fV =

fV1
× fV2

belongs to C(GV1
, ζV1

) × C(GV2
, ζV2

). Then

(4.6) IM (γV , fV ) =
∑

L1,L2∈L(M)

dG
M (L1, L2)Î

L1

M (γV1
, fV1,L1

)ÎL2

M (γV2
, fV2,L2

) .
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Proof. This is a straightforward extension of [3, Proposition 9.1]. The methods of [3] carry

over directly to the present setting. The map φL(fV ) in (4.4) is normalized differently

from the one in [3], but as in the proof of Proposition 4.2, we require only that it have the

same formal properties. �

The following lemma is a typical application of the splitting and descent formulas.

Lemma 4.4. The distribution IM (γV , fV ) vanishes identically unless the space

aM,GV
=

⋂

v∈V

(aM ∩ aGv
)

equals aG.

Proof. The space obviously contains aG. Assume that it contains aG properly. We have

to show that IM (γV , fV ) vanishes.

Consider first the case that V consists of one element v. Then we can apply the

descent formula (4.5), with (F1, G1,M1) = (Fv, Gv,Mv), and R1 = M1. It is clear that for

any L1 ∈ L(M1), the space a
M
M1

⊕ a
L1

M1
is orthogonal to the space aM,Gv

= aM ∩ aG1
, and

is therefore a proper subspace of a
G
M1

. It follows that each of the coefficients dG
M1

(M,L1)

that occur in (4.5) vanishes. Therefore IM (γV , fV ) = 0.

In the general case, we argue by induction on |V |. We may assume that V is a disjoint

union of proper subsets V1 and V2, to which we can apply the proposition. Suppose that

IM (γV , fV ) 6= 0. Then that is a pair L1, L2 ∈ L(M) for which the corresponding term in

(4.6) does not vanish. The nonvanishing of dG
M (L1, L2) tells us that aL1

∩ aL2
= aG, while

our induction assumption applied to ÎLi

M (γVi
) tells us that for i = 1, 2, the space aM,Li,Vi

equals aLi
. We see that

aM,GV
=

⋂

v∈V

(aM ∩ aGv
) ⊆

2⋂

i=1

( ⋂

v∈Vi

(aM ∩ aLi,v)

)

= aM,L1,V1
∩ aM,L2,V2

= aL1
∩ aL2

= aG .
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This contradicts our original assumption on aM,GV
. Therefore IM (γV , fV ) = 0 in general.

�

There are two examples of the general constructions of this section that we should

always have in mind. For the first, F is a local field and V = {v1, v2} contains two elements.

In this case we take

(Fv, Gv,Mv) = (F,G,M)

for each v ∈ V . We define the embedding

aM ↪→ aMv
= aM

to be the identity if v = v1, and to be (−1) times the identity if v = v2. If xV = (x1, x2)

is a point in GV (FV ) = G(F ) ×G(F ), then

vP (λ, xV ) = e−λ(HP (x1))eλ(H
P

(x2)) , P ∈ P(M).

If G is connected, this is essentially the (G,M)-family of §12 of [4]. To match the definition

[4, (12.1)], we actually have to replace λ by −λ and P by P . However, the effects of these

two substitutions cancel when we form the function vM (xV ). It follows that if γV = (γ, γ)

is the diagonal image of an element γ ∈ ΓG(M), the distribution JM (γV , fV ) in (4.2) equals

the one defined in [4, (12.2)]. It is the main term [4, (12.9)] on the geometric side of the

noninvariant local trace formula. The distribution IM (γV , fV ) defined by (4.4) plays the

same role the corresponding invariant trace formula.

For the other example, F is a global field and V is a finite set of valuations on F . In

this case, we would want G to be equipped with a family of Fv-homomorphisms

θv: G → Gv such that the component maps θv,α: Gα → Gv,αv
are isomorphisms over Fv,

and such that the product map

θV =
∏

v

θv : G(FV ) −→
∏

v

Gv(Fv)
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is surjective. (The global results in [14, §2] suggest the notion of a global K-group, that

should come with Fv-homomorphisms θv: G → Gv onto local K-groups. We shall not

pursue the idea here.) We would of course also require that θv(M) = Mv, so that we

could then take aM ⊂ aMv
to be the canonical embedding. This is the setting of the global

trace formula, at least in the case that the multiple groups are all connected. If γV is the

diagonal image in ΓGV
(MV ) of a rational element γ ∈ ΓG(M), and V is sufficiently large,

the distribution JM (γV , fV ) in (4.2) is one of the main terms on the geometric side of the

noninvariant global trace formula. The distribution IM (γV , fV ) in (4.4) plays the same

role in the corresponding invariant trace formula.
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5. The corresponding endoscopic construction

The next step is to construct endoscopic and stable analogues of the general distribu-

tions defined in the last section. In order to do so, we must impose more structure on the

underlying data.

We consider triplets (F,G,M) as in §4, but we assume from now on that (F,G,M)

is equipped with the structure of a dual Levi subgroup M̂ ⊂ Ĝ for M ⊂ G. We shall say

that a satellite (F1, G1,M1) of (F,G,M) is an L-satellite if it comes with an embedding of

Γ1 = Gal(F 1/F1) into Γ, and with embeddings Z(M̂) ⊂ Z(M̂1) and Z(Ĝ) ⊂ Z(Ĝ1) that

are compatible with each other and with the actions of Γ and Γ1. We require also that the

embedding
(
Z(M̂)Γ

)0
into

(
Z(M̂1)

Γ1

)0
be dual to the satellite embedding aM ⊂ aM1

of

§4. The purpose of this extra structure is to provide compatible embeddings of Z(M̂)Γ and

Z(Ĝ)Γ into Z(M̂1)
Γ1 and Z(Ĝ1)

Γ1 respectively. The notion of an L-satellite is modelled on

the example that (F1, G1,M1) = (F,G′,M ′), where G′ is an endoscopic datum in EM ′(G).

In fact all of the examples of satellites given in §4 have the natural structure of L-satellites.

Given (F,G,M), we choose a finite set

{
(Fv, Gv,Mv) : v ∈ V

}

as in §4. We assume from now on that each (Fv, Gv,Mv) is an L-satellite of (F,G,M).

We also assume that each Gv is actually a K-group. For every v, we fix a quasisplit inner

twist G∗
v of Gv and a Levi subgroup M∗

v of G∗
v corresponding to Mv.

Suppose that

M ′
V =

∏

v∈V

M ′
v , M ′

v ∈ Eell(Mv),

is an equivalence class of elliptic endoscopic data for MV . We fix a representative

(M ′
V ,M

′
V , s

′
MV

, ξ′MV
) within the equivalence class so that the group M′

V =
∏
v
M′

v is

actually a subgroup of LMV =
∏
v

LMv, and so that the L-embedding ξ′MV
is the identity.

The semisimple element s′MV
=
∏
v
s′Mv

belongs to M̂V =
∏
v
M̂v, and stabilizes M′

V . Since
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each (Fv, Gv,Mv) is an L-satellite of (F,G,M), we can form the diagonal embedding of

Z(M̂)Γ into

Z(M̂V )ΓV =
∏

v∈V

Z(M̂v)
Γv , ΓV =

∏
v

Γv.

This gives us a set

s′MV
Z(M̂)Γ/Z(Ĝ)Γ =

{
s′V = s′MV

s : s ∈ Z(M̂)Γ/Z(Ĝ)Γ
}

of Z(Ĝ)Γ-orbits of semisimple elements in ĜV =
∏
v
Ĝv. Following the construction of §3,

we shall identify this set with a family of Z(Ĝ)Γ-orbits of endoscopic data

E = EM ′
V
(GV , G) =

{
(G′

V ,G
′
V , s

′
V , ξ

′
V )
}

for GV . We define Ĝ′
V =

∏
v
Ĝ′

v to be the connected centralizer of s′V =
∏
v
s′v =

∏
v

(s′Mv
s)

in ĜV =
∏
v
Ĝv, and we take G′

V =
∏
v
G′

v to be the subgroup Ĝ′
V M′

V =
∏
v

(Ĝ′
vM

′
v) of

LGV =
∏
v

LGv. The third constituent s′V of a datum equals s′MV
s, as above, and the

fourth constituent ξ′V is just the identity embedding of G ′
V into LGV .

As in §3, we shall have to treat the quasisplit case on its own. Assume for a moment

that (FV , GV ,MV ) is quasisplit. In other words, Gv and Mv are quasisplit over Fv, for

each v ∈ V . We shall write E1 = E1
M ′

V

(GV , G) for the set of elements G′
V ∈ E that are

isomorphic to G∗
V =

∏
v
G∗

v, or equivalently, such that s′V lies in Z(ĜV )ΓV =
∏
v
Z(Ĝv)Γv .

We set E0 = E0
M ′

V
(GV , G) equal to the complement of E1 in E . If E1 is nonempty, the

endoscopic datum M ′
V for MV is isomorphic to M∗

V =
∏
v
M∗

v , but unlike the special case

of §3, the converse is not true. If it is nonempty, E1 supports a simply transitive action

of the group Z(M̂)Γ ∩ Z(ĜV )ΓV /Z(Ĝ)Γ. In particular, E1 could contain more than one

element, again unlike the special case of §3. We shall sometimes require separate arguments

depending on whether this set is empty or not. If E1 is empty, it will be convenient to write

Ẽ = ẼM ′
V
(GV , G) for the disjoint union of E with the one element G∗

V . If E1 is nonempty,

we simply set Ẽ = E . Finally, we write Ẽ1 = Ẽ1
M ′

V
(GV , G) for the complement of E0 in Ẽ.
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If (FV , GV ,MV ) is not quasisplit, we have no need of such distinctions. In this case we set

E0 = E = Ẽ , and we take E1 and Ẽ1 to be empty. In general, then, we have disjoint unions

Ẽ = E0
∐
Ẽ1 = E0

∐
E1
∐

(Ẽ − E) .

At least one of the sets E1 and Ẽ − E is empty; they are both empty if and only if

(FV , GV ,MV ) is not quasisplit.

We recall that M′
V need not be an L-group. However, we can fix an L-homomorphism

ξ̃′V =
∏
v
ξ̃′V of M′

V into a group LM̃ ′
V =

∏
v

LM̃ ′
v that is the L-group of a central extension

M̃ ′
V =

∏
v
M̃ ′

v of M ′
V by a product Z̃ ′

V =
∏
v
Z̃ ′

v of induced tori. The extension comes with

a character ζ̃ ′V =
∏
v
ζ̃ ′v on Z̃ ′

V (FV ). The choice of these objects for M ′
V determines similar

choices for any G′
V in E . We obtain a central extension G̃′

V of G′
V by Z̃ ′

V , and an extension

of ξ̃′V to an L-homomorphism of G′
V to the L-group LG̃′

V =
̂̃
G

′

V · LM̃ ′
V . We are going

to assume that the Langlands-Shelstad transfer conjecture holds for each v ∈ V and for

each endoscopic datum G′
v ∈ E(Gv). This gives a mapping fV → f ′

V from C(GV , ζV ) to

SI(G̃′
V , ζ̃

′
V ζV ), for any G′

V ∈ EM ′
V
(GV , G).

The other ingredients we need for the construction are the transfer factors for MV .

We simply take the product of transfer factors

∆M (δ′V , γV ) =
∏

v∈V

∆Mv
(δ′v, γv)

at elements γV =
∏
v
γv in ΓGV

(MV ) and elements δ′V =
∏
v
δ′v in the set Γ̃E

GV
(MV ) =

∏
v

Γ̃E
Gv

(Mv). It follows from Lemma 2.3 that ∆M (δ′V , γV ) and its adjoint transfer factor

∆MV
(γV , δ

′
V ) =

∏

v∈V

∆Mv
(γv, δ

′
v)

satisfy relations

(5.1)
∑

δ′
V
∈ΓE

GV
(MV )

∆MV
(γV , δ

′
V )∆MV

(δ′V , γ1,V ) = δ(γV , γ1,V )
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and

(5.2)
∑

γV ∈ΓGV
(MV )

∆MV
(δ′V , γV )∆MV

(γV , δ
′
1,V ) = δ̃(δ′V , δ

′
1,V ) .

In particular, we can define invariant distributions IM (δ′V ) on C(GV , ζV ), parametrized by

elements δ′V ∈ Γ̃E
GV

(MV ), by either of the equivalent formulas

IM (δ′V , fV ) =
∑

γV ∈ΓGV
(MV )

∆MV
(γ′V , γV )IM (γV , fV )

or

IM (γV , fV ) =
∑

δ′
V
∈ΓE

GV
(MV )

∆MV
(γV , δ

′
V )IM (δ′V , fV ) .

We can now give the construction. We are going to define invariant distributions

IEM (δ′V , fV ) and SG
M (M ′

V , δ
′
V , fV ) on C(GV , ζV ) by an inductive process similar to that

of §3. As above, M ′
V stands for an elliptic endoscopic datum (M ′

V ,M
′
V , s

′
V , ξ

′
V ) for MV ,

while δ′V is an element in ΣGV
(M̃ ′

V ) that we shall assume maps into Γ̃E
GV

(MV ). The second

distribution exists only when (FV , GV ,MV ) is quasisplit. We shall emphasize the special

case that E1 is nonempty (and, in particular, that M ′
V
∼= M∗

V ) by writing

SG
M (δV , fV ) = SG

M (M∗
V , δ

∗
V , fV ) , δV ∈ ΣGV

(MV ).

For each M ′
V and δ′V , we define the distributions by the formula

(5.3) IEM (δ′V , fV ) =
∑

G′
V
∈E0

ŜG
M (δ′V , f

′
V ) + |Ẽ1|SG

M (M ′
V , δ

′
V , fV )

in general, and by the supplementary formula

(5.4) IEM (δ′V , fV ) = IM (δ′V , fV )

in the case that (FV , GV ,MV ) is quasisplit (or equivalently, that Ẽ1 is nonempty). We

then set

(5.5) IEM (γV , fV ) =
∑

δ′
V
∈ΓE

GV
(MV )

∆MV
(γV , δ

′
V )IEM (δ′V , fV ) ,
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for any γV ∈ ΓGV
(MV ). It is clear that IEM (γV , fV ) equals IM (γV , fV ) in the case that

(FV , GV ,MV ) is quasisplit.

The definition requires further comment. It is of course inductive. We shall first state

a formal assumption, on which the definition will ultimately rely. The assumption is based

on a fixed subset V0 of V with the following properties.

(i) V0 is empty unless (FV , GV ,MV ) is quasisplit.

(ii) For each v ∈ V0, (Fv, Gv,Mv) is an elliptic satellite of (F,G,M), in the sense that

aGv
= aG.

(iii) For each v ∈ V0, the embedded subgroup Z(Ĝ) of Z(Ĝv) is actually equal to Z(Ĝv).

Assumption 5.1. For each v ∈ V , the distributions associated to the triplet (Fv, Gv,Mv)

by the basic construction of §3 are all well defined. Furthermore, these distributions satisfy

part (b) of Conjecture 3.3 if v 6= V0.

The first assertion is that the transfer mappings and stability conditions implicit in

the inductive definition of §3 are valid. That is to say, they hold for groups obtained from

G by a chain of proper endoscopic groups. The second assertion is a further condition,

that of course depends on the size of V0. It would have simplified the discussion to take V0

to be empty. Our purpose, however, is to carry Assumption 5.1 as an induction hypothesis

into a future paper, where we will attack Conjecture 3.3 at places v in a general set V0.

The three conditions on V0 have been tailored to this end.

Assumption 5.1 is thus to be regarded as our primary induction hypothesis. It will

not be resolved in this paper. Our more modest goal here will be to reduce the definition

and study of the compound distributions in (5.3) to the simple ones of §3. To this end,

we impose a secondary induction hypothesis, that will be resolved presently in terms of

the first one. For any datum G′
V in E0, the distribution SG

M (δ′V ) in the summand (5.3) is
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supposed to be defined on a quasisplit inner K-form of G′
V . We assume that it is in fact

defined, and that it is stable at any v in the complement of the set

V ′
0 =

{
v ∈ V0 : G′

v = G∗
v

}
.

If U is the complement of V ′
0 in V , and fV = fU × fV ′

0
, the function f ′

V in (5.3) is then to

be understood as the partial Langlands-Shelstad transfer

f ′
U ⊗ fV ′

0
, f ′

U ∈ SI(G̃′
U , ζ̃

′
U), fV ′

0
∈ C(GV ′

0
, ζV ′

0
).

With this harmless abuse of notation, the summand ŜG
M (δ′V , f

′
V ) in (5.3) has an obvi-

ous meaning. Given this secondary induction hypothesis, we can define IEM (δ′V , fV ) by

(5.4) or (5.3) (according to whether (FV , GV ,MV ) is quasisplit or not), and we define

SG
M (M ′

V , δ
′
V , fV ) by (5.3) in the case that (FV , GV ,MV ) is quasisplit. It will sometimes be

convenient to write

0SG
M (M ′

V , δ
′
V , fV ) =

{
SG

M (M ′
V , δ

′
V , fV ), if G∗

V ∈ Ẽ − E ,
0, otherwise,

for a distribution that we expect will always vanish. Then (5.3) can be recast in the form

(5.6) IEM (δ′V , fV ) =
∑

G′
V
∈E

ŜG
M (δ′V , f

′
V ) + 0SG

M (M ′
V , δ

′
V , fV ) ,

since Ẽ − E consists of at most the one element G∗
V .

There are still some points in the definition to clarify. The set of summation E0 =

E0
M ′

V
(GV , G) in (5.3) is infinite (except in the trivial case that M = G). However, we have

Lemma 5.2. (i) The sum in (5.3) can be taken over a finite subset of E0.

(ii) Any of the distributions on GV (FV ) defined by (5.3), (5.4) or (5.5) vanishes unless the

space

aM,GV
=

⋂

v∈V

(aM ∩ aGv
)
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equals aG.

Proof. Assume inductively that (ii) holds if GV is replaced by a quasisplit inner K-form

of any of the groups G′
V ∈ E0. Then the summand ŜG

M (δ′V , f
′
V ) in (5.3) vanishes unless

aM,G′
V

equals aG.

Although the set Z(M̂)Γ/Z(Ĝ)Γ which parametrizes E is infinite, it gives rise to only

finitely many subgroups Ĝ′
V of ĜV . Any such Ĝ′

V comes with an L-action of the group

ΓV =
∏
v

Γv, and contains the central subgroup

Z(Ĝ′
V )ΓV =

∏

v

(
Z(Ĝ′

v)Γv
)
.

We have in fact four subgroups

Z(Ĝ′
V )ΓV ↪→ Z(M̂ ′

V )ΓV

∪
↑

∪
↑

Z(Ĝ)Γ ↪→ Z(M̂)Γ

of Ĝ′
V , with the vertical maps being the diagonal embeddings. The Lie algebra of the

intersection Z(Ĝ′
V )ΓV ∩ Z(M̂)Γ (in Z(M̂ ′

V )ΓV ) is isomorphic to

⋂

v∈V

(a∗Gv,C ∩ a
∗
M,C) ∼= (aM,G′

V
)∗C .

The Lie algebra of Z(Ĝ)Γ is of course isomorphic to a
∗
G,C. It follows easily from the

induction assumption above that the summand in (5.3) vanishes unless Z(Ĝ)Γ has finite

index in Z(Ĝ′
V )ΓV ∩Z(M̂)Γ. But any element in Z(M̂)Γ/Z(Ĝ)Γ that gives rise to Ĝ′

V must

lie in the subgroup Z(Ĝ′
V )ΓV ∩Z(M̂)Γ/Z(Ĝ)Γ of Z(Ĝ′

V )ΓV /Z(Ĝ)Γ. The sum in (5.3) may

therefore be taken over a finite set.

To establish the assertion (ii), assume that aM,GV
is strictly larger than aG. If G′

V

lies in E0, the space aM,G′
V

contains aM,GV
, and is also strictly larger than aG. The corre-

sponding summand ŜG
M (δ′V , f

′
V ) in (5.3) therefore vanishes by the induction assumption.

It follows from Lemma 4.4 that the various distributions on GV (FV ) defined by (5.3), (5.4)

and (5.5) also vanish. �
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Lemma 5.3. (a) The distribution IEM (δ′V , fV ) in (5.3) depends only on the image of δ′V

in Γ̃E
GV

(MV ), and in particular, is independent of the choice of M ′
V .

(b) Suppose that (FV , GV ,MV ) is quasisplit and that S = SG
M (M ′

V , δ
′
V ) is the distribution

on GV (FV ) defined by (5.3). If G∗
V belongs to E , S is stable at each v in the complement

of V0. If G∗
V belongs to Ẽ − E and V0 is empty, S vanishes.

The assertion (a) is required for the right hand side of (5.5) to be well defined. The

first assertion in (b) is needed to complete the inductive definition of the compound dis-

tributions. The second assertion in (b) is that the distribution 0SG
M (M ′

V , δ
′
V ) on GV (FV )

vanishes if V0 is empty. We will need to apply it inductively during the proof of the stable

splitting and descent formulas of the next two sections. The lemma itself will in fact be an

easy consequence of these formulas. We shall prove it in two steps, following the proof of

each of the theorems of the next two sections. In the meantime, we shall have to impose a

third induction hypothesis. We assume that the lemma holds if V is replaced by a proper

subset, or in the case that V contains one element v, if (F,G,M) and (Fv, Gv,Mv) are

replaced by triplets (F1, L1, R1) and Fv, Lv, Rv), in which Lv and Rv are Levi subgroups

of Gv and Mv, and dim(aL1
) > dim(aG).

Before going on, we note that the definition (5.3) does not have quite the same form

as the original one in §3. The coefficients ιM ′(G,G
′) are absent from the sum in (5.3),

and the stable distributions in this sum have been denoted by SG
M instead of SG̃′

M̃ ′
. In

particular, it is not immediately clear that the construction of §3 is a special case of the

one here. We shall wait until the end of §7 (Corollary 7.3) to check this point.
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6. Stable splitting formulas

In the next two sections we shall establish endoscopic and stable analogues of the

splitting and descent formulas of §4. Such formulas are important for studying the transfer

properties of terms in the local and global trace formulas. They will also allow us to

complete the inductive definitions of the last section. The endoscopic formulas will take

exactly the same form as their counterparts in §4. However, the stable formulas require

the introduction of some new coefficients.

We continue with the setting of §5. Then Gv is a K-group, and (Fv, Gv,Mv) is an

L-satellite of (F,G,M), for each v in the finite set V . We shall treat the splitting formulas

in this section. As in Proposition 4.3, we suppose that V is a disjoint union of nonempty

sets V1 and V2, and that for i = 1, 2, the image of FVi
in R under the absolute value is

closed. We fix a function in C(GV , ζV ) of the form

fV = fV1
× fV2

, fVi
∈ C(GVi

, ζVi
).

The splitting formulas are expressed in terms of pairs of Levi subgroups L1, L2 ∈

L(M). For any such pair, we define a coefficient

(6.1) eG
M (L1, L2) = dG

M (L1, L2)|Z(L̂1)
Γ ∩ Z(L̂2)

Γ/Z(Ĝ)Γ|−1 .

Observe that if dG
M (L1, L2) 6= 0, then a

∗
L1

∩ a
∗
L2

= a
∗
G, and the identity component of

Z(L̂1)
Γ ∩ Z(L̂2)

Γ is the same as that of Z(Ĝ)Γ. Therefore eG
M (L1, L2) is also nonzero.

Extending a convention used in Proposition 4.3, we shall generally write Li as a superscript

when it is really the image Li,Vi
that is called for.

Theorem 6.1. (a) Suppose that γV = (γV1
, γV2

) lies in ΓGV
(MV ). Then

(6.2) IEM (γV , fV ) =
∑

L1,L2∈L(M)

dG
M (L1, L2)Î

L1,E
M (γV1

, fV1,L1
)ÎL2,E

M (γV2
, fV2,L2

) .
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(b) Suppose that (FV , GV ,MV ) is quasisplit, and that δV = (δV1
, δV2

) lies in ΣGV
(MV ).

Then

(6.3) SG
M (δV , fV ) =

∑

L1,L2∈L(M)

eG
M (L1, L2)Ŝ

L1

M (δV1
, fL1

V1
)ŜL2

M (δV2
, fL2

V2
) .

(b′) Suppose that (FV , GV ,MV ) is quasisplit, and that δ′V = (δ′V1
, δ′V2

) lies in ΣGV
(M̃ ′

V ),

for some M ′
V ∈ Eell(MV ). Then

(6.3′) 0SG
M (M ′

V , δ
′
V , fV ) = fM ′

V1
(δ′V1

)0SG
M (M ′

V2
, δ′V2

, fV2
) + 0SG

M (M ′
V1
, δ′V1

, fV1
)fM ′

V2
(δ′V2

) .

Proof. As in §5, we fix an elliptic endoscopic datum M ′
V for MV and a point δ′V =

(δ′V1
, δ′V2

) in ΣGV
(M ′

V ). If G′
V belongs to E = EM ′

V
(GV , G), the triplets

(Fv, G
′
v,M

′
v) , v ∈ V,

are also L-satellites of (F,G,M), as are the triplets (Fv, G̃
′
v, M̃

′
v). We assume inductively

that (6.3) holds if (FV , GV ,MV ) is replaced by a quasisplit inner K-form of (FV , G̃
′
V , M̃

′
V ),

for any G′
V in the subset E0 = E0

M ′
V

(GV , G) of E .

The required formula (6.2) has an analogue

(6.4) IEM (δ′V , fV ) =
∑

L1,L2∈L(M)

dG
M (L1, L2)Î

L1,E
M (δ′V1

, fV1,L1
)ÎL2,E

M (δ′V2
, fV2,L2

)

for δ′V . According to the definition (5.5), the two formulas are equivalent, so for part (a)

it will be enough to establish (6.4).

It follows from the definition (5.3) that

(6.5) IEM (δ′V , fV ) − |Ẽ1|SG
M (M ′

V , δ
′
V , fV )

equals
∑

G′
V
∈E0

ŜG
M (δ′V , f

′
V ) .
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We shall apply (6.3) inductively to each G′
V . If Li belongs to L(M), we can form the

Levi subgroup L′
i,Vi

of G′
Vi

, since (Fv, G
′
v,M

′
v) is a satellite of (F,G,M) for each v ∈ Vi.

According to our convention above, we can write L′
i as a superscript instead of the image

L′
i,Vi

. In fact, we may as well just set L′
i = L′

i,Vi
in general, as there is no risk of confusion.

Since

(f ′
Vi

)L′i = (fVi,Li
)L′i = f

L′i
Vi
, i = 1, 2,

we see that (6.5) equals

∑

G′
V
∈E0

∑

L1,L2∈L(M)

eG
M (L1, L2)Ŝ

L1

M (δ′V1
, f

L′
1

V1
)ŜL2

M (δ′V2
, f

L′
2

V2
) .

If M ′
V 6= M∗

V , E0 equals E . If M ′
V = M∗

V , however, E0 could be a proper subset of E . In

this case we would have to add a correction term to the last expression to change the sum

over E0 to one over E . In either case, it is the expression

(6.6)
∑

G′
V
∈E

∑

L1,L2∈L(M)

eG
M (L1, L2)Ŝ

L1

M (δ′V1
, f

L′
1

V1
)ŜL2

M (δ′V2
, f

L′
2

V2
)

that will be the focal point of the argument. We are going to interchange the sum over

G′
V with the double sum over L1 and L2.

Fix groups L1, L2 ∈ L(M), and set

Ei = EM ′
Vi

(Li,Vi
, Li) , i = 1, 2.

We would like to compute the contribution of L1 and L2 to (6.6). The key step is to

observe that there is a natural map

(6.7) E −→ E1 × E2 ,

that sends G′
V to the pair (L′

1, L
′
2). If G′

V corresponds to the element s′V in

s′MV
Z(M̂)Γ/Z(Ĝ)Γ, (L′

1, L
′
2) corresponds to the element

(s′L1
, s′L2

) , s′Li
∈ s′MVi

Z(M̂)Γ/Z(L̂i)
Γ,
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obtained by projecting s′V onto each factor s′MVi
Z(M̂)Γ/Z(L̂i)

Γ. We can assume that the

coefficient eG
M (L1, L2) is nonzero, since the summand for (L1, L2) in (6.6) would otherwise

vanish. Therefore dG
M (L1, L2) is nonzero, which implies in particular that aM = aL1

+ aL2

and a
∗
M,C = a

∗
L1,C + a

∗
L2,C. It follows that the connected component

(
Z(M̂)Γ

)0
equals the

product of
(
Z(L̂1)

Γ
)0

and
(
Z(L̂2)

Γ
)0

. Since Z(M̂)Γ equals the product of
(
Z(M̂)Γ

)0
with

Z(Ĝ)Γ, by Lemma 1.1, we see that

Z(M̂)Γ = Z(L̂1)
ΓZ(L̂2)

Γ .

It follows that the map (6.7) is surjective. Furthermore, the group

(6.8) Z(L̂1)
Γ ∩ Z(L̂2)

Γ/Z(Ĝ)Γ

is finite, and acts simply transitively on the fibres of the map. But the summand in (6.6)

depends only on (L′
1, L

′
2), and not on the group G′

V in its preimage. We can therefore

replace the sum over G′
V in (6.6) by a sum over (L′

1, L
′
2) in E1 × E2, provided that we

multiply the summand by the order of the group (6.8). Since the product of eG
M (L1, L2)

with the order of (6.8) equals dG
M (L1, L2), we conclude that the contribution of (L1, L2)

to (6.6) equals

(6.9) dG
M (L1, L2)

2∏

i=1

( ∑

L′
i
∈Ei

ŜLi

M (δ′Vi
, f

L′i
Vi

)
)
.

The definition (5.3) can be applied to the terms in (6.9). We shall use the equivalent

form (5.6), which provides an identity

ILi,E
M (δ′Vi

, hVi
) =

∑

L′
i
∈Ei

ŜLi

M (δ′Vi
, h

L′i
Vi

) + 0SLi

M (M ′
Vi
, δ′Vi

, hVi
) ,

for any function hVi
∈ C(Li,Vi

, ζVi
). Suppose that Li 6= G. There is nothing to rule out

Li,v being equal to Gv, for some v ∈ V . However, since

aG $ aLi
⊂ aLi,v

,
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no such v can belong to V0. The analogue of Assumption 5.1, with V0 empty, then applies

to any pair (L′
i,v,M

′
v). It follows from the induction hypothesis for Lemma 5.3 that

0SLi

M (M ′
Vi
, δ′Vi

, hVi
) = 0 .

If neither L1 nor L2 equals G, we find that (6.9) equals

dG
M (L1, L2)Î

L1,E
M (δ′V1

, fV1,L1
)ÎL2,E

M (δ′V2
, fV2,L2

) .

If one of the groups Li equals G, there will also be a supplementary term. Observe that

the coefficient dG
M (L1, L2) vanishes in this case unless the other group equals M . Since

dG
M (G,M) = 1, and

ŜM
M (δ′Vi

, fM ′

Vi
) = f

M ′Vi

Vi
(δ′Vi

) = fM ′

Vi
(δ′Vi

) ,

the supplementary term is just (−1) times the relevant summand on the right hand side

of (6.3′). Summing the formula we have obtained for (6.9) over L1 and L2, we conclude

that (6.6) equals the sum of

(6.10) −
(
fM ′

V1
(δ′V1

)0SG
M (M ′

V2
, δ′V2

, fV2
) + 0SG

M (M ′
V1
, δ′V1

, fV1
)fM ′

V2
(δ′V2

)
)

and

(6.11)
∑

L1,L2∈L(M)

dG
M (L1, L2)Î

L1,E
M (δ′V1

, fV1,L1
)ÎL2,E

M (δ′V2
, fV2,L2

) .

Notice that (6.10) is (−1) times the right hand side of (6.3′), while (6.11) equals the right

hand side of (6.4).

Suppose first that E0 equals E . Then the original expression (6.5) equals (6.6). More-

over, the definitions imply that

|Ẽ1|SG
M (M ′

V , δ
′
V , fV ) = 0SG

M (M ′
V , δ

′
V , fV ) .
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Our conclusion in this case is that IEM (δ′V , fV ) equals the sum of (6.11) and

(6.12) 0SG
M (M ′

V , δ
′
V , fV )−

(
fM ′

V1
(δ′V1

) 0SG
M (M ′

V2
, δ′V2

, fV2
)+ 0SG

M (M ′
V1
, δ′V1

, fV1
)fM ′

V2
(δ′V2

)
)
.

If (FV , GV ,MV ) is not quasisplit, Ẽ − E is empty, and 0SG
M (M ′

V , δ
′
V , fV ) vanishes by defi-

nition. Moreover, V0 is empty by assumption. We then deduce that

0SG
M (M ′

Vi
, δ′Vi

, fVi
) = 0 , i = 1, 2,

by definition if (FVi
, GVi

,MVi
) is not quasisplit, or by applying the induction hypothesis

for Lemma 5.3 to Vi (with the empty set V0 ∩ Vi playing the role of V0) if (FVi
, GVi

,MVi
)

is quasisplit. The whole expression (6.12) therefore vanishes. Thus, if (FV , GV ,MV ) is

not quasisplit, IEM (δ′V , fV ) equals (6.11), and the identity (6.4) holds. As we have already

noted, this is equivalent to the identity (6.2) in part (a). If (FV , GV ,MV ) is quasisplit,

|Ẽ1| is positive, and IEM (δ′V , fV ) is given by the definition (5.4). The identities (6.2) and

(6.4) follow in this case from (5.5) and the splitting formula (4.6) for IM (γV , fV ). This

implies that (6.12) vanishes, and the required identity (6.3′) holds.

Suppose finally that E0 6= E . Then (FV , GV ,MV ) is quasisplit, and we can set

δV = δ′V . Since the analogues for Vi of the sets E0 and E are also not equal, the terms in

(6.10) vanish by definition. Therefore (6.10) makes no contribution in this case. On the

other hand, E is a disjoint union of E0 with the nonempty set E1, so the original expression

(6.5) does not equal (6.6). They differ by the expression given by the product of |E 1| with

the right hand side of (6.3). Our conclusion in this case is that IEM (δ′V , fV ) equals the sum

of (6.11) and

(6.13) |E1|
(
SG

M (δV , fV ) −
∑

L1,L2

eG
M (L1, L2)Ŝ

L1

M (δV1
, fL1

V1
)ŜL2

M (δV2
, fL2

V2
)
)
.

As before, (6.2) follows from (4.6) and the definition (5.4). This in turn implies that

IEM (δ′V , fV ) equals (6.11). The required identity (6.3) then follows from the fact that

(6.13) vanishes. This completes the proof of the theorem. �
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Having established endoscopic and stable splitting formulas, we can now give a simple

reduction of the proof of Lemma 5.3. The distribution IEM (δ′V , fV ) in (6.3) satisfies the

splitting formula (6.4). We are assuming that Vi, i = 1, 2, is a proper subset of V . It

follows from the induction hypothesis for Lemma 5.3 that the distributions

ÎLi,E
M (δ′Vi

, fVi,Li
) , Li ∈ L(M),

on the right hand side of (6.4) depend only on the image of δ′Vi
in Γ̃E

GVi
(MVi

). Therefore

IEM (δ′V , fV ), as the left hand side of (6.4), depends only on the image of δ′V = (δ′V1
, δ′V2

) in

Γ̃E
GV

(MV ) = Γ̃E
GV1

(MV1
) × Γ̃E

GV2

(MV2
) .

This is part (a) of Lemma 5.3.

For part (b), assume that (FV , GV ,MV ) is quasisplit. If G∗
V belongs to E , set δV = δ′V ,

and consider the stable splitting formula (6.3). The induction hypothesis for Lemma 5.3

implies that for i = 1, 2, the distributions

fVi
−→ ŜLi

M (δVi
, fLi

Vi
) , Li ∈ L(M),

on the right hand side of (6.3) are stable at each v ∈ Vi − V0. Therefore the distribution

SG
M (δV , fV ) on the left hand side of (6.3) is stable at any v in V − V0. This is the first

assertion of part (b). For the remaining assertion, assume that G∗
V belongs to Ẽ − E , and

that V0 is empty. If i = 1, 2, G∗
Vi

belongs to the set Ẽi = ẼM ′
Vi

(GVi
, G). If G∗

Vi
lies in

Ẽi − Ei, the distribution 0S(M ′
Vi
, δ′Vi

, fVi
) on the right hand side of (6.3′) vanishes, by the

induction hypothesis for Lemma 5.3. If G∗
Vi

does not lie in Ẽi −Ei,
0SG

M (M ′
Vi
, δ′Vi

, fVi
) = 0

by definition. Both terms on the right hand side of (6.3′) therefore vanish. It follows that

0SG
M (M ′

V , δ
′
V , fV ), the left hand side of (6.3′), vanishes. This is the last assertion of Lemma

5.3.

We have reduced the proof of Lemma 5.3 to the case that V contains only one element.

We shall complete it in the next section.
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7. Stable descent formulas

We shall prove descent formulas for the special case of §5 that V consists of one element

v. Suppose that (F1, G1,M1) is an L-satellite of (F,G,M), that R1 is a Levi subgroup of

M1, and that (Fv, Gv, Rv) is an L-satellite of (F1, G1, R1). As in Proposition 4.2, we write

L1 → Lv = L1,v for the map from L(R1) to L(Rv). We take fv to be a fixed function on

C(Gv, ζv).

Since we are dealing with L-satellites, there is an embedding of Z(M̂)Γ into Z(M̂1)
Γ1

and an embedding of Z(Ĝ)Γ into Z(Ĝ1)
Γ1 . The former gives us an embedding of Z(M̂)Γ

into Z(R̂1)
Γ1 , while the other provides an embedding of Z(Ĝ)Γ into Z(L̂1)

Γ1 , for each L1 ∈

L(R1). There are of course also embeddings Z(Ĝ)Γ ⊂ Z(M̂)Γ and Z(L̂1)
Γ1 ⊂ Z(R̂1)

Γ1 .

We can therefore define a coefficient

(7.1) eG
R1

(M,L1) = dG
R1

(M,L1)
∣∣Z(M̂)Γ ∩ Z(L̂1)

Γ1/Z(Ĝ)Γ
∣∣−1

,

for each L1 ∈ L(R1). This is an obvious generalization of (6.1).

Theorem 7.1. (a) Suppose that γv lies in ΓGv
(Rv). Then

(7.2) IEM (γv, fv) =
∑

L1∈L(R1)

dG
R1

(M,L1)Î
L1,E
R1

(γv, fv,Lv
) .

(b) Suppose that (Fv, Gv, Rv) is quasisplit, and that δv lies in ΣGv
(Rv). Then

(7.3) SG
M (δv, fv) =

∑

L1∈L(R1)

eG
R1

(M,L1)Ŝ
L1

R1
(δv, f

Lv
v )

(b′) Suppose that (Fv, Gv,Mv) is quasisplit, and that δ′v lies in ΣGv
(R′

v), for some R′
v in

Eell(Rv). Then 0SG
M (M ′

v, δ
′
v, fv) vanishes unless R1 = M1, aM1

= aM and aG1
= aG, in

which case we have

(7.3′) 0SG
M (M ′

v, δ
′
v, fv) = 0SG1

M1
(M ′

v, δ
′
v, fv) .
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Proof. The structure of the proof is parallel to that of Theorem 6.1. We fix an elliptic

endoscopic datum R′
v for Rv, and a datum M ′

v ∈ ER′v
(Mv). Then M ′

v is determined by

a point s′Mv
in s′Rv

Z(R̂v)
Γv . Replacing R′

v by another element in its equivalence class,

if necessary, we shall assume that s′Rv
and s′Mv

are equal. We also fix a point δ′v in

ΣGv
(R′

v). If G′
v belongs to E = EM ′v

(Gv, G), the triplets (Fv, G
′
v, R

′
v) and (Fv, G̃

′
v, R̃

′
v) are

also L-satellites of (F1, G1, R1). We assume inductively that (7.3) is valid if (Fv, Gv, Rv)

is replaced by a quasisplit inner K-form of (Fv, G̃
′
v, R̃

′
v), for any G′

v in E0 = E0
M ′v

(Gv, G).

The required formula (7.2) has an analogue

(7.4) IEM (δ′v, fv) =
∑

L1∈L(R1)

dG
R1

(M,L1)Î
L1,E
R1

(δ′v, fv,Lv
)

for δ′v. The two formulas are equivalent by (5.5), so for part (a) it will be enough to

establish (7.4).

It follows from (5.3) that

(7.5) IEM (δ′v, fv) − |Ẽ1|SG
M (M ′

v, δ
′
v, fv)

equals
∑

G′v∈E0

ŜG
M (δ′v, f

′
v) .

Applying (7.3) inductively to each G′
v, we see that the last sum equals

∑

G′v∈E0

∑

L1∈L(R1)

eG
R1

(M,L1)Ŝ
L1

R1
(δ′v, f

L′v
v ) .

Again, it is the expression

(7.6)
∑

G′v∈E

∑

L1∈L(R1)

eG
R1

(M,L1)Ŝ
L1

R1
(δ′v, f

L′v
v ) ,

obtained by summing G′
v over E instead of E0, that is the focal point of the argument.

Fix a group L1 ∈ L(R1), and set

E1 = ER′v
(Lv, L1) .
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We can then define a map

(7.7) E −→ E1

by sending G′
v to L′

v. If G′
v corresponds to the element s′v in s′Mv

Z(M̂)Γ/Z(Ĝ)Γ, L′
v

corresponds to the point s′Lv
obtained by projecting s′v onto s′Rv

Z(R̂1)
Γ1/Z(L̂1)

Γ1 . We can

assume that the coefficient eG
R1

(M,L1) in (7.6) is nonzero. It follows that dG
R1

(M,L1) 6= 0,

so that aR1
= aL1

+ aM and a
∗
R1,C = a

∗
L1,C + a

∗
M,C. Therefore

(
Z(R̂1)

Γ1

)0
equals the

product of
(
Z(L̂1)

Γ1

)0
with

(
Z(M̂)Γ

)0
. Since Z(R̂1)

Γ1 equals the product of Z(L̂1)
Γ1

with
(
Z(R̂1)

Γ1

)0
, by Lemma 1.1, we have

Z(R̂1)
Γ1 = Z(L̂1)

Γ1Z(M̂)Γ .

Therefore the map (7.7) is surjective. Furthermore, the group

(7.8) Z(M̂)Γ ∩ Z(L̂1)
Γ1/Z(Ĝ)Γ

is finite and acts simply transitively on the fibres of the map. The summand in (7.6)

depends only on L′
v and not on the group G′

v. We can therefore replace the sum over G′
v

in (7.6) by the sum over L′
v ∈ E1, provided that we multiply the summand by the order of

the group (7.8). Since the product of eG
R1

(M,L1) with the order of (7.8) equals dG
R1

(M,L1),

we conclude that the contribution of L1 to (7.6) equals

(7.9) dG
R1

(M,L1)
∑

L′v∈E1

ŜL1

R1
(δ′v, f

L′v
v ) .

Continuing to follow the proof of Theorem 6.1, we note that for any function hv in

C(Lv, ζv), the definition (5.6) provides an identity

IL1,E
R1

(δ′v, hv) =
∑

L′v∈E1

ŜL1

R1
(δ′v, h

L′v
v ) + 0SL1

R1
(R′

v, δ
′
v, hv) .

Suppose that L1 is such that aL1
is strictly larger than aG. Since this implies that aLv

is also strictly larger than aG, either Lv 6= Gv, or the set V0 is empty. The analogue of
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Assumption 5.1, with V0 empty, then applies to any pair (L′
v, R

′
v). It follows from the

induction hypothesis for Lemma 5.3 that

0SL1

R1
(R′

v, δ
′
v, hv) = 0 .

The expression (7.9) reduces in this case to

dG
R1

(M,L1)Î
L1,E
R1

(δ′v, fv,Lv
) .

In the remaining case that L1 = G1 and aG1
= aG, there will also be a supplementary

term

−dG
R1

(M1, G1)
0SG1

R1
(R′

v, δ
′
v, fv) .

But the map

a
M
R1

⊕ a
G
R1

−→ a
G
R1

fails to be an isomorphism unless R1 = M1, and aM1
= aM . The supplementary term can

therefore be written as

(7.10) −εR1

0SG1

M1
(M ′

v, δ
′
v, fv) ,

where

εR1
= εR1

(M1,M ;G1, G)

equals 1 or 0, according to whether the simultaneous conditions R1 = M1, aM1
= aM

and aG1
= aG hold or not. Summing the formula we have obtained for (7.9) over L, we

conclude that (7.6) equals the sum of

(7.11)
∑

L1∈L(R1)

dG
R1

(M,L1)Î
L1,E
R1

(δ′v, fv,Lv
)

with (7.10).
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Suppose that E0 equals E . Then the original expression (7.5) equals (7.6). Moreover,

|Ẽ1|SG
M (M ′

v, δ
′
v, fv) = 0SG

M (M ′
v, δ

′
v, fv) .

Our conclusion in this case is that IEM (δ′v, fv) equals the sum of (7.11) and

(7.12) 0SG
M (M ′

v, δ
′
v, fv) − εR1

0SG1

M1
(M ′

v, δ
′
v, fv) .

If (Fv, Gv,Mv) is not quasisplit, Ẽ − E is empty, and both terms in (7.12) vanish by

definition. Therefore IEM (δ′v, fv) equals (7.11), and the identities (7.2) and (7.4) hold. If

(Fv, Gv,Mv) is quasisplit, |Ẽ1| is positive, and IEM (δ′v, fv) is defined by (5.4). The identities

(7.2) and (7.4) then follow from the descent formula (4.5) for IM (γv, fv). Therefore (7.12)

vanishes, from which assertion (b′) of the theorem follows.

Suppose finally that E0 6= E . Then (Fv, Gv,Mv) is quasisplit, and we set δv = δ′v.

In this case, the expression (7.10) vanishes by definition. On the other hand, the original

expression (7.5) differs from (7.6) by the product of |E1| with the right hand side of (7.3).

Our conclusion in this case is that IEM (δ′v, fv) equals the sum of (7.11) and

(7.13) |E1|
(
SG

M (δv, fv) −
∑

L1∈L(R1)

eG
R1

(M,L1)Ŝ
L1

R1
(δv, f

L1

v )
)
.

As above, (7.2) follows from (4.5) and the definition (5.4). This in turn implies that

IEM (δ′v, fv) equals (7.11). It follows that (7.13) vanishes, and the required identity (7.3)

holds. �

Corollary 7.2. Consider the special case that R1 = M1, aM1
= aM and aG1

= aG.

(a) Suppose that γv ∈ ΓGv
(Mv). Then

(7.14) IG,E
M (γv, fv) = IG1,E

M1
(γv, fv) .

(b) Suppose that (Fv, Gv,Mv) is quasisplit, and that δv ∈ ΣGv
(Mv). Then

(7.15) SG
M (δv, fv) = ιM1

(G,G1)S
G1

M1
(δv, fv) ,
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where

ιM1
(G,G1) =

∣∣Z(M̂1)
Γ1/Z(M̂)Γ

∣∣∣∣Z(Ĝ1)
Γ1/Z(Ĝ)Γ

∣∣−1
.

Proof. The conditions on M1 and G1 imply that

dG
M1

(M,L1) =

{
1, if L1 = G1,
0, otherwise,

for any L1 ∈ L(M1). The formula (7.14) then follows from (7.2). The coefficient

eG
M1

(M,L1) also vanishes if L1 6= G1. In the case L1 = G1, we have

eG
M1

(M,G1) =
∣∣Z(M̂)Γ ∩ Z(Ĝ1)

Γ1/Z(Ĝ)Γ
∣∣−1

=
∣∣Z(Ĝ1)

Γ1/Z(M̂)Γ ∩ Z(Ĝ1)
Γ1

∣∣∣∣Z(Ĝ1)
Γ1/Z(Ĝ)Γ

∣∣−1

=
∣∣Z(Ĝ1)

Γ1Z(M̂)Γ/Z(M̂)Γ
∣∣∣∣Z(Ĝ1)

Γ1/Z(Ĝ)Γ
∣∣−1

.

Since

Z(Ĝ1)
Γ1Z(M̂)Γ = Z(Ĝ1)

Γ1

(
Z(M̂)Γ

)0
= Z(Ĝ1)

Γ1

(
Z(M̂1)

Γ1

)0
= Z(M̂1)

Γ1 ,

by Lemma 1.1, we find that

eG
M1

(M,G1) = ιM1
(G,G1) .

The formula (7.15) follows from (7.3). �

Corollary 7.3. The construction of §5 reduces to the original definitions (3.4) and (3.5)

in the case of the basic distributions of §3.

Proof. Suppose that (F,G,M) is as in §3. This is the special case of the framework of §4

and §5 in which V contains one element v, and (Fv, Gv,Mv) = (F,G,M). We take fv = f

to be fixed function in C(G, ζ), and δ′v = δ′ to be an elliptic element in ΣG(M̃ ′). Consider

the summand on the right hand side of (5.3) corresponding to an element G′
v = G′ in

E0 = E0
M ′(G). Taking (F1, G1,M1) = (F,G′,M ′) in (7.15), we can write this summand as

ŜG
M (δ′, f ′) = ιM ′(G,G

′)ŜG′

M ′(δ
′, f ′) .
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(The objects that would have been denoted (Fv, Gv,Mv) and fv in (7.15) are the objects

(F,G′,M ′) and f ′ here.) In general, δ′ and f ′ are not attached to M ′ and G′, but rather to

fixed central extensions M̃ ′ and G̃′ by the induced torus Z̃ ′. However, a simple application

of the descent formula (7.3) allows us to write

ιM ′(G,G
′)ŜG′

M ′(δ
′, f ′) = ιM ′(G,G

′)ŜG̃′

M̃ ′
(δ′, f ′) .

Therefore the summand on the right hand side of (5.3) matches the summand on the right

hand side of (3.5). Since |Ẽ1| equals E(G) in this case, the two families are the same, and

the inductive definitions of §5 reduce to those of §3. �

As we remarked in §4, it would have been possible to derive more general descent

formulas. If V parametrizes several L-satellites (Fv, Gv,Mv) of (F1, G1, R1), the descent

formulas (7.2), (7.3), (7.14) and (7.15) remain valid as stated. The proofs are similar to

the special case V = {v} that we established. The more general formulas could also be

established by combining this special case with the splitting formulas.

We shall now complete the proof of Lemma 5.3. By the reduction at the end of §6,

we can assume that V contains one element {v}, as we have throughout this section. The

lemma pertains to a class δ′v ∈ ΣGv
(M̃ ′

v). This class need not, of course, be elliptic over

Fv. However, we can find Levi subgroups Rv, R
′
v and R̃′

v of Mv, M
′
v and M̃ ′

v respectively,

such that δ′v is the image of a class in ΣGv,ell(R̃
′
v). This follows easily from [14, Lemma

10.2]. We can certainly identify R′
v with an elliptic endoscopic datum for Rv, and R̃′

v with

a central extension of R′
v. We have then only to apply Theorem 7.1, with (F1, G1, R1) =

(Fv, Gv, Rv). The induction hypothesis for Lemma 5.3 applies to all the terms in the

relevant descent formula, and establishes the lemma for (F,G,M), except in the case that

Rv = Mv, aMv
= aM and aGv

= aG. In this latter case, however, we can apply the simpler

descent formulas of Corollary 7.2. The proof of the lemma then reduces to the case that

(F,G,M) = (Fv, Gv,Mv), and that δ′v ∈ ΣGv
(M̃ ′

v) is elliptic. This is the basic setting of

§3.
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It remains, then, to establish Lemma 5.3 for the distributions of §3. In this case,

part (b) of the lemma follows from the definition. More precisely, part (b) is simply a

restatement of the second assertion of Assumption 5.1. Part (a) in this case is part of

Lemma 3.1. The proof of Lemma 5.3 is thus complete. �

With Lemma 5.3 proved, there remain no more loose ends from the definitions of §5.

We have resolved all the induction hypotheses, or rather, we have reduced them to the

basic Assumption 5.1. The main point has been that the splitting and descent theorems

provide a decomposition of the compound distributions of §5 into the simple ones of §3.

Proposition 7.4. Assume that V is arbitrary, and that for each v ∈ V , the distributions

associated to the triplets (Fv, Gv,Mv) by the basic construction of §3 satisfy Conjecture

3.3.

(a) Suppose that γV ∈ ΓGV
(MV ). Then

IEM (γV , fV ) = IM (γV , fV ) .

(b) Suppose that (FV , GV ,MV ) is quasisplit, and that δ′V lies in ΣGV
(M ′

V ). Then the

distribution

fV −→ SG
M (M ′

V , δ
′
V , fV ) , fV ∈ C(GV , ζV ),

vanishes unless G∗
V belongs to E , in which case it is stable.

Proof. The splitting and descent formulas of Theorems 6.1 and 7.1 reduce the assertions

of the proposition immediately to the corresponding assertions of Conjecture 3.3. �

As we suggested at the end of §4, the general framework of the last few sections has

been modelled on two basic cases. The first, in which F is a local field, is that of the

local trace formula. We shall see in §8 and §9 that the associated distributions IEM (γV , fV )

and SG
M (M ′

V , δ
′
V , fV ) arise naturally in the stabilized local trace formula. The second case,

in which F is a global field, is that of the global trace formula. We shall investigate
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the stabilized global trace formula in a future paper. It may be that there are other

trace formulas that combine groups {Gv} that are genuinely distinct. Observe, however,

that even in the two basic cases, we are forced to consider the more general setting.

The inductive definitions (5.3)–(5.5) give rise to distributions on groups G′
V composed of

distinct endoscopic groups G′
v for Gv.

70



8. Local vanishing theorems

For the study of inner forms and base change for GL(n) [9], it was necessary to estab-

lish certain vanishing properties [3, §10] before attempting to compare trace formulas. As

further evidence for our conjectural transfer identity, we shall establish general analogues

of some of these results. In particular, we shall establish a local vanishing theorem that we

shall use in §9 to stabilize part of the local trace formula. We shall save the corresponding

global vanishing theorem for a future paper on the stable global trace formula.

The arguments in [3, §10] for GL(n) break down in general. In fact, the naive gener-

alization of the formula for GL(n) turns out to be false. The correct generalization also

appears at first glance to be doomed. A closer study, however, will reveal some unexpected

cancellation caused by internal signs in the transfer factors. The phenomenon is one more

example of the efficacy of the transfer factors.

For the rest of the paper, F will be a local field, and G will be a K-group over F ,

equipped with a quasisplit inner twist G∗. For simplicity, we fix a minimal Levi subgroup

M0 of G, according to the remarks following the proof of Lemma 2.1. We also fix a Levi

subgroup M∗
0 of G∗ corresponding to M0, and a Levi subgroup M̂0 of Ĝ dual to M0. As

explained in §1, we then have a bijection M →M ∗ from L(M0) to L(M∗
0 ), and a bijection

M → M̂ from L(M0) to L(M̂0).

We are interested in the special case of the framework of §4 that applies to the local

trace formula. Then V contains two elements v1 and v2, and

(Fv, Gv,Mv) = (F,G,M) , v ∈ V,

for any M ∈ L(M0). The embedding aM ↪→ aMv
= aM is defined to be 1 if v = v1 and

to be (−1) if v = v2. The same condition applied to the group Z(M̂) gives each triplet

(Fv, Gv,Mv) the structure of an L-satellite of (F,G,M). If G′ stands for an endoscopic
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datum (G′, s′,G′, ξ′) for G, we write G
′
for the adjoint endoscopic datum

(
G′, (s′)−1,G′, ξ′

)
.

This provides a natural embedding

G′ −→ G′
V = G′ ×G

′

of E(G) into E(GV ). Following the same notation for M , we fix M ′ ∈ Eell(M) and set

M ′
V = M ′×M

′
. The family EM ′

V
(GV , G) of §5 is by construction in canonical bijection with

the family EM ′(G) of §3. Since the embedding of Z(M̂)Γ into Z(M̂V )ΓV = Z(M̂)Γ×Z(M̂)Γ

is defined by s → (s, s−1), this bijection is given by the map G′ → G′
V = G′ × G

′
above.

We shall usually just identify G′ with G′
V , M ′ with M ′

V and EM ′(G) with EM ′
V
(GV , G).

In this section we shall also be interested in Levi subgroups of G∗. The vanishing

results will apply only to the case that G is not quasisplit, so we shall take the various

constructions for granted in the quasisplit case. We fix a Levi subgroup R of G∗, together

with a dual Levi subgroup R̂ ⊂ Ĝ, and we assume that Assumption 5.1 holds for any

quasisplit inner K-form of (F,G∗, R), with V0 being the empty subset of V . That is, we

assume that the distributions associated in §3 to a quasisplit inner K-form of (F,G∗, R)

are defined, and satisfy part (b) of Conjecture 3.3.

Suppose thatR′ is an elliptic endoscopic datum for R. Following the conventions above

for G, we shall usually identify R′ with R′
V = R′×R

′
, and ER′(G

∗) with ER′
V
(G∗

V , G
∗). Of

course, the elements in ER′(G
∗) can also be regarded as endoscopic data for G. Suppose

σ′ = (σ′
1, σ

′
2) is any point in ΣG(R̃′

V ). Our aim is to study the distribution

(8.1) IER(σ′, f) =
∑

G′∈ER′ (G
∗)

ŜG∗

R (σ′, f ′) , f ∈ C(GV , ζV ),

on GV (FV ). This is really a hybrid for G and G∗ of the distributions (5.3), since R need

not come from G, in the sense of being conjugate to an element in L(M ∗
0 ). In particular,

we cannot follow the earlier convention for choosing the base point (δ
′
, γ) implicit in the

transfer f ′. We shall instead take (δ
′
, γ) to be the diagonal image in ΣG(G̃′

V ) × Γ(GV )

of any point (δ
′
, γ) in ΣG(G̃′) × Γ(G) such that δ

′
is an image γ. We require that the
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preassigned value of the transfer factor for (G,G
′
) at (δ

′
, γ) be the inverse of the one for

(G,G′). We may also assume that these preassigned values each have absolute value 1. If

R is conjugate to an element M∗ ∈ L(M∗
0 ), we are of course free to choose γ in ΓG(M).

The definition (8.1) then matches (5.3).

The independence of (8.1) on the choice of base points is a consequence of the following

observation of Kottwitz.

Lemma 8.1. If G′ is an endoscopic datum for G, the relative transfer factor for (G,G
′
)

is the inverse of the relative transfer factor for (G,G′).

Proof. If ∆(δ′, γ; δ
′
, γ) denotes the relative transfer factor for (G,G

′
), we have to show

that

∆(δ′, γ; δ
′
, γ) = ∆(δ′, γ; δ

′
, γ)−1 .

This follows readily from an examination of the four terms in the product for ∆(δ′, γ; δ
′
, γ).

The main point is to note that if {χα} are the χ-data for G′ which occur in the factors

∆II and ∆2, one obtains inverse factors by choosing {χ−1
α } to be the χ-data for G

′
. �

Corollary 8.2. The absolute transfer factor for (GV , G
′
V ) satisfies

∆(δ′, γ) = ∆(δ′1, γ1; δ
′
2, γ2) ,

for any points δ′ = (δ′1, δ
′
2) and γ = (γ1, γ2) in ΣG(G̃′

V ) and ΓG(GV ) respectively. In

particular, ∆(δ′, γ) is independent of the choice of base point (δ
′
, γ).

Proof. The transfer factor for (GV , G
′
V ) is a product of the transfer factors for (G,G′) and

(G,G
′
). Since the preassigned values at (δ

′
, γ) cancel, the lemma gives us

∆(δ′, γ) = ∆(δ′1, γ1; δ
′
, γ)∆(δ′2, γ2; δ

′
, γ)−1 .

The corollary follows from [15, Lemma 4.1.A]. �

We now state the main vanishing theorem. We fix R, R̂, R′ and σ′ ∈ ΣG(R̃′
V ) as above,

and we fix f ∈ C(GV , ζV ).
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Theorem 8.3. (i) Suppose that no G∗(F )-conjugate of R belongs to L(M ∗
0 ). Then

IER(σ′, f) = 0 .

(ii) Suppose that R is G∗(F )-conjugate to an element M∗ in L(M∗
0 ). If

(M ′, δ′) , M ′ ∈ Eell(M), δ′ ∈ ΣG(M̃ ′
V ),

is the corresponding image of (R′, σ′), then

IER(σ′, f) = IEM (δ′, f) .

Proof. The identity in (ii) is more or less formal, so we shall concentrate on the vanishing

assertion (i). We are certainly free to assume that

f = f1 × f2 , fi ∈ C(G, ζvi
).

According to the splitting formula (6.3), our distribution

IER(σ′, f) =
∑

G′∈ER′ (G
∗)

ŜG∗

R (σ′, f ′)

can be written in the form

(8.2)
∑

G′

∑

L

eG∗

R (L)ŜL
R

(
σ′, (f ′)L′

)
,

where L is summed over pairs (L1, L2) of elements in L(R), eG∗

R (L) equals the constant

eG∗

R (L1, L2), L
′ = (L′

1, L
′

2) is the pair of endoscopic data for L defined by G′, and

ŜL
R

(
σ′, (f ′)L′

)
= ŜL1

R

(
σ′

1, (f
G′

1 )L′
1

)
ŜL2

R

(
σ′

2, (f
G
′

2 )L
′

2

)
.

As in the proof of Theorem 6.1, we shall study (8.2) by interchanging the sums over G′

and L.
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Fix a pair L = (L1, L2) of groups in L(R), and a corresponding pair L′ = (L′
1, L

′

2) of

endoscopic data. We shall consider the contribution to (8.2) of those groups in ER′(G
∗)

that map to L′. We can assume that eG∗

R (L) 6= 0. Then as in the proof of Theorem 6.1,

the group

Z(L̂1)
Γ ∩ Z(L̂2)

Γ/Z(Ĝ)Γ

is finite, and has a simply transitive action G′ → G′
s on the set of G′ which map to L′.

It will be convenient here to consider the orbits under a smaller group. Recall that L̂i,sc

denotes the preimage of L̂i in Ĝsc. The group

(8.3) Z(L̂1,sc)
Γ ∩ Z(L̂2,sc)

Γ/ẐΓ
sc

injects into Z(L̂1)
Γ ∩ Z(L̂2)

Γ/Z(Ĝ)Γ, and therefore also acts on the set of G′ that map to

L′. We shall consider the orbit under (8.3) of a fixed G′. The contribution of this orbit to

(8.2) equals the product of eG∗

M∗(L) with

(8.4)
∑

s

ŜL
R

(
σ′, (f ′

s)
L′
)
,

where s is summed over the group (8.3), and where

(f ′
s)

L′ = (f
G′s
1 )L′

1 × (f
G
′

s

2 )L
′

s .

Since the fixed elements L, L′, and G′ were arbitrary, Theorem 8.3 will be proved if we

can show that (8.4) vanishes.

We can certainly assume that there is an s such that the function (f ′
s)

L′ in (8.4)

does not vanish. This implies that the endoscopic groups L′
1 and L

′

2 both contain rational

elements that are images of elements in G. Consequently, the groups L1 and L2 in L(R)

are both conjugate to groups in L(M ∗
0 ). We fix elements ω1 and ω2 in G∗

sc(F ) such that

Int(ωi)Li = M∗
i , Mi ∈ L(M0), i = 1, 2.
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As groups in L(R), L1 and L2 have dual Levi subgroups L̂1 and L̂2 in L(R̂), while M1 and

M2 have dual Levi subgroups M̂1 and M̂2 in L(M̂0). We can choose Γ-invariant elements ω̂1

and ω̂2 in Ĝsc such that Int(ω̂i)L̂i = M̂i, and such that the isomorphism Int(ω̂i): L̂i → M̂i

is dual to Int(ωi): Li →Mi, for i = 1, 2. In particular

(8.5) ω̂iZ(L̂i,sc)
Γω̂−1

i = Z(M̂i,sc)
Γ ⊂ Z(M̂0,sc)

Γ , i = 1, 2.

The group L′ is of course independent of the element s in (8.3). It might appear

initially that the same is true of the function (f ′
s)

L′ . If L1 and L2 both actually contained

M∗
0 , they could be identified with Levi subgroups of G, and the function fL = f1,L1

×f2,L2

would make sense. Then (f ′
s)

L′ would equal (fL)L′ , and would indeed be independent of

s. We used this property at the relevant stage of the proof of Theorem 6.1. As matters

stand here, however, L1 and L2 contain only conjugates of M0. To see how this causes

(f ′
s)

L′ to vary with s, we have to look at the transfer factors. Let

∆s(δ
′, γ) , δ′ ∈ ΣG(L̃′

V ), γ ∈ ΓG(GV ),

be the restriction to L′
V of the transfer factor from GV to G′

s,V . We would like to compare

∆s(δ
′, γ) with the corresponding transfer factor ∆(δ′, γ) from GV to G′

V .

It follows from (8.5) that

(8.6) s −→ sL = (ω̂1sω̂
−1
1 )−1(ω̂2sω̂

−1
2 ) , s ∈ Z(L̂1,sc)

Γ ∩ Z(L̂2,sc)
Γ/ẐΓ

sc,

is a homomorphism from the group (8.3) into Z(M̂0,sc)
Γ. In §2 we defined a character ζ0

G

on Z(M̂0,sc)
Γ that factors through the group of connected components. This gives us a

character

s −→ ζ0
G(sL)

on the group (8.3).
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Lemma 8.4. The transfer factors satisfy

∆s(δ
′, γ) = ζ0

G(sL)∆(δ′, γ) ,

for points δ′ = (δ′1, δ
′
2) ∈ ΣG(L̃′

V ) and γ = (γ1, γ2) ∈ Γ(GV ), and for any s in the group

(8.3).

Proof. We can arrange that for each G′
s, the extension G̃′

s belongs to E
M̃ ′

(G̃), for a suitable

z-extension G̃ of G. According to the definitions in [15, (4.4)] and in §2, the transfer factors

for (G,G′
s) and (G̃, G̃′

s) are essentially the same. Replacing G by G̃ if necessary, we can

assume that G̃′
s = G′

s and that the embedding ξ′s identifies G′
s with an L-group LG′

s.

We recall from Corollary 8.2 that

∆s(δ
′, γ) = ∆s(δ

′
1, γ1; δ

′
2, γ2) .

We shall assume that δ′i is an image of γi (in the sense of [15, (1.3)]), since the transfer

factor would otherwise vanish. The relative transfer factor on the right is then defined as

in (2.3) as a product of four terms.

Fix representatives δ′1 ∈ L′
1(F ) and δ′2 ∈ L′

2(F ) within the given stable conjugacy

classes, and let T ′
1 ⊂ L′

1 and T ′
2 ⊂ L′

2 be their respective centralizers. The individual terms

in the product depend on admissible embeddings T ′
1 → T1 and T ′

2 → T2, for maximal tori

T1 ⊂ L1 and T2 ⊂ T2, defined over F . We are trying to see how ∆s(δ
′, γ) varies with

s. The first three terms in the product (2.3) are quotients of absolute factors for (δ ′1, γ1)

and (δ′2, γ2) respectively. An inspection of the definitions in [15, §3] of these terms quickly

reveals that the factors in the quotients depend only on the endoscopic data L′
i, and not

on the datum G′
s that maps to L′

i. They are thus each independent of s. Therefore

∆s(δ
′, γ)∆(δ′, γ)−1

= ∆s(δ
′
1, γ1; δ

′
2, γ2)∆(δ′1, γ1; δ

′
2, γ2)

−1

= ∆1,s(δ
′
1, γ1; δ

′
2, γ2)∆1(δ

′
1, γ1; δ

′
2, γ2)

−1 ,
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where we have written ∆1,s to denote the dependence of the fourth term in the product

(2.3) on s.

Keeping in mind that G′
s stands for a full endoscopic datum (G′

s, s
′
s,G

′
s, ξ

′
s), we recall

from the definition in §2 and [15, (3.4)] that

∆1,s(δ
′
1, γ1; δ

′
2, γ2) =

〈
inv
(δ′1, γ1

δ′2, γ2

)
, (s′s)U

〉
.

The point

(s′s)U =
(
(s′s)T1

, (s′s)T2

)

lies in π0(Û
Γ), for the dual torus

Û = T̂1,sc × T̂2,sc/
{
(z, z) : z ∈ Ẑsc

}
.

By definition, (s′s)Ti
is a preimage in T̂i,sc of the projection onto Ĝad of a certain point in

T̂i; the latter is obtained from s′s and the admissible embedding as in [15, p. 241]. Now

s′s = ss′, where s′ is the semisimple point attached to the fixed endoscopic datum G′, and

s the projection onto Ĝ of our variable point s. The torus T̂i,sc is contained in L̂i,sc, and

s belongs to the center of L̂i,sc. It follows that

(s′s)U =
(
(ss′)T1

, (ss′)T2

)
= (ss′T1

, ss′T2
) = sUs

′
U ,

where sU = (s, s). We conclude that

∆s(δ
′, γ)∆(δ′, γ)−1

=
〈
inv
(δ′1, γ1

δ′2, γ2

)
, sUs

′
U

〉〈
inv
(δ′1, γ1

δ′2, γ2

)
, s′U

〉−1

=
〈
inv
(δ′1, γ1

δ′2, γ2

)
, sU

〉
.

It remains to compute this last pairing.

Recall that inv
(

δ′
1
,γ1

δ′
2
,γ2

)
is the image in H1(F,U) of a 1-cocycle

τ −→
(
v1(τ)

−1, v2(τ)
)
, τ ∈ Γ,
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where

vi(τ) = hiuαi
(τ)τ(hi)

−1 , i = 1, 2.

We are assuming here that γi belongs to the component Gαi
in G. Then hi is an element

in G∗
sc such that hiψαi

(γi)h
−1
i equals the image of δ′i in Ti. We can choose the frame (ψ, u)

such that for each i, ψαi
(Mi) = M∗

i and uαi
(τ) ∈M∗

i,sc. We are also now regarding γ1 and

γ2 as fixed points within the given conjugacy classes. We choose them so that γi ∈Mi(F ),

and so that

hi = `iω
−1
i , `i ∈ Li,sc, i = 1, 2.

Then

vi(τ) = `iω
−1
i uαi

(τ)ωiτ(`i)
−1 .

In particular, vi(τ) lies in Li,sc.

The pairing is by definition the value at sU ∈ π0(Û
Γ) of a certain character, determined

by the KU -image of the class of the cocycle
(
v1(τ)

−1, v2(τ)
)
. But sU = (s, s) comes from

an element s in Z(L̂1,sc)
Γ ∩ Z(L̂2,sc)

Γ/ẐΓ
sc. It follows easily from [14, Theorem 1.2] that

the pairing equals
〈
KLad

(uLad
), sU

〉
,

where

Lad = L1,sc/Z(G∗
sc) × L2,sc/Z(G∗

sc) ,

and where

uLad
= (ω−1

1 u−1
α1,adω1, ω

−1
2 uα2,adω2)

is the image of the original cocycle in H1(F,Lad). In particular, the pairing is independent

of `1 and `2. Now

KM∗
i,ad

(uαi,ad) = ζMi

G , i = 1, 2,
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in the notation of §2. It follows that

〈
KLad

(uLad
), sU

〉

=
〈
(ω−1

1 (ζM1

G )−1ω1, ω
−1
2 ζM2

G ω2), (s, s)
〉

= ζM1

G (ω̂1sω̂
−1
1 )−1ζM2

G (ω̂2sω̂
−1
2 )

= ζ0
G(ω̂1sω̂

−1
1 )−1ζ0

G(ω̂2sω̂
−1
2 )

= ζ0
G(sL) .

We have shown that

∆s(δ
′, γ)∆(δ′, γ)−1 = ζ0

G(sL) ,

as required. �

We can now return to the study of the function (f ′
s)

L′ in (8.4). If δ′ belongs to

ΣG(L̃′
V ), we have

(f ′
s)

L′(δ′) =
∑

γ∈Γ(GV )

∆s(δ
′, γ)fG(γ)

=
∑

γ∈Γ(GV )

ζ0
G(sL)∆(δ′, γ)fG(γ)

= ζ0
G(sL)(f ′)L′(δ′) ,

by the lemma we have just established. Therefore

(f ′
s)

L′ = ζ0
G(sL)(f ′)L′ .

The expression (8.4) is the product of ŜL
M

(
σ′, (f ′)L′

)
with the sum

(8.7)
∑

s

ζ0
G(sL) ,

over s in the group (8.3).
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Lemma 8.5. The character

s −→ ζ0
G(sL) , s ∈ Z(L̂1,sc)

Γ ∩ Z(L̂2,sc)
Γ/ẐΓ

sc,

is nontrivial.

Proof. We are still working under the conditions of the assertion (i) of Theorem 8.3. The

lemma will be a consequence of the fact that no conjugate of R lies in L(M ∗
0 ).

Set A =
(
Z(R̂sc)

Γ
)0

, where as usual, R̂sc is the preimage of R̂ in Ĝsc. We shall also

write Ai =
(
Z(L̂i,sc)

Γ
)0

, for i = 1, 2. Since aR is the sum of aL1
and aL2

, by our condition

that eG∗

R (L1, L2) 6= 0, we have A = A1A2. Define

Z = Ẑsc ∩ A = ẐΓ
sc ∩A .

Since ZAi is a subgroup of Z(L̂i,sc)
Γ, we have an injection

ZA1 ∩ ZA2/Z −→ Z(L̂1,sc)
Γ ∩ Z(L̂2,sc)

Γ/ẐΓ
sc .

It is enough to show that the character

z −→ ζ0
G(zL) = ζ0

G(ω̂1zω̂
−1
1 )−1ζ0

G(ω̂2zω̂
−1
2 ) , z ∈ ZA1 ∩ ZA2,

is nontrivial.

Let z → (z1, z2) be the composition of the two maps

ZA1 ∩ ZA2 −→
2∏

i=1

(ZAi/Ai) −→
2∏

i=1

(Z/Z ∩Ai) .

Suppose that (z1, z2) is any point in Z×Z. For i = 1, 2, let Ai = Â
i
, where î is the element

in the complement of i in {1, 2}. We can write

zi = aia
i , ai ∈ Ai, a

i ∈ Ai.
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Then ai = zia
−1
i belongs to ZAi. Since ai also belongs to ZÂ

i
, it lies in the domain

ZAi ∩ ZA2 of the map. The image of ai in ZAj/Aj equals the image of zi if j = i,

and equals 1 if j 6= i. Therefore z = a1a2 is an element in ZA1 ∩ ZA2 whose image in

∏
i

(Z/Z ∩ Ai) equals the image of (z1, z2). In particular, the map is surjective. Moreover

ζ0
G(ω̂izω̂

−1
i ) =

2∏

j=1

ζ0
G(ω̂ia

jω̂i) = ζ0
G(ω̂ia

iω̂−1
i ) , i = 1, 2,

since for j 6= i, ω̂iA
jω̂−1

i = ω̂iAiω̂
−1
i is contained in the subgroup

(
Z(M̂0,sc)

Γ
)0

of the

kernel of ζ0
G. Furthermore,

ζ0
G(ŵia

iω̂−1
i ) = ζG(zi) ,

since ω̂ia
iω̂−1

i and zi have the same image in π0

(
Z(M̂0,sc)

Γ
)
. We conclude that

(8.8) ζ0
G(zL) = ζG(z1)

−1ζG(z2) = ζG(z−1
1 z2) ,

for any point (z1, z2) in Z × Z.

It follows from Corollary 2.2, and the condition on R, that ζG is nontrivial on the

subgroup Z of ẐΓ
sc. In particular, (8.8) is a nontrivial character in (z1, z2). It is therefore

a nontrivial character in z. �

Having established Lemma 8.5, we can at last complete the proof of the vanishing

assertion of Theorem 8.3. The lemma tells us that the sum (8.7) vanishes. Therefore the

contribution of (8.4) to the original expansion (8.2) of IER(σ′, f) vanishes. Since it is a sum

of such contributions, (8.2) itself vanishes. We have established that IER(σ′, f) = 0.

The remaining identity (ii) of the theorem is essentially a consequence of the defini-

tions. The summand ŜG∗

R (σ′, f ′) on the right hand side of the definition (8.1) is constructed

in terms of embeddings R̂ ⊂ Ĝ and R′ ⊂ G′. A variant of Lemma 3.1(i), which takes into

account the choice of base points (δ
′
, γ) for (8.1), shows that ŜG∗

R (σ′, f ′) is independent

of these embeddings. If R is G∗(F )-conjugate to M∗ as in (ii), we can take R̂ = M̂ and

R′ = M ′. The required identity follows. �
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The special case of Theorem 8.3 of inner forms of GL(n) was not discussed in [3],

since the local trace formula came later. The main vanishing result of [3] is Proposition

10.2. Its analogue for general inner twists asserts that the function IEM (·, f), defined by

the special case of (5.3) in which V = {v} and (Fv, Gv,Mv) = (F,G,M), is supported on

elements that are images from M .

Theorem 8.6. Suppose that M is a Levi subgroup of G, that M ′ is an elliptic endoscopic

datum for M , and that σ′ ∈ ΣG(M̃ ′) is not the image of any element in ΓG(M). Then

IEM (σ′, f) = 0 , f ∈ C(G, ζ).

Proof. It is a consequence of [14, Lemma 10.2] that any elliptic element in ΣG(M̃ ′) is an

image of some element in ΓG(M). Since σ′ is not such an image, it must come from a Levi

subgroup R′ of M ′ which is not relevant to G. In other words, R′ is an elliptic endoscopic

datum for a Levi subgroup R of G∗ that is not conjugate to an element in L(M ∗
0 ). Our

point σ′ is the image in ΣG(M̃ ′) of a class in ΣG(R̃′), that we can also denote by σ′. We

can then apply the descent formula (7.3) to the terms in the sum

IEM (σ′, f) =
∑

G′∈EM′ (G)

ŜG
M (σ′, f ′) .

We find that IEM (σ′, f) equals

(8.9)
∑

G′∈EM′ (G)

∑

L∈L(R)

eG
R(M,L)ŜL

R

(
σ′, (f ′)L′

)
.

The expression (8.9) is a direct analogue of the expansion (8.2) for the distribution of

Theorem 8.3(i). The proof of the present theorem follows exactly the same lines. We need

only summarize the main steps.

There is an action G′ → G′
s of the finite group

(8.10) Z(L̂sc)
Γ ∩ Z(M̂sc)

Γ/ẐΓ
sc

83



on the set of G′ that map to a given L′. We are assuming at this point that eG
R(M,L) 6= 0.

We can also assume that L is conjugate to a group in L(M0). We can therefore choose

elements ω ∈ G∗
sc(F ) and ω̂ ∈ ĜΓ

sc such that Int(ω)L ∈ L(M∗
0 ) and Int(ω̂)L̂ ∈ L(M̂0),

and such that the restriction of Int(ω̂) to L̂ is dual to the restriction of Int(ω) to L. In

particular, ω̂Z(L̂sc)
Γω̂−1 is contained in Z(M̂0,sc)

Γ. We therefore obtain a character

(8.11) s −→ ζ0
G(sL,M) = ζ0

G

(
(ω̂sω̂−1)−1s

)

on the group (8.10).

In the present situation, we must choose the base point (δ
′
, γ) to be in

ΣG(M̃ ′) × ΓG(M). Lemma 8.4 then asserts that the relevant transfer factors satisfy

∆s(δ
′, γ; δ

′
, γ) = ζ0

G(sL,M)∆(δ′, γ; δ
′
, γ) ,

for points δ′ ∈ ΣG(L̃′) and γ ∈ Γ(G). As in the proof of the earlier theorem, this immedi-

ately leads to an identity

(f ′
s)

L′ = ζ0
G(sL,M )(f ′)L′

for the functions that occur in (8.9). Finally, Lemma 8.5 asserts that the character (8.11)

on the group (8.10) is nontrivial. As in Theorem 8.3, this implies that the contribution

to (8.9) of the given orbit {G′
s} vanishes. It follows that (8.9) itself vanishes, and that

IEM (σ′, f) = 0. �
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9. Towards a stable local trace formula

We shall now test our constructions on the local trace formula. We shall stabilize the

geometric side of this formula in terms of the distributions defined in §5. The result will

be important for the further study of the distributions. The process itself can be regarded

as a rehearsal for the more difficult stabilization of the global trace formula.

As in the last section, G is a K-group over a local field F , equipped with a quasisplit

inner twist G∗, while M0 ⊂ G is some fixed minimal Levi subgroup, equipped with a

corresponding Levi subgroup M∗
0 ⊂ G∗ and a dual Levi subgroup M̂0 ⊂ Ĝ. It will be

convenient also to fix a minimal Levi subgroup R0 of G∗, with R0 ⊂ M∗
0 . Following the

usual trace formula notation, we shall generally write L = LG for the set L(M0) = LG(M0),

and W0 = WG
0 for the Weyl group W (M0) = WG(M0). Then W0 acts on L. Similarly,

the Weyl group W ∗
0 = WG∗

0 = WG∗(R0) of (G∗, R0) acts on the set L∗ = LG∗ = LG∗(R0).

We note that the image of L under the map M →M ∗ is not generally L∗, but rather the

subset L(M∗
0 ) of L∗. If G′ is an endoscopic group for G, we have also the set L′ = LG′ and

the Weyl group W ′
0 = WG′

0 , both taken with respect to some fixed minimal Levi subgroup

of G′.

As usual, we fix a central induced torus Z in G over F , and a character ζ on Z(F ). The

elliptic part of the local trace formula can be regarded as an inner product of two functions.

To motivate our later discussion, let us recall how to stabilize this inner product. Suppose

that aG and bG are two ζ−1
G -equivariant functions on Γell(G) that are square-integrable

modulo Z(F ). Then we have an identity

(9.1) (aG, bG) =
∑

G′∈Eell(G)

ι(G,G′)(a′, b′) ,

where

(aG, bG) =

∫

Γell(G/Z)

aG(γ)bG(γ)dγ ,

(a′, b′) =

∫

ΣG,ell(G′/Z)

n(δ′)−1a′(δ′)b′(δ′) dδ′ ,
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a′(δ′) =
∑

γ∈Γell(G)

∆G(δ′, γ)aG(γ) , δ ∈ ΣG,ell(G̃
′),

and

ι(G,G′) = |OutG(G′)|−1|Z(Ĝ′)Γ/Z(Ĝ)Γ|−1 ,

and where n(δ′) is the integer |Kδ′ | defined in [7, p. 509]; the measures dγ and dδ′ are

defined as in [7, (1.3)]. This is an easy extension of [7, Proposition 3.5], with the role of

the p-adic adjoint relations [7, Lemma 2.3] taken by their generalizations (2.6) and (2.7)

for K-groups. The proof from [7] was actually for the special case of Z = {1} and aG

and bG in the subspace Icusp(G) of L2
(
Γell(G)

)
, but the proof extends immediately to the

setting here.

We want to relate (9.1) with our earlier construction. We continue with the special

case of the general framework of §4-§7 that applies to the local trace formula. Recall from

the discussion at the beginning of §8 that if G′ is an endoscopic datum for G, G′
V stands

for the endoscopic datum G′ × G
′

for GV . We take ζV to be the character ζ × ζ−1 on

ZV (FV ) = Z(F ) × Z(F ). In order for the notation to match that of [4] and [5], we fix a

function in C(GV , ζV ) of the form

f = f1 × f2 , fi ∈ C(G, ζ).

Now the absolute transfer factor ∆(·, ·) for (G,G′) takes complex values on the unit circle.

It follows from Lemma 8.1 that

f
G
′

2 (δ′2) =
∑

γ2∈Γ(G)

∆(δ′2, γ2) f2,G(γ2) = fG′
2 (δ′2) .

Therefore

f ′ = fG′V = fG′

1 × f
G
′

2 = f ′
1 × f ′

2 .

In particular, the function f ′ is equivariant under the character (ζ̃ ′ζ)−1
V = (ζ̃ ′ζ)−1 × ζ̃ ′ζ on

(Z̃ ′Z)V (FV ). As in §8, we shall identify G′ with G′
V when there is no risk of confusion.
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We shall also identify any points δ′ ∈ ΣG(G′) and γ ∈ Γ(G) with their respective diagonal

images (δ′, δ′) ∈ ΣGV
(G′

V ) and (γ, γ) ∈ Γ(GV ).

We can apply the inner product formula (9.1) to the function

aG(γ1) · bG(γ2) = f1,G(γ1) · f2,G(γ2) = fG(γ1, γ2) , γ1, γ2 ∈ Γ(G).

It takes the form

Iell(f) =
∑

G′∈Eell(G)

ι(G,G′)S′
ell(f

′) ,

where

Iell(f) =

∫

Γell(G/Z)

fG(γ)dγ

and

S′
ell(f

′) =

∫

ΣG,ell(G′/Z)

n(δ′)−1f ′(δ′)dδ′ .

Now Iell(f) is the leading term of the geometric side of the local trace formula. The entire

geometric side can be regarded as an expansion

(9.2) I(f) =
∑

M∈L

|WM
0 ||WG

0 |−1(−1)dim(AM /AG)

∫

ΓG,ell(M/Z)

IM (γ, f)dγ

of a certain invariant distribution I in terms of the distributions of §4. It is composed of

similar expansions [5, (4.10)] for the connected components Gα of G. The inner product

formula above and the construction in §5 both suggest what to do next. We set

(9.3) IE(f) =
∑

G′∈E0

ell
(G)

ι(G,G′)Ŝ′(f ′) + ε(G)SG(f),

where Ŝ′ = ŜG̃′ is a linear form on SI
(
G̃′

V , (ζ̃
′ζ)V

)
for each G′ ∈ E0

ell(G), that is defined

inductively by the supplementary requirement that

(9.4) IE(f) = I(f)

in the case that G is quasisplit.
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The definition is obviously in the same spirit as those of §5. We shall assume that

for each M ∈ L, Assumption 5.1 (with V0 = V ) holds for (F,G,M). This includes an

assertion that for various quasisplit triplets (F,G1,M1) (in which G1 is obtained from G

by a succession of proper endoscopic groups), the distributions {SG1

M1
(δ1) : δ1 ∈ ΣG,ell(M1)}

on G1(F ) are stable. We shall strengthen the assumption slightly by requiring that the

entire statement of Conjecture 3.3(b) (rather than just the stability assertion) applies

to each (F,G1,M1). In other words, the distribution SG1

M1
(δ′1) vanishes if δ′1 lies in the

complement of ΣG,ell(M1) in ΓE
G,ell(M1). This is to be the primary induction hypothesis

for what follows, and will not be resolved in this paper. As in §5, we impose a secondary

induction hypothesis that is to be resolved in terms of the first one. We assume that if G is

replaced by a quasisplit inner K-form of G̃′, for any group G′ ∈ E0
ell(G), the corresponding

analogue of the distribution SG is defined and stable. The summands Ŝ′(f ′) in (9.3) then

make sense.

Our goal is to establish expansions for IE(f) and SG(f) in terms of the distributions

in §5. Suppose that M ∈ L and that M ′ is an elliptic endoscopic datum for M . We are

identifying M ′ with the datum M ′
V = M ′×M

′
and EM ′(G) with the set EM ′

V
(GV , G). For

any G′ ∈ EM ′(G), the corresponding summand in (5.3) satisfies

SG
M (δ′, f ′) = ιM ′(G,G

′)SG′

M ′(δ
′, f ′) = ιM ′(G,G

′)SG̃′

M̃ ′
(δ′, f ′) ,

by a simple variant of Corollary 7.2. (See the remark following Corollary 7.3.) The

definition (5.3) can then be written in a form

(9.5) IEM (δ′, f) =
∑

G′∈E0

M′
(G)

ιM ′(G,G
′)ŜG̃′

M̃ ′
(δ′, f ′) + ε(G)SG

M (M ′, δ′, f)

that matches the definition (3.5) of §3.
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Theorem 9.1. (a) In general, we have

(9.6) IE(f) =
∑

M∈L

|WM
0 ||WG

0 |−1(−1)dim(AM /AG)

∫

ΓG,ell(M/Z)

IEM (γ, f)dγ .

(b) If G is quasisplit,

SG(f) =
∑

M∈L

|WM
0 ||WG

0 |−1(−1)dim(AM /AG) ·(9.7)

∑

M ′∈Eell(M)

ι(M,M ′)

∫

ΣG,ell(M ′/Z)

n(δ′)−1SG
M (M ′, δ′, f)dδ′ .

Remarks. 1. Suppose that G is quasisplit, and that Conjecture 3.3(b) actually holds for

G. Then by Proposition 7.4(b), SG
M (M ′, δ′, f) vanishes unless M ′ = M∗, in which case it

is stable. The formula (9.7) becomes

(9.8) SG(f) =
∑

M∈L

|WM
0 ||WG

0 |−1(−1)dim(AM /AG)

∫

ΣG,ell(M/Z)

n(δ)−1SG
M (δ, f)dδ

under this condition. In particular, SG is stable. The theorem thus allows us to resolve

the secondary induction hypothesis in terms of the first one.

2. The integrals in (9.6) and (9.7) (as well as (9.2)) are absolutely convergent. For

by the splitting formulas of Theorem 6.1, it is enough to control the behaviour in γ and

δ′ of the basic distributions of §3. The definitions (4.4), (5.3), (5.4) and (5.5) reduce the

problem to weighted orbital integrals, for which we have a standard estimate

JM (γ, h) ≤ νn(h)
(
1 + log |D(γ)|

)p(
1 + ‖HM (γ)‖

)−n
, γ ∈ ΓG(M),

that holds for any n, and any Schwartz function h on G(F ). (See [6, (5.7)].)

Proof. According to the definition (9.3), the difference

(9.9) IE(f) − ε(G)SG(f)

equals
∑

G′∈E0

ell
(G)

ι(G,G′)Ŝ′(f ′) .
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We can assume inductively that part (b) of theorem is valid for quasisplit inner K-forms

of G̃′, for each G′ ∈ E0
ell(G). The analogue of (9.8) for G̃′ then holds, and can be written

Ŝ′(f ′) =
∑

R′∈L′

|WR′

0 ||WG′

0 |−1SR′(G
′)

where

(9.10) SR′(G
′) = (−1)dim(AR′/AG′)

∫

ΣG′,ell(R
′/Z)

n(σ′)−1ŜG̃′

R̃′
(σ′, f ′)dσ′ .

The difference (9.9) therefore equals

(9.11)
∑

G′∈E0

ell
(G)

ι(G,G′)
∑

R′∈L′

|WR′

0 ||W ′
0|

−1SR′(G
′) .

The main step is the following rearrangement formula, that is a property of the con-

nected, quasisplit group G∗.

Lemma 9.2. Suppose that

SR′(G
′) , G′ ∈ E(G∗), R′ ∈ L′,

is a family of complex numbers that depend only on the AutG(G′)-orbit of R′. Then

(9.12)
∑

G′∈Eell(G∗)

ι(G∗, G′)
∑

R′∈L′

|WR′

0 ||W ′
0|

−1SR′(G
′)

equals

(9.13)
∑

R∈L∗

|WR
0 ||W ∗

0 |
−1IR(G∗) ,

where

IR(G∗) =
∑

R′∈Eell(R)

ι(R,R′)
∑

G′∈ER′ (G
∗)

ιR′(G
∗, G′)SR′(G

′) .
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Proof. In general, we shall write S/H for the set of orbits of a group H, acting on a set S.

Then (9.12) equals

∑

G′∈E(G∗)

ι(G∗, G′)
∑

R′∈L′/W ′
0

|W ′(R′)|−1SR′(G
′) ,

since WR′

0 W ′(R′) is the stabilizer of R′ in W ′
0 = WG′

0 , and since ι(G∗, G′) vanishes for G′

in the complement of Eell(G
∗) in E(G∗). The main point is to interchange the sums over

G′ and R′. This requires several counting arguments.

We can identify E(G∗) with a set of orbits {G′}/Ĝ of the dual group Ĝ = Ĝ∗. The un-

derlying set {G′} consists of Z(Ĝ)-orbits of endoscopic data (G′,G′, s′, ξ′) for G∗, in which

Z(Ĝ) acts by translation on s′, G′ is contained in LG, and ξ′ is the identity embedding.

Given any such G′, a choice of Levi subgroup R′ ∈ L′/W ′
0, determines Levi subgroups

R̂′ ⊂ Ĝ′ and R′ ⊂ G′, up to conjugation by Ĝ′. The group R̂′ can be identified with a dual

group of R′, while R′ is a split extension of WF by R̂′, and G′ equals Ĝ′R′. Following the

usual convention for endoscopic data, we shall find it convenient to denote a pair (R̂′,R′)

by R′. Then L′/W ′
0 is bijective with {R′}/Ĝ′. With these changes of notation, (9.12)

becomes
∑

{G′}/Ĝ

∑

{R′}/Ĝ′

ι(G∗, G′)|W ′(R′)|−1SR′(G
′) .

The next step is to combine the iterated sum over G′ and R′. Given G′ and R′, let

s′R be any point in s′Z(Ĝ)Γ
(
Z(R̂′)Γ

)0
whose connected centralizer in Ĝ equals R̂′. In this

way, we can identify R′ with an endoscopic datum for G. As G′ varies, R′ ranges over the

endoscopic data (R′, s′R,R
′, ξ′R) for G∗, taken up to translation of s′R by Z(Ĝ)

(
Z(R̂′)Γ

)0
,

in which R′ is contained in LG and ξ′R is the identity embedding. The group Ĝ acts on

this set {R′} in the obvious way by conjugation. We can replace the iterated sum by a

sum over the Ĝ-orbits in the set

(9.14)
{
(R′, G′)

}
=
{
(R′, G′) : s′Z(Ĝ) ⊂ s′RZ(Ĝ)

(
Z(R̂′)Γ

)0
, G′ = Ĝ′R′

}
,
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provided that we scale the summand by the orders of the appropriate stabilizers. The

stabilizer of G′ in Ĝ is

AutG(G′) =
{
g ∈ Ĝ : gs′g−1 ∈ s′Z(Ĝ), gG′g−1 = G′

}
.

This group is generally larger than Ĝ′, but its quotient by Ĝ′ is the finite group OutG(G′).

The stabilizer of R′ in Ĝ, taken modulo the stabilizer of R′ in Ĝ′, is the subgroup

OutG(G′)R′ of cosets in OutG(G′) that have a representative in AutG(G′) that stabilizes

R′. The scaling factor for the change of summation is therefore the index of OutG(G′)R′

in OutG(G′). The expression (9.12) becomes

(9.15)
∑

{(R′,G′)}/Ĝ

|W ′(R′)|−1|OutG(G′)R′ |−1|OutG(G′)|ι(G∗, G′)SR′(G
′) .

We now change the sum in (9.15) back to an iterated sum, but with R′ taken before

G′. Any R′ determines a Levi subgroup R̂ of Ĝ, with the property that Z(R̂)Γ is of finite

index in Z(R̂′)Γ. Writing

Z(Ĝ)
(
Z(R̂′)Γ

)0
= Z(Ĝ)

(
Z(R̂)Γ

)0
= Z(Ĝ)Z(Ĝ)Γ

(
Z(R̂)Γ

)0
= Z(Ĝ)Z(R̂)Γ ,

by Lemma 1.1, we see that

Z(Ĝ)
(
Z(R̂′)Γ

)0
/Z(Ĝ) = Z(R̂)Γ/Z(Ĝ)Γ .

It follows that for any R′, the set of G′ for which (R′, G′) belongs to the set (9.14) coincides

with the set ER′(G). Observe that R̂′ stabilizes both R′ and G′. The full stabilizer of R′

is the larger group

AutG(R′) =
{
g ∈ Ĝ : gs′Rg

−1 ∈ s′RZ(Ĝ)
(
Z(R̂′)Γ

)0
, gR′g−1 = R′

}
.

We shall write OutG(R′)G′ for the stabilizer of any G′ ∈ ER′(G) in the quotient

OutG(R′) = AutG(R′)/R̂′ .
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We can then change the sum in (9.15) to an iterated sum over {R′}/Ĝ and ER′(G
∗),

provided that we divide the summand by the index of OutG(R′)G′ in OutG(R′), or in

other words, that we multiply the summand by

|OutG(R′)|−1|OutG(R′)G′ | .

The last step is to change the sum over {R′}/Ĝ to an iterated sum over Levi subgroups

R of G∗, and over those R′ that give rise to R as above. The set of such R′, taken modulo

conjugation by R̂, is just Eell(R). Moreover, {R}/Ĝ can be identified with L∗/W ∗
0 . The

stabilizer of R in Ĝ contains R̂, and the quotient of this stabilizer by R̂ may be identified

with the Weyl group W (R) = WG∗(R). Let W (R)R′ be the subgroup of cosets in W (R)

that have a representative in Ĝ that stabilizes R′. The sum over {R′}/Ĝ can then be

replaced by an iterated sum over R ∈ L∗/W ∗
0 and R′ ∈ Eell(R), provided that the summand

is divided by the index of W (R)R′ in W (R). It is preferable to sum R over the whole set

L∗. We are of course free to do this, as long as we divide the summand further by the

index of WR
0 W (R) in W ∗

0 . We can therefore replace the sum over {R′}/Ĝ with an iterated

sum over R ∈ L∗ and R′ ∈ Eell(R), provided that we multiply the summand by

|WR
0 ||W ∗

0 |
−1|W (R)R′ | .

We have established that (9.15) equals

∑

R∈L∗

|WR
0 ||W ∗

0 |
−1

∑

R′∈Eell(R)

∑

G′∈ER′ (G
∗)

αR′(G
∗, G′)SR′(G

′) ,

where αR′(G
∗, G′) equals the product of

|W ′(R′)|−1|OutG(G′)R′ |−1|OutG(G′)|ι(G∗, G′)

with

|W (R)R′ ||OutG(R′)|−1|OutG(R′)G′ | .
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We have only to simplify αR′(G
∗, G′).

It follows from the definitions that

|OutG(G′)|ι(G∗, G′) = |Z(Ĝ′)Γ/Z(Ĝ)Γ|−1

= |Z(R̂′)Γ/Z(R̂)Γ|−1ιR′(G
∗, G′)

= |OutR(R′)|ι(R,R′)ιR′(G
∗, G′) .

We may as well choose a representative (R′,R′, s′R, ξ
′
R) within the isomorphism class in

Eell(R) so that R′ ⊂ LG and ξ′R = 1, and such that s′R actually centralizes R′ (rather

than stabilizing it). It is then easy to see that OutR(R′) embeds into OutG(R′). The

image of OutR(R′) is in fact a normal subgroup, whose quotient acts on
(
Z(R̂′)Γ

)0
, and

is isomorphic to the subgroup W (R)R′ of W (R). Therefore

|OutR(R′)| = |W (R)R′ |−1|OutG(R′)| .

Finally, consider the subgroup of elements in OutG(R′)G′ that are induced by conjugation

by elements in Ĝ′ (rather than the larger group Ĝ). This subgroup is isomorphic to the

subgroup of Γ-invariant elements in W Ĝ′(R̂′), which is in turn isomorphic to W ′(R′) =

WG′(R′). But the subgroup of OutG(R′)G′ in question is normal, and the quotient is easily

seen to be isomorphic to OutG(G′)R′ . It follows that

|OutG(R′)G′ | = |W ′(R′)||OutG(G′)R′ | .

Combining these three observations, we conclude that

αR′(G
∗, G′) = ι(R,R′)ιR′(G

∗, G′) .

The expression (9.15), which was obtained from the original expression (9.12), becomes

∑

R∈L∗

|WR
0 ||W ∗

0 |
−1

∑

R′∈Eell(R)

ι(R,R′)
∑

G′∈ER′ (G
∗)

ιR′(G
∗, G′)SR′(G

′) .
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This is just
∑

R

|WR
0 ||W ∗

0 |
−1IR(G∗) ,

the required expression (9.13). �

We return to the proof of the theorem. We shall apply the lemma, with SR′(G
′) defined

by (9.10) if G′ belongs to E0
ell(G), and SR′(G

′) = 0 for any G′ in the complement of E0
ell(G)

in E(G∗). A simple variant of Lemma 3.1(i) implies that SG̃′

R̃′
(σ′, f ′) depends only on the

orbit of (R′, σ′) under AutG(G′). Therefore SR′(G
′) satisfies the requirement that it depend

only on the AutG(G′)-orbit of R′. Since ι(G,G′) = ι(G∗, G′) and ιR′(G,G
′) = ιR′(G

∗, G′),

the lemma tells us that the original expression (9.11) equals

∑

R∈L∗

|WR
0 ||W ∗

0 |
−1

∑

R′∈Eell(R)

ι(R,R′)
∑

G′∈E0

R′
(G)

ιR′(G,G
′)SR′(G

′) .

Substituting for SR′(G), we note that (−1)dim(AR′/AG′ ) equals (−1)dim(AR/AG), and that

the integral over ΣG′,ell(R
′/Z) can be taken over the open dense subset ΣG,ell(R

′/Z). In

particular, the sign and integral can both be taken outside the sum over G′. We can

conclude that (9.11) equals

(9.16)
∑

R∈L∗

|WR
0 ||W ∗

0 |
−1(−1)dim(AR/AG)

∑

R′∈Eell(R)

ι(R,R′)

∫

ΣG,ell(R′/Z)

n(σ′)−1BR′(σ
′, f)dσ′ ,

where

BR′(σ
′, f) =

∑

G′∈E0

R′
(G)

ιR′(G,G
′)SG̃′

R̃′
(σ′, f ′) .

We claim that

BR′(σ
′, f) = IER(σ′, f) − ε(G)SG

R (R′, σ′, f) .

If ε(G) = 1, R belongs to L, and the formula is just (9.5). If ε(G) = 0, L is a proper

subset of L∗ that need not contain R. However, in this case E0
R′(G) = ER′(G), and the
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formula follows from the definition (8.1) and the appropriate variant of Corollary 7.2.

Consider, then, the contribution to (9.16) of the two parts of BR′(σ
′, f). The contribution

of −ε(G)SG
R (R′, σ′, f) is just the product of −ε(G) with the right hand side of (9.7). For the

contribution of IER(σ′, f), we appeal to Theorem 8.3. According to the vanishing assertion

(i) of the theorem, IER(σ′, f) = 0 if R is not G∗(F )-conjugate to an element in L(M ∗
0 ). If

R is G∗(F )-conjugate to an element in L(M ∗
0 ), (R,R′, σ′) lies in the W ∗

0 -orbit of a triplet

(M∗,M ′, δ′) , M ∈ L, M ′ ∈ Eell(M), δ′ ∈ ΣG,ell(M̃
′).

In this case, assertion (ii) of the theorem yields

IER(σ′, f) = IEM (δ′, f) .

The corresponding contribution to (9.16) will then be given by a sum over M ∈ L, provided

that we replace |WR
0 ||W ∗

0 |
−1 by |WM

0 ||WG
0 |−1. We have shown that (9.16) equals the sum

of

(9.17)
∑

M∈L

|WM
0 ||WG

0 |−1(−1)dim(AM /AG)
∑

M ′∈Eell(M)

ι(M,M ′)

∫

ΣG,ell(M ′/Z)

n(δ′)−1IEM (δ′, f)dδ′

and the product of −ε(G) with the right hand side of (9.7).

We claim that (9.17) equals

(9.18)
∑

M∈L

|WM
0 ||WG

0 |−1(−1)dim(AM /AG)

∫

ΓG,ell(M/Z)

IEM (γ, f)dγ ,

the right hand side of (9.6). To see this, we begin by writing

IEM (δ′, f) =
∑

L1,L2∈L(M)

dG
M (L1, L2)Î

L1,E
M (δ′, f1,L1

)ÎL2,E
M (δ′, f2,L2

) ,

by the splitting formula (6.2), or rather, its equivalent formulation (6.4). The point δ ′

is attached to given M ′ ∈ Eell(M), that we have identified with the datum (M ′,M
′
) in

Eell(MV ). It follows from Lemma 8.1 and the original definitions of §3 that ÎL2,E
M (δ′, f2,L2

),
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with δ′ attached to M ′, equals the complex conjugate of IL2,E
M (δ′, f2,L2

), with δ′ attached

to M ′. We are dealing with functions of δ′ ∈ ΣG,ell(M̃
′) that are square integrable modulo

Z̃ ′Z. We can therefore apply the inner product formula (9.1) (with G replaced by M). We

find that ∑

M ′∈Eell(M)

ι(M,M ′)

∫

ΣG,ell(M ′/Z)

n(δ′)IEM (δ′, f)dδ′

=
∑

L1,L2∈L(M)

∫

ΓG,ell(M/Z)

ÎL1,E
M (γ, f1,L1

)ÎL2,E
M (γ, f2,L2

)dγ

=

∫

ΓG,ell(M/Z)

IEM (γ, f)dγ ,

thanks to (3,6), (6.2) and the fact that the complex conjugate of IL2,E
M (γ, f2,L2

) equals

IL2,E
M (γ, f2,L2

). The claim follows.

We have shown that (9.16) equals the sum of (9.18) and the product of −ε(G) with

the right hand side of (9.7). But (9.16) equals the original expression (9.9), that is the

difference of IE(f) and ε(G)SG(f). We conclude that IE(f) equals the sum of (9.18) and

ε(G)

(
SG(f) −

∑

M∈L

|WM
0 ||WG

0 |−1(−1)dim(AM /AG)·(9.19)

∑

M ′∈Eell(M)

ι(M,M ′)

∫

ΣG,ell(M ′/Z)

n(δ′)−1SG
M (M ′, δ′, f)dδ′

)
.

We can now finish the proof of the theorem in the same way we drew the final conclusions of

Theorems 6.1 and 7.1. If G is not quasisplit, ε(G) = 0, and the expression (9.19) vanishes.

The required expansion (9.6) is given by the resulting equality of IE(f) with (9.18). If G

is quasisplit, IE(f) = I(f) and IEM (γ, f) = IM (γ, f), according to the definitions (9.4) and

(5.4). In this case, (9.6) reduces to the expansion (9.2). The required expansion (9.7) then

follows from the vanishing of (9.19). �
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10. A simple application

We shall conclude the paper by looking at the special case of Theorem 9.1 in which

one of the components of f = f1 × f2 is cuspidal. Using the main theorems of [7], we shall

establish Conjecture 3.3 for cuspidal functions. This partial result seems to be a necessary

local ingredient for the stabilization of the global trace formula. Its general role ought to

be analogous to that of [9, Lemma 2.7.2] in the comparison of trace formulas for GL(n)

and related groups.

The results of [7] apply to p-adic groups, and are conditional on the fundamental

lemma (and its analogue on a Lie algebra). The discussion of this section, as it applies to

p-adic groups, is therefore conditional on the same hypothesis. The fundamental lemma

has been established for the groups SL(n) [17], Sp[4] [11] and GSp(4) [11], and could

presumably also be extended to the corresponding Lie algebras. This being so, our discus-

sion applies at least to inner forms of these p-adic groups. For real groups, the results we

require have been known for some time. They are due to Shelstad, and are implicit in the

paper [16].

We continue with the setting of Theorem 9.1. Then G is a K-group over a local field

F , and

f = f1 × f2 , fi ∈ C(G, ζ).

Recall that Ccusp(G, ζ) stands for the space of functions f1 in C(G, ζ) that are cuspidal, in

the sense that the orbital integral

γ −→ f1,G(γ) = JG(γ, f) , γ ∈ Γ(G),

is supported on the subset Γell(G) of elliptic classes in Γ(G). We assume that f1 is cuspidal.

With this condition, we set

(10.1) Idisc(f) =

∫

Tell(G,ζ)

n(τ)−1f1,G(τ)f2,G(τ) dτ ,
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where

n(τ) = |Rπ,r||det(1 − r)
aL/aG

| , τ = (L, π, r),

in the notation of [7, p. 533]. (If G is not connected, we adopt definitions

T (G, ζ) =
∐

α∈π0(G)

T (Gα, ζα) =
∐

α

Ttemp

(
Gα(F ), ζα

)

and

Tell(G, ζα) =
∐

α∈π0(G)

Tell(Gα, ζα) =
∐

α

Ttemp,ell

(
Gα(F ), ζα

)

that are parallel to those in §2 for conjugacy classes.) For the given f , Idisc(f) equals the

spectral side of the local trace formula. Equating it with the geometric side studied in §9,

we obtain

(10.2) I(f) = Idisc(f) .

(See [5, Corollary 3.2]. Since f1 is cuspidal, it is easy to see that the invariant local trace

formula does not depend on how we normalize the weighted characters.)

We can regard Idisc as a linear form on the subspace

C1-cusp(GV , ζV ) = Ccusp(G, ζ) ⊗ C(G, ζ−1)

of C(GV , ζV ). Motivated by the definitions (9.3) and (9.4), we set

(10.3) IEdisc(f) =
∑

G′∈E0

ell
(G)

ι(G,G′)Ŝ′
disc(f

′) + ε(G)SG
disc(f) ,

for linear forms Ŝ′
disc = ŜG̃′

disc on the spaces

SI1-cusp

(
G̃′

V , (ζ̃
′ζ)V

)
= SIcusp(G̃′, ζ̃ ′ζ) ⊗ SI

(
G̃′, (ζ̃ ′ζ)−1

)
,

that are defined inductively by setting

(10.4) IEdisc(f) = Idisc(f)

in the case that G is quasisplit.
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Proposition 10.1. (a) For any G, we have

IEdisc(f) = Idisc(f) , f ∈ C1-cusp(GV , ζV ).

(b) If G is quasisplit, SG
disc is a stable linear form on C1-cusp(GV , ζV ).

Proof. For p-adic groups, the proposition is a recasting of the main results of [7]. We

shall take our references from that paper, with the understanding that the corresponding

results for real groups are implicit in [16]. We shall also freely adopt notation from [7]. In

particular, if G is quasisplit, we have the sets Φ(G, ζ) and Φ2(G, ζ) introduced in the p-adic

case of [7, §5] to parametrize stable class functions onG(F ). In the real case, where Gmight

be disconnected, we can take Φ(G, ζ) and Φ2(G, ζ) to be Langlands parameters φ:

WF → LG, with Z-central character equal to ζ. These objects parametrize stable (linear

combinations of) tempered characters on G(F ). There is a bijection φ→ φ∗ from Φ(G, ζ)

onto Φ(G∗, ζ∗) for which the corresponding map of stable class functions is compatible

with the bijection δ → δ∗ of Σ(G) with Σ(G∗).

We can assume that f = f1 × f2, as above. Recall that Icusp(G, ζ) is a space of

functions that can be defined on either Γ(G) or T (G, ζ), by taking either the orbital

integrals or the characters of funtions in Ccusp(G, ζ). We define two functions aG, bG ∈

Icusp(G, ζ) by setting aG(τ) = f1,G(τ) and bG(τ) = f2,G(τ) if τ ∈ Tell(G, ζ), and aG(τ) =

bG(τ) = 0 if τ lies in the complement of Tell(G, ζ) in T (G, ζ). Recall the inner product

formula

(aG, bG) =
∑

G′∈Eell(G)

ι(G,G′)(a′, b′)

given by (9.1) (and [7, Proposition 3.5]). We shall relate this formula to the expansion

(10.3).

Since (aG, bG) is the geometric side of the local trace formula in the special case of

two cuspidal functions, it follows from (10.1) and (10.2) that

(aG, bG) = Îdisc(aG × bG) = Idisc(f) .
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(See [7, p. 533].) For any G′, the functions a′ and b′ above lie in the space SIcusp(G̃′, ζ̃ ′ζ)

of stable orbital integrals of cuspidal functions [7, §5]. It follows that

(a′, b′) =

∫

Φ2(G̃′,ζ̃′ζ)

n(φ′)−1a′(φ′)b′(φ′)dφ′ .

(See [7, p. 542].) Since f1 is cuspidal, the definitions in [7, §5] imply that a′(φ′) = f ′
1(φ

′).

For the noncuspidal function f2, however, the definitions [7, p. 543 and 549] yield only

b′(φ′) =
∑

τ∈Tell(G,ζ)

∆(φ′, τ)bG(τ)

=
∑

τ∈Tell(G,ζ)

∆(φ′, τ)f2,G(τ)

= f ′
2,gr(φ

′) ,

for any φ′ ∈ Φ2(G̃
′, ζ̃ ′ζ). The purpose of the two main theorems of [7] was to relate this

with f ′
2(φ

′).

Suppose first that G is quasisplit. According to [7, Theorem 6.1], the linear form

f2 → fG
2,gr(φ) on C(G, ζ) is stable, for any φ ∈ Φ2(G, ζ). It therefore depends only on the

function fG
2 on Σ(G) (which we have identified with the image f ∗

2 of f2 in SI(G∗, ζ∗)).

This justifies the definition

fG
2 (φ) = fG

2,gr(φ)

of [7, p. 549]. In particular, the linear form

∗SG
disc(f) =

∫

Φ2(G,ζ)

n(φ)−1fG
1 (φ)fG

2 (φ) dφ

on C1-cusp(GV , ζV ) is stable. Next suppose that G is arbitrary. According to [7, Theorem

6.2], the linear form f ′
2(φ), defined by the composition of the Langlands-Shelstad transfer

mapping with the linear form on SI(G̃′, ζ̃ ′ζ) attached to φ′ ∈ Φ2(G̃
′, ζ̃ ′ζ) as above, equals

f ′
2,gr(φ

′). It follows that

(a′, b′) =

∫

Φ2(G̃′,ζ̃′ζ)

n(φ′)−1f ′
1(φ

′)f ′
2(φ

′) dφ′ = ∗Ŝ′
disc(f

′) .
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The inner product formula becomes

(10.5) Idisc(f) =
∑

G′∈Eell(G)

ι(G,G′) ∗Ŝ′
disc(f

′) .

If G is quasisplit, it follows inductively from (10.3), (10.4), and (10.5) that ∗SG
disc(f) =

SG
disc(f). Since ∗SG

disc(f) is stable, we obtain assertion (b) of the proposition. Moreover,

for any G, we obtain

IEdisc(f) =
∑

G′∈Eell(G)

ι(G,G′)Ŝ′
disc(f

′)

=
∑

G′∈Eell(G)

ι(G,G′) ∗Ŝ′
disc(f

′)

= Idisc(f) .

This is assertion (a). �

Corollary 10.2. (a) For any G, we have

IE(f) = I(f) ,

if f belongs to the subspace C1-cusp(GV , ζV ) of C(GV , ζV ).

(b) If G is quasisplit, the restriction of SG to the subspace C1-cusp(GV , ζV ) is stable.

Proof. The corollary follows from the proposition, the special case (10.2) of the local trace

formula, and the definitions (10.3) and (10.4). �

We can now establish our special case of Conjecture 3.3. Fix a cuspidal function

f1 ∈ Ccusp(G, ζ) and a Levi subgroup M1 ∈ L.

Proposition 10.3. (a) Suppose that γ1 ∈ ΓG,ell(M1). Then

IEM1
(γ1, f1) = IM1

(γ1, f1) .
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(b) Suppose that G is quasisplit and that δ′1 ∈ ΣG,ell(M
′
1) for some M ′

1 ∈ Eell(M1). Then

SG
M1

(M ′
1, δ

′
1, f1) vanishes unless M ′

1 equals M∗, in which case it is stable as a linear form

in f1 ∈ Ccusp(G, ζ).

Proof. Set f = f1 × f2, where f2 ∈ C(G, ζ) is an arbitrary function. Then f belongs to

C1-cusp(GV , ζV ), and IE(f) = I(f) by Corollary 10.2. Applying the two expansions (9.6)

and (9.2), we see that the expression

(10.6)
∑

M∈L

|WM
0 ||WG

0 |−1(−1)dim(AM /AG)

∫

ΓG,ell(M/Z)

(
IEM (γ, f)− IM (γ, f)

)
dγ

vanishes. Since f1 is cuspidal, the splitting formulas (6.2) and (4.6) simplify. We obtain a

decomposition

IEM (γ, f)− IM (γ, f) =
(
IEM (γ, f1) − IM (γ, f1)

)
f2,M(γ) ,

which we can substitute into (10.6). We choose f2 ∈ C(G, ζ) so that f2,G has compact

support modulo Z(F ) on Γ(G) = Γreg

(
G(F )

)
, and so that f2,G approaches the ζ−1-

equivariant Dirac measure at the image of γ1 in Γ(G). The expression then approaches a

nonzero multiple of

IEM1
(γ1, f1) − IM1

(γ1, f1) .

The assertion (a) follows.

The proof of (b) is similar. Assuming that G is quasisplit, Corollary 10.2 and Theorem

9.1 tell us that the expression

∑

M∈L

|WM
0 ||WG

0 |−1(−1)dim(AM /AG) ·(10.7)

∑

M ′∈Eell(M)

ι(M,M ′)

∫

ΣG,ell(M ′/Z)

n(δ′)−1SG
M (M ′, δ′, f)dδ′

is a stable linear form on C1-cusp(GV , ζV ). Since f1 is cuspidal, the splitting formulas (6.3)

and (6.3′) simplify. We obtain a decomposition

SG
M (M ′, δ′, f) = SG

M (M ′, δ′, f1)fE
2,M (δ′) ,
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which we substitute into (10.7). We have written

fE
2,M (δ′) = fM ′

2 (δ′) , δ′ ∈ ΣG(M ′),

here, as in [7]. We choose f2 so that fE
2,G has compact support modulo Z(F ) on

ΓE(G) = ΓE
reg

(
G(F )

)
, and so that fE

2,G approaches the ζ−1-equivariant Dirac measure at

the image of δ′1 in ΓE(G). The expression (10.7) then approaches a nonzero multiple of

SG
M1

(M ′
1, δ

′
1, f1). If M ′

1 6= M∗
1 , we can also assume that f∗

2 = fG∗

2 = 0. Since it is stable

in f2, (10.7) then vanishes, and we conclude that SG
M1

(M ′
1, δ

′
1, f1) = 0, as required. If

M ′
1 = M∗

1 , so that δ′1 = δ∗1 lies in ΣG,ell(M
∗
1 ), we use the stability of (10.7) in the first

function f1 to conclude that the linear form

SM1
(δ1, f1) = SM1

(M∗
1 , δ

∗
1 , f1)

is stable in f1 ∈ Ccusp(G, ζ). This completes the proof of the proposition. �

Remarks. 1. Proposition 10.3 could probably be deduced directly from the results of [7],

without recourse to Theorem 9.1. The argument we have given here is quite natural, and

has the advantage of being a good illustration of the comparison of trace formulas. It is of

course a very simple case. The general case is much more elaborate, and seems to demand

a simultaneous comparison of both local and global trace formulas. However, the general

case ought to be similar in spirit to the proof here of Proposition 10.3.

2. Suppose that F = R. This is the case of Proposition 10.3 which is not conditional on

the fundamental lemma, relying instead on results of [16]. By studying character formulas,

Kottwitz has established a result that is equivalent to Proposition 10.3, at least in the case

that f1 is a linear combination of matrix coefficients of discrete series.
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