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In the present theory of autonorphic representations, a riaior coal 

is to stabilize the trace formula. Its realization will have irinortant 

conseuuences, among which will be the proof of functorialitv in a 

significant number of cases. However, it will recruire much effort, for 

there are a number of difficult problems to be solved first. Pone of 

the problems, especially those concerning orbital integrals, were 

studied in [9(e)l. They arise when one tries to interpret one side of 

the trace formula. The other side of the trace formla leads to a 

different set of problems. Amon? these, for examle, are questions 

relatinq to the nontempered autonorphic representations which occur 

discretely. Our purpose here is to describe some of these problems 

and to suqqest possible solutions. 

Some of the problems have in fact been formulated as conjectures. 

They have perhaps been stated in greater detail than is justifieri, 

for I have not had sufficient tine to ponder then. However, thev seem 

quite natural to me, and I will be surprised if thev turn out to be 

badly off the mark. 

Our discussion will be rather informal. We have tried to keep 

thin~s as simple as possible, sometimes at the expense of or'-ittino 

pertinent details. Section 1, which is devoted to real crrouos, contains 

a review of known theory, and a description of some problems and related 

examples. Section 2 has a similar format, but is in the global setting. 

^Je would have liked to follow it with a detailed discussion of the 

trace formula, as it pertains to the conjecture in Section 2. 'Rowever, 

for want of time, we will be much briefer. After opening with a few 



general remarks, we will attempt in Section 3 to motivate the con"jcture 

with the trace formula only in the case of ~Sp(4). In so doincr, we 

will meet a combinatorial problen which is trivial for DS~(&), hut is 

more interesting for general aroups. 

I am indebted to R. Kottwitz, D. Shelstad, and D. Voqan for en- 

lightenina conversations. I would also like to thank the University 

of Maryland for its hospitality. 

$1. A PROBLEM FOR REAL GROUPS 

1.1. The trace formula, which we will discuss presently, is an eoualitv 

of invariant distributions. The study of such distributions leads to 

questions in local harmonic analysis. Ye will beain by lookin'- at one 

such question over the real numbers. 

For the time being, we will take G to be a reductive alo-ebraic 

group defined over 3R. For simplicity we shall assume that ff is 

quasi-split. Let IT(<̂  (IR) ) (reso. Tten (G (IR) ) ) denote the set 

of equivalence classes of irreducible representations (reso. irreducible 

tempered representations) of G(3R) . In the data which one feeds into 

the trace formula are functions f in C~G(IP)) , Since the term of 

the trace formula are invariant distributions, we need only specifv f 

by its values on all such distributions. 

Theorem 1.1.1: The space of invariant distributions on G ( 3 P )  is 

the closed linear span of 

where tr(ir) stands for the distribution f ->Â trir(Â£) 

One can establish this theorem from the characterization 

[l(a)l of the image of the Schwartz space of G(3R) under the (operator 

valued) Fourier transform. We hope to publish the details elsewhere. 

Thus, for the trace formula, we need only specify the function 



It is clearly important to know what functions on TTtepo (G (F) 1 31-6 Of 

this form. The elements in "~T(G(B))  can be given by a finite number 

of parameters, some continuous and some discrete. Via these parameters, 

one can define a Paley-wiener soace on L ( R ( P ) )  . Tt consists 0-F 

functions which, among other thinas, are in the classical palev-YJiener 

space in each continuous parameter. T'7e woulri expect this Paley-Wiener 

s a c  on (G(]R) ) to be the inage of C"G(P) ) under the 

nap above. This fact may well be a consequence o+ recent work of 

Clozel and Delorme. We shall assume it iriplicitly in what follows. 

There is one point we should pention before goingr on. The 

function F can be evaluated on any invariant distribution on MI?'. 

In particular, 

is defined for any irreducible representation IT, and not just a 

tempered one. If p = BIT. is a finite sum of irreducible representa- 

tions, we set 

Now, consider an'induced representation 

where P = NM is a parabolic sub~roup of G (defined over 3 P )  , a 

is a representation in ntemD (M (IR) ) , and iri is the trivial N 

representation of the unipotent radical N ( 3 P )  . Let X be a convlex 

valued linear function on a ,  
the Lie algebra of the split cor'oonent 

of the center of M(n) , and let a be the representation obtained. 

by translatin9 a by A. Then p is in general a nonunitarv, 
*A - 



reducible representation of G(lR). Representations of this form are 

sometimes called standard representations. The function F ( p ) , defined 
x 

by the prescription above, can be obtained by analytic continuation from 

the purely imaginary values of A, where the induced representation is 

tempered. Suppose that n is an arbitrary irreducible, but not neces- 

sarily tempered, representation of G(lR). It is known (see [15] that 

tr(n) can be written 

where p ranges over a finite set of standard representations of G(X7) 

and {M(n,p)} is a uniquely determined set of intecers. Then F(n) 

is given by 

F(T) = M(n,p)F(p). 1 0  

Thus, the problem of determining F(T) is equivalent to deterpiininr' 

the decomposition (1.1.3). 

1.2. Among the invariant distributions are the stable distributions,. 

which are of particular interest for global applications. Shelstar" 

has shown [11(c)] that these nay be defined either by orbital inte9i-als 

or, as we shall do, bv tempered characters. 

We recall the Langlands classification [ 9 ( a ) ]  of TT(G(IR)) . Let 

@(G/IR) be the set of admissible maps 

where \'J is theP7eilFroupof F., and IR 

is the L-qroup of G. The eleinents in @ ( G / P )  are to he given only 

up to conjuvacv bv G O .  To each ? @ ( O / l P )  Lanqlanc?~ associates 

an L-packet = TT; consisting of finitely pany representation'= in 
4 

'['̂  ( G  (P.) ) . He shows that the representations in fT, are tempere(? i f 



and only if the projection of the iva~e of <;> onto L ~ O  is bounded. 

Let $temp(G/3R) denote the set of all such @ .  

Definition 1.2.1: 7i stable distribution is anv distribution, 

necessarily invariant, which lies in the closed linear span 05 

If F is a function of the form (1.1.2), we can set 

for any 4 @temp 

character on G ( B )  

(G/3R) . In [ll(c)l Shelstad shows that anv ten~ered 

can be expressed in terns of sums of this'form, 

but associated to some other qroups of lower dimension. Riven our 

discussion above, this means that any invariant distribution on WTO.) 

may be expressed in terns of stable distributions associated to other 

groups. we shall review some of this theory. 

The notion of endoscopic group was introduced in [9(c)] and 

studied further in 111 (c) 1 .  Let s be a semisimple eler'ent in '"G, 

defined modulo 

the centralizer of L~ in G O .  An endoscopic group H = H For I? s 

(over IR) is a quasi-split prouo in which ""HO = H equals s 

the connected component of the centralizer of s in G o .  If G is 

a split group with trivial center, this specifies H uniquelv. For 

then G is a simply connected complex group, in which the centralizer 

of any semisimple element is connected ([14], Theorem 2.15). The 

aroup H is then the unique split Froup whose L oroup is the direct 



product  of L ~ O  wi th  P J _ .  I n  genera l ,  it is  requi red  only t h a t  each 

e l enen t  w 6 PIm a c t  on L ~ O  by conjurration wi th  soFe element 

L 0 i n  c e n t  ( s , ~ )  . Since t h e  crroup Cent (s ,  G ) is  no t  i n  creneral con- 

nec ted ,  t h e r e  miyht be more than one endosconic rrroup f o r  a  given s 

a d  . Two end6scopic groups H and H ,  w i l l  be s a i d  t o  be 

equiva len t  i f  t h e r e  is a g â G o  such t h a t  s equals  g s ' g  - 1 

modulo t h e  product of ZG with  t h e  connected component of Z " s 
and t h e  map 

commutes wi th  t h e  a c t i o n  of W .  (Thus, f o r  us  an endoscopic group 

r e a l l y  c o n s i s t s  of t h e  element s a s  wel l  a s  t h e  group H I  and should 

s t r i c t l y  be c a l l e d  an endoscopic datum. See [ 9 ( e ) 1 . )  

An admissible  embeddin? H c G of an endoscopic froun i s  one 

which extends t h e  given enbeddincr OF L ~ @ ,  which coninutes v i t h  t h e  

L 
p ro j ec t ions  onto  W R 1  and f o r  which t h e  image OF 8 l i e s  i n  

L Cen t ( s ,  G). Pie s h a l l  suppose from now on t h a t  For each endoscopic 

I' L 
group we have f i xed  an admissible  enbeddincr H c G I  such t h a t  t he  

embeddinas f o r  equiva len t  yroups a r e  compatible. (The a d d i t i o n a l  

r e s t r i c t i o n  t h i s  pu t s  on G is  no t  s e r ious .  See [ 9 ( c ) ] . )  We s h a l l  

say t h a t  H is  cusoida l  if t h e  if-acre of L~ i n  d l i e s  i n  no Droner 

I, 
pa rabo l i c  subgroup of G. 

Example 1.2.2: Let G = PSp(4) . Then 

The only cuspida l  endoscopic rrroups a r e  G and P . ,  wi th 

s = ('-'-l1) . Then 



and 

, Hs 2 PGL(2) x PGL(2) . 

For each of t h e s e  qrouns we t a k e  t h e  obvious embedclin~ o f  "P i n t o  

I f  d) is  any parameter  i n  @ (G/P.) , d e f i n e  

t h e  c e n t r a l i z e r  i n  L ~ O  of t h e  iriacre o-F <b. S i n c e  t h e  h o ~ o ~ o r o h i s i "  
( 

<b i s  deteripined o n l v  up t o  ''GO conjuvacv,  C, is  r e a l l y  on lv  a  

conjucracv c l a s s  of subfroups o f  L ~ O .  However, v'e can  i d e n t i q v  each 

of t h e s e  subqroups w i t h  a  f i x e d  a b s t r a c t  c roup ,  t h e  i d e n t i f i c a t i o n  

be inq  c a n o n i c a l  up t o  an i n n e r  automorphism of t h e  g iven  qroun. S e t  

where c is  t h e  i d e n t i t y  component of C Then C i s  a  f i n i t e  
4' 4' 4' 

group which is known t o  be abe l ian .  ( [ l l ( c )  I .  See a l s o  [ 5 ]  . )  I t  can 

t h e r e f o r e  be c a n o n i c a l l y  i d e n t i f i e d  w i t h  an  a b s t r a c t  Froup which de-- 

pends o n l y  on t h e  c l a s s  of 4. 

For each <b c Q t e p P ( G ( l R ) )  , S h e l s t a d  d e f i n e s  a  n a i r i n ~  <, > 

on n4' x C$, such t h a t  t h e  r a n  

i s  an  i n j e c t i o n  from. i n t o  t h e  uroun 8 of c h a r a c t e r s  of . 
0) 6 

Unfor tuna te ly ,  t h e  p a i r i n g  cannot  be d e f i n e d  c a n o n i c a l l v .  However- 



Shelstad shows that there is a function c from cG/zG to {?I}, 

which is invariant on conjuqacy classes, such that 

- 
is independent of the pairin?. Here, s is the projection of s onto 

C This latter function can be used to map functions on G ( p )  to 
4) '  

functions on endoscopic Froups. 

Given a parameter ' ' 'temp (G/IR) and a senisinple element 

s â CG/ZGr one can check that there is a uniaue endoscopic Froun 

H = H such that s 

$I then defines a parameter C Otep-p (~133 ) . For a viven H, ever17 

parameter in atemp(H/IR) arises in this wav. For anv Function 

f â c(G(IR) , Shelstad defines a function f â C;(H(TR)) , uniaue 
H 

up to stable distributions on H(I!?) . To do so, it is enouyh to 

specify the value 

for every such .I$-,. This is done bv settino 

Actuall~, Shelstad defines fH bv transferrino orbital intevralsr and 

then proves the formula (1.2.3) as a theorem. Fowever, we shall take 

the formula as a definition. Shelstad shows that the riaoriinr- f -r f H 

is canonically defined up to a sicrn. (It also depends on the enbedrlincr 

H c G which we have fixed.) Pie shall fix the sir-ns in anv wav, 

asking only that in the case H = GI f be consistent with the 



notation above. That is, c(l) = 1. 

1.3. It is important for the trace formula to understand how the 

notions above relate to nontempere6 parameters (o. Shelstaci fiefined 

the pairings <>> only for tempered <j>, but it is easv enouoh to 

extend the definition to arbitrary parameters. For one can show that 

there is a natural way to decompose anv narameter (o bv 

( w )  = (oo (w) (o+ (w) I ^ O  ' ̂tei-o (Wp  ) ,  <))+ c ~ ( C / - S R  I ) ,  

so that the images of (oo and @ +  commute, and so that (o itself is 

tempered whenever '(. (Wn) = { 11. The centralizer in L~ of the imase 

L 
of + will be the Levi component 'M of a parabolic subqroup of G ,  

and n\ will consist of a positive quasi-character v+ of M(B). 

The image of @ must lie n 'Â¥M so that (oo defines an element in 

Ãˆtem (M/B) . There will be a bijection between ~ > n d  a , the 
0 

e n  n I] being the Lanflands quotients obtained froi" the tem- 

pered representations in y o  and the positive ~uasi-character v+ 
of M(E) . On the other hand C" equals C: , so we can define the 

$0 

p a r  on c x to be the one obtained  fro^ the pairin? on 
(o 

-IT: 
ô 0 '  

However, simply defining the pairing for nontempered 4 is not satis- 

factory. For it could well happen that the distribution 

is not stable if the parameter (t is not terioered. A related $i^- 

ficulty is that (1.2.3) no lonoer ~akes sense if 41. is not a tempered 

parameter for H. We shall define a subset o-F a('";/:[") -For which 

these difficulties are likely to have nice solutions. The subset will 

contain Ã̂ temp(G/ll?) and oucrht also to account for the representa- 

tions of G(B) which are of interest in crlobal annlications. 

Let Y(G/IR) be the set of "GO-conjuoacv classes o-F maps 



such t h a t  t h e  r e s t r i c t i o n  o f  I/J t o  raTm beloncrs t o  @tern ( R / P  1 .  
For  any ip ? Y ( G / I R )  d e f i n e  a  parameter  4 '  i n  @ ( G / l R  ) bv 

Here it i s  h e l p f u l  t o  r e c a l l  t h a t  

i s  t h e  map f r o n  1'7 t o  
IR 

SL(2,C) = L ( ~ r ^ ( 2 ) )  0 

which a s s i g n s  t h e  t r i v i a l  r e p r e s e n t a t i o n  t o  P R L ( 2 , P ) .  R e c a l l  a l s o  

t h a t  t h e  u n i p o t e n t  conjucracv c l a s s e s  i n  anv cor'nlex crroun a r e  b i j e c t i v e  

w i t h  t h e  conjuoacy c l a s s e s  o f m a p s o f  SL(2,C) i n t o  t h e  oroun. "he 

u n i p o t e n t  conjuoacv c l a s s e s  f o r  coriolex crroups have been c l a s s i f i e c 1  hv 

weighted Dynkin diacrrans. (See [I31 .) Mow anv ip c Y ( R / B  ) can be 

i d e n t i f i e d  wi th  a  p a i r  (4>,p), i n  which 4> (. QePn ( W P  ) and p is  

a  map from SL(2,C) i n t o  C criven up t o  coniur'acv bv C prom 
4)' 4' ' 

t h e  c l a s s i f i c a t i o n  of  n i l p o t e n t s  it fo l lows  t h a t  p i s  c'eterninec' bv 

i t s  r e s t r i c t i o n  t o  t h e  diacronal suborouo of SL(2.C) .  We o b t a i n  

p r o p o s i t i o n  1.3.1: The nap 

Thus, V ( G / I R )  can be regarded a s  a  s u b s e t  o f  @(P/l? ) . I t  

c o n t a i n s  @temp ( G / R  ) a s  t h e  set of $ = ($I, p )  w i t h  p t r i v i a l .  



Conjecture 1.3.2: For any $ ? f ( G / I P )  , the representations in 

are all unitarv. 

suppose that $ = ( 4  ,p)  is an arbitrary parapeter in CJ ( P / P  ) . 
Copying a previous definition we set 

and 

0 c = c G = c / c 7  
ill * H; * ' c  - 

The qroup C alwavs eauals Cent ( p  (SL(2 ,(C) ,C ) ) , and in narticular ^ 4' 
is contained in C Therefore, there are natural fans 4" c H ;  + 5 
C  + C  It is easy to check that this second man is surjective- In 

ill 4 ' -  
other words, there is an injective man 

from the (irreducible) characters on C to the irreducible characters ^ 
on C + .  

Fix $ 6 Y (G/~R ) . Take one of the pairinfs < ,> on C x TT4 ^ ^ 
discussed above, as well as the associated function c on the coniu~acv 

classes of C / Z .  Me pull back c to a function on the conjucac~r 

classes of C*/ 2;. Isle conjecture that the set can be enlarme? ^ 
and the pairin? extended so that all the theorv for ternerecl parameters 

holds in this more neneral settinc'. 

Conjecture 1.3.3: There is a finite set nill OF irreducible 

representations of G ( 3 R )  which contains TT,, a function 

which equals 1 on , and an injective nap ^ 



f r o  "ff into ?,, all uniouelv determined, with the Â¥ollowin nro- 
$ 

perties. 

(i) IT belonas to the subset of "fT, if and only if the v 
function <-,IT> lies in the imaae of C in C ^ ^' 

(ii) The invariant distribution 

is stable. (If C, is abelian 

the time, the distribution is 

IT) <l,ir> tr(x) 

which is certainly the case most of 

E (71) tr(r) , ^ 

which except for the si~ns E (TI) is just the sum of the characters ^ 
in the packet ) We shall denote the value of this distribution 

9' 
on the function (1.1.2) bv F($). 

(iii) Let s be a semisi~ple element in C,/Z. Let E = H s 

be the unique endoscopic group such that 

so that, in particular, I) defines a D 

- 
Â â C ; ( G ( I R ) ) ,  and s is the ima~e of 

raneter in 

s in 

<Z,TI> tr it 

It is not hard to check the uniaueness assertion of this conjecture. 

The third condition states that 



depends only on the projection x of s onto C,, and that For anv 

irreducible character 0 in Clb1 

(~1t.r ir(f), if 0 = <-,T> for sore TT? 7 
1 (1.3.5) - 

f '  

0, otherwise . 

Assume inductively that the distribution (1.3.4) has been defined and 

shown to be stable whenever G is replaced bv a oraoer endoscooic 

group H = H .  Since the function f has alreadv been defined on 
-Hs 

A 

any stable distribution, the numbers ($1 and X(4;,x) ( f ) ,  with 

- 
s = x # I, then make sense. To define f(- (f) , take 0 = 1. IF 

Â¥n is the representation in such that <-,nl> eauals 1, we 

obtain 

The distribution 

is then equal to 

To complete the inductive definition, it is necessary to show it is 

stable. The formula (3.1.5) would then qive the elements in TT 
4; 

uniquely, but only as virtual characters. The repainin? probler? is 

to show that the nonzero elements amon? them are linearlv independent, 

and that up to a s i ~ n  (which would serve as the definition of e ) 
f 

they are irreducible characters. 

The packets ff, should have some other nice properties. For 

example, one can associate an R-arou~ to any 4; ? Y(G/3R). Define 



Rli; to be the quotient of C by the grow of comoonents in Cli;/ZC * 
which act on the identity component bv inner auto~orphis~s. If R * 
is not trivial, the identity component will also not be trivial. The 

image of li; will be contained in a Levi component of a nroper narabolic 

subaroup of G .  Let f be a minimal Levi suboroup of R which 

contains the image of $. Then >̂ also represents a oarameter in 

V (M/m ) . There is' a short exact seauence 

The group R should Govern the reducibility 
li; 

tions 

where P = MN is a parabolic suburour) of f;. 

of the induced renresenta- 

bJote that p G  is obtained 

by unitary induction from a representation which is in oeneral not 

tempered. 

Finally, the conjecture should admit extensions in two directions - 
to real aroups which are not necessarily auasi-split, and to pairs 

( G , a ) ,  where a is an autonorphisn of G (~oflulo the aroup OF inner 

automorphisms). Both will eventually be needed to exploit the trace 

formula in full qeneralitv. 

1.4. Conjecture 1.3.3 is suaaested by the alobal situation, which we 

will come to later. I do not have much local evidence. The laraest 

Froup for which I have been able to verifv the conjecture co~~letelv 

is PSp(4). However, even this aroup is instructive. We shall look 

at three examples which illustrate why it is the parameters ^>, and 

not <)>,, which oovern questions of stability of characters. Tn each 

I qQ will consist of one representation ir such that tr(ir) 

is not stable. However, each aroup C$ will be of order two, and the 



sets nip will consist of T and another renresentation. St is onlv 

with these laruer sets that we obtain a nice theorv of stability. 

In each example we will consider parameters ip for G = PSp(4) 

such that the projection of ip onto G O  factors through the 

endoscopic group 

with 

As we have said, will consist of one representation ir. It will 

be the Langlands quotient of a nonunitaril~ induced representation p 

of G ( l R ) .  VJe shall let irH denote the uni-que representation in the 

packet TTH = n> and we shall let pH be the nonunitarilv induced ^ 
representation of H (I!? ) of which  IT^ is the Lann1and.s quotient. 

In order to deal with Y-parameters on C ( R ) ,  we must first 

know something about the @-parameters. The L-packets 

contain one or two elements. Those with two elements contain discrete 

series or limits of discrete series. They are of the form 

where T has a VJhitaker model, and irhol is the irreducible Wh 

representation of PSp(4,K) which combines the holoriorphic and anti- 

holomorphic (limits of) discrete series for S n ( 4 , P  ) .  Me take the 

pairinq <, > on C 4  x n4 so that <-,T~~,~> is the trivial character 

on C 4  Z / 2 Z  , and < - l h o l >  is the nontrivial character. It is 

not hard to verify that with this choice of pairing, all Shelsta<?.'s 



functions c(s) may be taken to be 1. In our examples, we shall 

consider only representations with sinaular infinitesimal character, 

since these are the most difficult to handle. For this reason, 

will now denote the L-packet in G ( E )  which contains 

the lowest limits of discrete series. I? irH is the lowest discrete 

series for H (3R ) , 

for any f C c(G(B)). On the other 

example that 

(f) - tr nhOl(f) , 

hand, it will be clear in each 

with 0 and pH as above. As a distribution on G ( R  ) , this 1.ast 

expression is stable. 

We will prove the conjecture in each example by lookincr at the 

expression (1.3.7) for fp(i()). If ir is the unique representation 

in q ,  it will equal 

To check the stability of this distribution, we will need. to express 

it as a linear combination of standard characters on G ( T P . ) .  !To then 

construct the packet we will have to rewrite the expression as *' 
a linear combination of irreducible characters. The term 2 tr irff) 

is handled by computina the character formula (1.1.3) for the reoresen- 

tation IT of G ( l R ) .  This can be accomplished bv reducinrr to the case 

of reaular infinitesimal character throuqh the procedure in [12] an8 

then using Voaan's algorithm obtained from the Kazdan-Luszticr conjectures 

[15]. We will only quote the answer. To deal with f,,($), we shall 
11 

first write the character formula (1.1.3) for the reoresentation IT 

of H(3R ) .  Since H(3R ) is isomorphic to PGL(2,lP ) x PGL(2,IP. ) , 



such formulas are well known. T'7e will then lift the resultinc' standard 

characters on H(lR) to characters on G(E) usina the renarks above. 

Example 1.4.1: Let f be given bv the diaorain 

in which the vertical arrow on the left is the parapeter -For PGL(2,TR) 

which corresponds to the lowest discrete series, and the inacre of 1-1 

in SL(2,C) is contained in f el}. The centralizers are qiven as 

follows. 

We write IT for the representation in As we have aareec1, 
1-1 

O1-1 
then denotes the standard representation of which IT is the 

1-1 

quotient, and  IT^ and 
H 

p v  denote the corresnondina representations 
P 

of H(E). The character formula (1.1.3) is easily shown to be 

On the other hand, from the 

obtain 

well known character for~'.ula for I T  we v 

From our formula for tr IT ( u f) we see that this equals 



18 

t r  ~ ( f )  + t r  IT hol ( f )  

on one hand eouals 

but can a l s o  be wri t ten  a s  

From the second expression we see t h a t  it i s  s t ab le .  From the f i r s t  

expression we see t h a t  the o ther  asser t ions  of the  conjecture hold if 

we def ine  

and 

<., TT > = 1, < -  , ThOl> = -1 . 
P 

Oe could have defined @ so t h a t  the v e r t i c a l  arrow on the  l e f t  

corresponded t o  a hio-her d i s c r e t e  s e r i e s  of P R L ( 2 , 1 P ) .  Evervthincr 

would have been the same exceot t h a t  { I T , ~ , I T ~ ~ ~ }  would stan6 f o r  a  

p a i r  of d i s c r e t e  s e r i e s  of C ( T P ) .  These exar-oles a r e  the loca l  

a n a l o ~ u e s  of the  nontemered cusp forris of PSp(4) discovered by 

Kurakawa [ 7 ] .  (See a l so  [ 9  (d)  , $ 3 1  . )  

Example 1.4.2: Define @ by the  diaqram 



in which the inacres of pl and pa are contained in {Â±1} and 

pl + p2. The centralizers are 

We write IT for the reoresentation in T T ,  and Follow 
^,^2 

the notation above. The character formula (1.1.3) can be calculated 

tr IT (f) = tr P (f) - tr p (f) - tr P ( 5 )  + tr ~ , , ^ ( f )  
^1^2 1̂̂ 2 Ul ^2 

On the other hand.,  fro^ the character formula for IT'' \-re obtain 
Ul1^2 

t r p  (f) - tr p  (f) - tr p (f) + tr IT,(f) - tr IThol(f) 
^11^2 Ul 2̂ 

Thus, the distribution 



on one hand equals 

but can also be written as 

tr P 
ull^ 

(f) - tr P (f) - tr 0 ( f )  + (tr vTATh(?) + tr nhOl(?)) . . ^1 p 2  

From the second expression we see that it is stable. Fror? the first 

exoression we obtain the other assertions of the conjecture if we 

define 

and 

This example is the local analogue of the nontei"nerer1 cusn forms r'is- 

covered bv Howe and Piatetski-Shapiro [3]. 

Example 1.4.3: Define as in the last examie, excent now take 

p, = p2 = u. This example is perhaps the nost striking. It is different 

from the previous two in that U; factors throucrh a Levi subnroun '̂ M 

of a proper parabolic subcrroup of "G. (It is the naxinal parabolic 

L L subgroup P = M M whose unipotent radical is abelian.) This shows 

up in the fact that C is infinite. ^ 



T'7e write IT for the representation in 5 ,  and follow the 
V-rlJ 

notation above. The character formula for IT is the most con~licat- 
lJ ll' 

ed of the three to compute. It is 

tr IT (f) = tr plJ ( f )  - tr p (f) - tr IT ( f )  . 
V I P  ,11 v ho 1 

We also have 

= trnH (fH) 
'J,v 

From our formula for tr IT (f) and the formula for tr TT ( f) in 
'J 1 lJ v 

Example 1.4.1, we see that this equals 

tr IT (f) - tr IT (f) . 
v1lJ v 

Thus, the distribution 

f($) = 2 tr IT (f) - fg($) 
P I P  

on one hand effuals 

but can also be written as 

From the second expression we see that it is stable. From the first 

excression we obtain the other assertions of the conjecture for the 

endoscocic aroups G and H if we define 
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â‚¬$hrv = 1 = E (IT ) * U 

and 

In this example we have a third endoscopic crroun to consider - 
the Levi subcrroup MI which we can identify with mJi2}. Since + 
factors throuqh M ,  it defines a parameter in Y(M/R). TO complete 

the verification of the conjecture we must show that 

The packets M nt and n both consist of one elementl the represen- * 
tat ion 

The definitions of Shelstad are set UD so that the nau 

is dual to induction. Therefore, we will be done i-F we can show that 

the induced representation 

pu = Ind G OR) 
p (E) ̂  '̂  id?.,) 

is the direct sun of v and TT . Now, u is a nonternuerec1 unitarv 
v,v- V. 

character of M(lR ) .  It is the difference between a nontemnered 

standard character on GL(2,IR) and a lowest discrete series on 

GL(2,IR). The induced character tr(p) is the difference between thp 

correspondin? two induced standard characters. The first is just 

tr(pPrv). The second is a tempered character on G(IR) which is re- 

ducible; its constituents are IT and vhol. Therefore, our induced Wh 

character equals 



It follows that 

Therefore the order of the R qroup is errual to the number of irrerluc- 

ible constituents of the induced representation 

as we would hope. Observe that the analowe of the R froun ^or the 

parameter >, is trivial. Thus, we see a further exarnnle o'f: behaviour 

which is tied to the parameter $ rather than > 11' 
This suoaests a concrete problem. 

Problem 1.4.4: Let zM be the Lie aloebra of the svlit copponent 

of the center of M ( I R ) .  The Peyl oroup of 
%M 

is in this case iso- 

morphic to R Let w be a representative in G(39) of its non- 
Ip' 

trivial element. It is known that the corresnonciina intertvinincr 

operator between and can be normalized accorrlinri to the 

prescription in [9(b),Appendix 111. Let M(w) be the value o^ the 

normalized intertwinin? operator at 'X = 0. It is a unitarv onerator 

whose square is 1. Its definition is canonical up to a choice of the 



representative w in G(3R ) . The problem is to show that ~ ( w )  is 

not a scalar, and more precisely, to show that if the deterninant of 

w is positive, then 

2 .  A GLOBAL CONJECTURE 

2.1. The conjecture we have just stated can be made for anv local 

field F. If F is non-Archipiedean, however, the Weil CTOUP must be 

replaced by the crroup 

introduced in [9(d)l. If G is a reductive auasi-split aroun r'efined 

over F, @(G/F) must be taken to be the set of ecmivalence classes 

of maps 

while Gtemp(G/F) will be the subset of those pans whose restriction 

to 1 has bounded image, when projected onto 'AGO. In or6.er to 

define the parameters I) we must add on another SJ, (2 ,C) . Fe t?.?e 

~'(G/F) to be the set of L ~ O  conjuaacy classes of naps 

such that the restriction of @ to the nroduct of b 1  with the first 

SL(2,C) belonas to Qtenp(G/F). For anv such i p ,  the parameter 



belongs to @ (G/F) . 
The conjecture also has a global analogue. Let F be a global 

field with adgle ring A, and let G be a reductive group over F. 

If G is not split, there are minor complications in the definitions 

related to endoscopic groups. (See [9(e)].) To avoid discussing them 

we shall simply take G to be split. Then the global definitions con- 

nected with endoscopic groups follow exactly the local ones we have qiven. 

The conjecture will describe the automor~hic reoresentations which 

are "tempered" in the global sense; that is, representations which occur 

2 
in the direct integral decomposition of G (A) on L (G (F )  \G ( A )  ) . 
However, we cannot use the global Weil group if we want to account for 

all such representations. For even GL(2) has many cuspidal automorphic 

representations which will not be attached to two dimensional representa- 

tions of the Well group. The simplest way to state the global conjecture 

is to use the conjectural Tannaka group, discussed in I9(d)l. If certain 

properties hold for the representations of GL(n), Lanqlands points out 

that there will be a complex, reductive pro-algebraic group G 
Itemn (F) 

whose n-dimensional (complex analytic) representations parametrize the 

automurphic representations of GL(n,A) which are tempered at each 

place. For each place v, there will also be a complex, reductive pro- 

algebraic group G equipped with a map 
Itemp (v' 1 

whose n-ciimensional representations parametrize the temoered representa- 

tions of GL(n,F). The composition of this map with an n-dirensional 

representations of G ( )  will give the F -constituent of the cor- 
ntemp v 

responding automorphic representation. 

The sets y(G/F) which we have defined could also be described 

as the set of L ~ O  conjugacy classes of maps 



The centralizer in G of the image of flrv is the same as the central- 

izer of the image of the corresponding parameter associated to the weil 

group. In other words, 

and 

We make the same definitions ulobally. Assumincr the existence of the 

aroups G and G let Y(G/F) be the set of 
'temp (F) TTtenp (V ' 

G conjugacy classes of maps 

@ :  Gn i F) X SL(2,C) + 'G . 
t enp 

If i l)  (: Y(G/F) is any such global parameter, set 

c = cent($(% * (F) 
x SL(2,C)) , '"GO) , 

temp 

and 

The composition of the map 

with I) gives a parameter $v E Y(G/Fv). There are natural maps 



and 

Assume that the analogue of the local Conjecture 1..3.3 holds. 

for each field F .  Fix i j;  â Y(G/F). Then for any place v we have a 

finite set n * v ,  a function E on TT , a pairing 
*v v 

and a function c on the conju~acy classes of C /Zc Define the 
v 

global packet to be the set of irreducible representations 
' * 

IT = Bv nV of G(A) such that for each v I  I T  belongs to 

Define the global pairing 

and the global function 

for IT = 4 rV in n+ and x in C+ with i~ane x v in C . 
\ 

Almost all the terms in each product should equal 1. It is reasonable 

to expect that for any element s C Cq/ZG with image s in C / Z _  I 

*v 

If this is so, the qlobal pairin? will be canonical. 

Conjecture 2.1.1: (A) The representations of R(iP) which occur 

in the spectral decomposition of L (G (F) \ f ;( @ )  ) occur in packets ~3-r2- 

metrized by Y(G/F). The representations in the packet corresponding to 

$ will occur in the discrete spectrum if and only if C is finite. * 



(B) Suppose that C is finite. Then there is a, positive ^ 
integer d^ and a homomorphism 

such that the multiplicity with which anv TT C n+ occurs discretelv 
in I* (G(F)\G{&) ) equals 

In particular, if C and each C are abelian, the multinlicitv of' * v 
IT is d if the character <-,IT> equals ^ S , ,  and is zero otherwise. 

2.2. Some comments are in order. First of all, the introduction 

the Tannaka groups would seem to put the conjecture on a rather shakv 

foundation. However, evervthincr nay be formulated without them. 

set Y(G/F) is the same as the collection of pairs (alp), where 

C @temp (G/F) and p is a map from SL(2,C) into C fiven un to 
0' 

conjugacy by C Included in the conjecture (and also i~qlicit in 
0' 

[9(d)I) is the assertion that atenP(G/F) is the set of 1, eauiv?lence 

classes of autonorphic representations of G(/A) which are tempered at 

everv place. We could simply take this as the definition O-F atepP(O/F). 

To avoid mentioning the Tannaka group at all, we would need to define 

C for each in oternP(~/~), For then C would just be the cen- 
0 ^ 
tralizer of the image of p in C If one qrants the existence of cer- 

0 - 
tain liftings, one can show that C is equal to the centralizer in 

0 

G o  of an embedded L-group in G .  

Notice that the conjecture does not specify whether an automorphic 

representation which occurs in the discrete spectrum is cuspidal or not. 

Indeed, it is quite possible for a global packet TT to contain one re- ^ 
presentation which is cuspidal and another which occurs in the residual 

discrete spectrum. (See 121 and also Example 2.4.1 below.) I do not 



know whether there will be a simple explanation for such behaviour. 

Multiplicity formulas of the sort we conjecture first appeared in 

[ 8 ] .  The integer d was needed there, even for subgroups of 

Res (GL(2)), to account for distinct global parameters which were 
E/F 

everywhere locally equivalent. The sign characters S q  are more mvster- 

ious. Suppose that G is the set of fixed points of an outer auto- 

morphism of GL(n,C).' Then one can observe the existence of such charac- 

ters from the anticipated properties of the twisted trace formula for 

GL(n). The character will be 1 if ip corresponds to a pair (4),p) 

with p trivial; that is, if the representations in Ti are tenpered 
at each local place. In general, however, Â£. will not be trivial, and 

will be built out of the orders at 1/2 of certain L-functions of 4). 

Incidentally, in the examples I have looked at, both local and alobal, 

the groups C, have all been abelian. The extrapolation to nonabelian 

C, is no more than a guess. In fact if C* is nonabelian, the func- 

tions < , 7 r>  may turn out to be only class functions on C and not r 
irreducible characters." 

2.3. Let us look at a few examples. Consider first the group G=GL(n). 

The centralizer of any reductive subgroup of L ~ O = ~ ~ ( n , ~ )  is connected. 

This means that the packet (both local and global) should each con- * 
tain only one representation. The groups C will be of the form 

4) 

GL(n,,C) x.. .x  GL(n,C) , 
so that a parameter \f) will consist of the ter'perec' parameter 4) an(? 

a pap of SL(2,C) into this Froup. The representations in TL 
should belonq to the discrete spectrum (nodulo the center of G ( p )  ) 

if and only if C e=uals Cx. This will be the case nreciselv when * 'l, 

C equals GL(nl,C) and 0 is the irreducible n, dinensional re- 
4) 

presentation of SL(2,C). Then nl will necessarilv divide n, 

n = n m, and 4) will be identified with a cusnidal autornornhic re- 
1 

presentation of GL(m,A) , enbedded diaoonallv in GI,(n). *his 

prescription for the discrete spectrum of GL(n,A) (modulo the center) 

is exactly what is excected. (See [ 4 1 . )  It is onlv -For f;L(n) 



(and closely related froups such as SL(n)) that the distinction 

between the cuspidal spectrum and the residual discrete snectrur" will 

be so clear. 

The multiplicitv forpula of the conjecture is comatihle \.~ith the 

results of Labesse and Lanolands [ 8 ]  For SL(2). More recentlv, flicker 

[2] has studied the ouasi-split unitarv crroup in three variables. "^he 

conjecture, or rather its analogue for non-split groups, is comodtible 

with his results. 

Langlands has shows [9(b), Appendix 31 that for the split group 

of type G2 there is an interesting automorphic representation which 

occurs in the discrete noncuspidal spectrum. Its Archimedean component 

is infinite dimensional, of class one and is not tempered. The existence 

of such a representation is predicted by our conjecture. L ~ O  is just 

the complex group of 

which meet no proper 

unipotent classes of 

type G2. It has three unipotent conjugacy classes 

Levi subgroup. These correspond to the principal 

the embedded subgroups 

where 

and 

O z SL(3,C) . 
3 

Let \ = (<}>,pi) be the parameter in Y(G/F) such that <(> is trivial 

and pi is the composition 

L 0 + LG0 SL(2,C) + Hi r 

in which the map on the left is the one which corresponds to the 



principal unipotent class in '"~0. The packet contains one ele- * 1 
ment, the trivial representation of G@). It is the packet 

4'2 

which should contain the representation discovered by Lanqlands. The 

remaining representations in which occur in the discrete spectrum, 

as well as all such representations in , are presumably cuspidal. 

2.4. Finally, consider the global analoques for PSn(4) of the three 

examples we discussed in 51. The global conjecture cannot be proved 

yet for this group, for there remain unsolved local problems. However, 

Piatetski-Shapiro has proved the multiplicity formulas of the first two 

examples below by different methods. (See [lo (a) I ,  [lo (b) 1, [lo (c) I . ) 
Using L-functions and the Weil representation, he reduced the proof to 

a problem which had been solved by Waldspurger [16]. 
In each exari~le 4' will be fiven bv the fliaoram For the corres- 

 ond din^ local example in $1 excent that r.7 is to be replaced hv 
TR 

the Tannaka qroup G or, as suffices in these exannles, bv 
TTtenp (') 

the global ThTeil group Fp. Each p will be a Grossencharacter of 

order 1 or 2, since the one dimensional renresentations of 

G ! - T  and ~ ~ \ e ' . . ~  all co-incide. In each example the 
TTtemp (') 

integer d will be 1. 
4' 

Example 2.4.1: This is the example 0-F Kurakawa. Take the 

(3iaoram in ~xanple 1.4.1, letting the vertical arrow on the le^t 

~ara~etrize a cuspidal automorphic representation T = % T v v 

of PGL(2,A). As in the local case, we have 

The character E4' should be 1 or -1 according to whether the 



order at s = 1/2 of the standard 1, Gunction L(s,T) is even or oftf 

Our conjecture states that a representation TT in the packet 
11 

occurs in the discrete spectrum if and onlv if the character < T I - >  

on C, equals . The local centralizer vrouo C will be of %J ' V 
order 2 or 1 dependin* on whether the reoresentation T of 

v 

PGL(2,F) belongs to the local discrete series or not. cuonose that 

T belongs to the local discrete series at r rlifferent places. 

Then the ~lobal pocket will contain 2r reoresentations. 
11 

Exactly half of them will occur in the discrete snectruri of 

L ( c ;  (F) \G ( A) ) . (If r = 0, the one reoresentation in nll will 

occur in the discrete spectruri if and onlv if %' = l-) 
For a given complex number s, consider the representation 

of PGL(2,A) x A ~ .  It is an autonorphic reoresentation of a Levi 

sub~roup of G which is cuspidal modulo the center. ^he associate? 

induced representation of R ( A )  will have a global intertwining 

operator, for which we can anticipate a clobal normalizing factor 

equal to 

From the theory of Eisenstein series and the exnecteg properties o^ 

the local normalized intertwining operators, onecan show that TT 11 
will have a representation in the residual discrete snectrui" if and 

only if the function above has a pole at s = 1. This will be the 

case precisely when L(l/2,r) does not vanish. Thus, the nuriber of 

cuspidal automorphic representations in the packet nll should effual 
2r-1 or 2r-1 - 1, denendinc on whether 11(1/2,T) vanishes or not. 



Exanple 2.4.2: This is the example of Howe and Diatetski-Shapiro. 

Take the diaoram in Exapple 1.4.2 with v # 3. Then 

The character E ,  should always be 1. Our conjecture states that a 

representation 6 IT,,, will occur in the discrete s~ectrup if and. 
onlv if the character eouals 1. Each local centralizer m o w  

C will be isomorphic to B/2Z. It follows that the packet TT 
*v 11' 
will contain infinitelv nanv reoresentations, and infinitelv rranv 

2 
should occur discretely in L (G (F) \G ( A )  ) . 

Exam~le 2.4.3: Take the diavrar" in Example 1.4.2 with pl = }in. 

Then 

Each local centralizer proup C will be isomorphic to '57i/2%, so 
'J'V 

the oacket will contain infinitelv rianv representations. ITowever * 
since C is infinite, the conjecture states that none of then win. * 

'-1 

occur discretely in L^ (G (F)  \G ( A) ) . 

3 .  THE TRACE FORMULA 

3.1. The conjecture of $ 2  can be motivated by the trace fornula, if 

one is willing to errant the solutions of several local nrohlens. T,le 

hope to do this properly on sope future occasion, but at the nonent 

even this is too larne a task. T'7e shall be content here to discuss ? 

few ~roblems connected with the trace formula, and to relate ther". to 

the conjecture in the example we have been lookinc' at - the crrou? 

P S p ( 4 ) .  For a more detailed description of the trace forr'-ula, see the 

paper [l(b)] and the references listed there. 

Let G be as in $2, but for six?.plicity, take F to be the 

field of rational nur'.bers 0.  The trace formula can be recarded as an 



equality 

of invariant distributions on P(A)  . The distributions on the left 

are parametrized by the serpisirnwle coniucracv classes in 0(iC), while 

those on the ricrht are oarainetrized bv cuspidal autoinorohic renresenta- 

tions associated to Levi components of parabolic subcrrouns of G. 

Included in the terms on the left are orbital intearals on P(/B) 

(the distributions in which the semisimple conjuuacy class in G ( 0 )  

is regular elliptic) and on the rioht are the characters of cnsnirial 

automorphic representations of G ( @ )  (the distributions in which the 

Levi subgroup is G itself). In oeneral the terms on the left are in- 

variant distributions which are obtained natural-lv from weighted orhita 

intearals on G(A) . The terms on the riuht are siinnler, an3 can he 

given by a reasonably simple explicit forinula. (See [l(b)l) . 
The ooal of [9(c)] was to beain an attack on a fundanental 

problem - to stabilize the trace formula. The endoscopic croups for 

G are auasi-split groups defined over (p: thev can be recrard-ec'. as 

enc'oscopic groups over the completions f t  of 0. As in $1, we 

suppose that for each endoscopic group H we have fixed an admissible 

errbedding H c G which is compatible with equivalence. We also 

assume that the theory of Shelstad for real crroups has been extenrW 

to an arbitrary local field. Then for any function f <= C ( P ( @ )  ) 

and any endoscopic Froup H we will be able to define a function fÃ 

in c ( H ( A )  ) . For example, if f is of the torn qVfv, we siinnlv 

set 

However, 
f 

will be determined onlv up to evaluation on stable dis- 

tributions on H ( A ) .  To exploit the trace fornula, it will be 



necessary to express the invariant distributions which occur in terms 

of stable distributions on the various rrroups IKB.) .  

Kottwitz [ 6 1  has introduced a natural eouivalence relation, called. 

stable conjuqacy, on the set of conjuoacv classes in ~ ( 8 )  on the 

reqular semisimple classes. If 0 is the set of all serisimnle con- 

jugacy classes in G(Q), let ?5 be the set o^ stable conju~acv class- 
- 

es in 0. For any o â 7, set 

If H is an endosco~ic ~ o u p  for G I  it can be shown that there is 

a natural map 

from the semisim~le stable conjuoacv classes of H(<Ti) to those of 

G ( < D ) .  One of the main results of [9(e) 1 was a formula 

- 
for any f â C;(G(A) ) and any class o â 0 consistino of reoular 

elliptic elements. For each endoscopic croun E, , ( i " ; ,K)  is a constant 

is a stable distribution on H(A)  . The sum over IJ and S- 

O H  

(as well as all such sums below) is taken over the eouivalence classes 

of cuspidal endoscopic croups for G. 

Problem 3.1.3: Show that the fornula (3.1.2) hole's ^or an 
- 

arbitrary stable conjuqacv class 0 in 7. 

This problem is similar in spirit to that posed bv Conjecture 

1.3.3. It is not necessary to construct the stable distributions 

H 
S- . One would assume inductivelv that thev had been defined for anv 

OH 

H # G.  (of course we could not continue to work within the limited 



category we have adopted for this exposition - namely, G is a solit 

group with embeddings H CG.) The problem would then amount to showing 

that the invariant distribution 

was stable. However, this assertion is still likely to be quite diffi- 

cult. The problem does not seem tractable, in qenera1,without a good. 

knowledge of the Fourier transforms of the distributions I . - 
0 

In any case, assume Problem 3.1.3 has been solved. Define 

I(Â£ = 1̂ f) = I I(f) r 

O f f )  0 

and 

for any f â c ( G ( A )  ) . The expression for I (f) is just equal to 

each side of the trace formula (3.1.1). It is clear that it converoes 

absolutely. The same cannot be said of the expression for S ( - F ) .  

The problem is discusses in [9(e),VIII.5]. must ~ a k e  the assumtion 

that there are only finitely many H such that f # 0. (See Lema 

8.12 of [9(e)l.) This is certainly true if G is adjoint 

for then there are onlv finitely panv endoscopic nrouns (un to ecruiva- 

lence, of course). Since the constant l(C;,G) ecruals 1, we obtain 



if we assume inductivelv that the expression used to define 3 ~ '  con- 

verges absolutely whenever H # G .  It follows that the expression -For 

~'(Â£ converyes absolutely, and sG is a stable distribution on C ( @ )  . 
Moreover, 

3.2. An identity (3.1.4) could be used to yield interesting inforpation 

about the discrete spectrum of G I  since there is an explicit formula 

for 

The formula is given as a sum of inteorals over vector spaces 

a  / a *  where P = m is a parabolic subcrroun of G (t'efined 
G' 

over 0 ,  AM is the split component of the center o-F the Levi COFTIO- 

nent M of P I  and a  is the Lie aloebra OF Ap"(lQ) . The most M 

interesting part of the formula is the terr' for which the integral is 

actually discrete; in other words, for which p = 17. It is onlv this 

term that we shall describe. 

Suppose that P  = MN is a parabolic suboroup and that a is an 

irreducible unitary representation of M ( / A )  . Let p o  be the inc'ucert 

representation 

where idN is the trivial representation of the unipotent radical 

2 0 N( A) , and L.,. (A(3R) M(Q) \M(&) )o is the o-prinarv component 

2 0 of the subrepresentation of M ( p )  on L (AM(lR)  M ( Q l  \M(;A) ) which 

decomposes discretely. Let W ( a )  be the Weyl croup of a ,  and let 



^ reo be the subset of elements in Ta7(a!K) whose snace 06 Fixefi. 

vectors is a,,. For any w in ItT(a ) let T ( w )  be the (unnorralizeri) M 

global intertwining operator from Po to Pwo- For anv function 

f S c(G(A)), define 

where the first sum is over pairs (M,u) as above, with M given up to 

G ( Q )  conjuqacv. Then I is the "discrete part" of the explicit 

formula for (3.2.1). Here we have obscured a technical coriolication 

for the sake of simplicity. It is not known that the sup over 5 in 

(3.2.2) converges absolutely (althouoh one expects it to do so). In 

order to insure absolute convercence, one should reallv nroun the snp- 

mands in (3.2.2) withothex components of I(f) in a wav that takes 

account of the decomposition on the riuht hand side of (3.2.1). 

We expect to be able to isolate the various contributions of 

(3.1.4) to the distribution I .  This would mean that we could find 

G (for every G) a stable distribution S+ on G(p) such that 

for any f ? c (G ( A) ) . Said another way, the distribution 

would be stable. Now this is actually a rather concrete assertion. 

The distribution I+ is certainly oiven bv a concrete formula, and the 

H 
distributions S are defined inductivelv in terns of the fornulas 

H for I .  Moreover, Kottwitz has recently evaluated the constants 



,(G,H). We will not qive the general formula, but if i"; an8 H = H 

are both split groups, ,(G,H) eauals 

where ~ o r r n ( s ~ ~ , ~ G ~ )  denotes the aroup of elements 0 in 'GO which 

normalize the coset sZG. 

A formula like (3.2.3) will have interestin? implications -For the 

discrete spectrum of G. Consider the one dinensional autororwhic 

representations of the various endoscopic aroups F. Our exa~nles For 

PSp(4,lR) suqqest that for H # G, the contributions of such one di- 

mensional representations to the riaht hand side of (3.2.3) will not 

be stable distributions of f. Thev wil1"have to corresnonr' to sor'ethinn 

in the formula (3.2.2) for I+(f). Suwpose that sore one dimensional 

representations cannot be accounted for bv anv terms in (3.2.2) indexed 

by (M,o), with M # G. Then thev will have to correspond to term with 

M = G. In other words, they ought to qive rise to interestino nonter'per- 

ed automorphic representations of G ( A )  which occur in the discrete 

spectrum. 

It is implicit in our conjecture that we should index the one cli- 

mensional automorphic representations of H(D) bv paps 

in which the image of W in H 0  commutes with !I0 and the ipiaae 
(P 

of SL(2,C) corresponds to the principal unipotent in H .  (For the 

correspondence between unipotent conjuaacv classes and representations 

of SL(2,C), see [13].) It is of course easv to do this. What is not 

clear is why we should do it. Whv introduce an SL(2,C) when the one 

dimensional representations of H ( A )  can be describe$ oerfectlv well 

without it? According to the conjecture, the SL(2,C) factor will he 

essential in describing the correspondin9 automorphic representations 



of G ( b )  . In particular, a one dimensional autoip.orohic representation 

of H ( A )  should aive rise to automoprhic representations of G ( A )  

which occur discretely (modulo the center of G ( A )  ) if and onlv if 

the iraaqe of W x SL(2,C) under composition 
15 

lies in no proper Levi subqroup of L ~ .  shall examine this auestion 

for PSp(4). 

3.3. Consider the example of G = P S p ( 4 ) .  As a reductive Group over 

Q ,  G has only two cuspidal endoscopic qroups (up to equivalence) - 

G itself, and 

with 

Let us look at the formula (3.2.3) in this case. The constant 1 (G,G) 

equals 1. The Froup 

has order 2, the nontrivial element beinci the coset of the ri-atrix 

Since 



we have 

The group H has no proper cuspidal endoscopic oroun. This peans that 

S' eauals 1;. and so is civen bv the formula (3.2.2). Forpula + 
(3.2.3) is then euuivalent to the assertion that the distribution 

is stable. Since the distribution 

is neither stable nor tempered, the assertion would r'ive interestinr' 

information about the discrete spectrui". of R. 

The one dimensional autoroorphic representations of F. are lust 

where p, and u2 are Grossencharacters whose imar'es are container' 

in {+I}. For anv such representation define 

where w1 is the projection of w onto the connutator quotient of W Q ' 
and each pi(wl) is identified with a central elenent in SL(2,rT). 

As we did for real groups, we define a r"ao 



as the composition of the map 

with i t ) .  Then the global L-nacket fTF eouals fTi, an? contains ^ 
exactly one element. the representation (3.3.1). 9v comvosinc"' with 

the natural embedding H c G ,  we identify each it) with a ~anninr' 

of W x SL(2,C) into G .  In this wav we obtain parameters in 
ft 

Y(G/Q). They are just the ones considered in Examples 2.4.2 and 2.4.7. 

The contribution of it) and H to the richt hand si8.e o* (3.2.3) 

equals the product of $ with the character of the representation 

(3.3.1) evaluated at 
f .  Assume that the Examples 1.4.2 and 1.4.3 

for G(3R) carry over to each local croup W P ) .  Then to the local 

parameters $ I  ? Y(G/<r>), obtained fror' I). we have the local 

rackets . On these packets. the sians E are all 1. 1 - F  

*v 

the contribution of I) and H to (3.2.3) is just 

- 
where sv is the image of s in C /ZG and sv is its nroiection ' V 
onto C . This becomes 

V 

if we assume the nroduct formula 



Suppose that ul = p2 = p. The conjecture reauires that (3.3.2) 

should be cancelled by a term in (3.2.2) indexed bv (Pro) with 

M # G. The proiection of the inaae of $ onto is conjucrate to 

a subaroup of 

where 

and 

But P i 0  is the identity component o-F the L-crroup of a Levi suboroun 

M of G which is isomor~hic to GL(2). Set 

Then o can be reqarded as an automorphic representation of M which 

occurs discretely (~odulo the center of M ( A ) ) .  It is the pair 

(Pilo) whose contribution to (3.2.2) we will compare with (3.3.2). 

Let w be a representative in G ( 0 )  of the nontrivial element 

of the Weyl qroup W ( a ) .  The representation o is a lift to GL(2) 

of an automorphic representation of PGL(2). It is fixed by ad(w). 

The contribution of (M,o) to the formula (3.2.2) for I+(f) is 



(3.3.4) 

since 

We can expect a decomposition 

of T(w) into local normalized intertwining operators. (See [ Q ( b ) ,  

p. 2821.) If <f>-, is the three dimensional reoresentation of 7 1  ob- 
9 

tained by composing $$ with the adjoint representation of the crroup 

(3.3.3), and I$-, is its contraaradient, the global nornalizincr factor 

m(w) equals 

One checks that it equals 1. Therefore, (3.3.4) equals 

where uv is the character y(det ( - )  ) on RL(2,Qv) , with pv the 

local component of the Grossencharacter p. "ith a resolution to 

Problem 1.4.4, or rather its analoc'ue for each nlace v, the expression 

would become 

This is just (3.3.2). 

- Thus, when pl - p2 = p, so that $ factors through a Levi sub- 

group, the contribution of $ and H to (3.2.3) v~ould be cor'wletelv 



cancelled by a term in (3 .2 .2)  with f # C.  This suncrests that such 

T$ contribute nothino to the discrete spectrum of G ( A )  , as nredicted 

by the conjecture. 

3.4. In order for the two terns above to cancel, it was essential that 

1 ( G I H )  = l ~ ( a )  

the oomnon value, we recall, bein@ 

as a combinatorial property of the 

c = * 

1 . This fact mav be interpreted 

complex croup 

The generalization of this ~roperty will be a kev to affectincr sir'ilar 

cancellations for arbitrary croups. Me shall describe it. 

Let C be the set of co~plex woints of a copi~lex reductive 

algebraic qroup. We do not assurse that C is connected. Let c he 

0 
the identity component of C. Let To be a Cartan subgroup of C , 

0 
and let W be the normalizer of To in C, modulo T . Then W is 

an extension of 

0 0 the Weyl Troup of (C ,T ) .  It acts on To and on its Lie alr-ehra. 

Let "rec be the set of elements in T'J for which 1 is not an eioen- 

value. If w is any element in 1-7, set 

0 0 
where n(w) equals the number of positive roots of ( C  ,'? ) which are 

mapped by v to necrative roots. ( E (w) is independent o^ how the 

positive roots are chosen.) For each connected corponent x of C 

we define 



where W (x) is the set of elements in 
reg Wreq induced1 frori noints 

in x. The number i(x) is a sort of scalar analogue of the invariant 

distribution (3.2.2). 

0 For each component x of C, let Orb(C ,x) be the set o-F 

0 C -orbits of elements in x for which the acljoint riap (as a linear 

operator on the Lie algebra of C )  is seriisiriple. I? s belongs 

to any of the orbits,*the crrouo 

satisfies the same hypothesis as C. Its conjuc'acv class in C' de- 

pends only on the orbit of s. The number 

of connected components in C also depends only on the orbit of s. 

It is possible to define uniquely a number .a(C), for every group 

0 C, which depends only on C , and vanishes unless the center of c0 

is finite, such that 

for every group C. Indeed, there are only finitely rianv orbits s in 

0 0 Orb(C ,C ) such -that the center of Cs is finite, so we can define 

o(C) inductivelv bv this last eauation. We see inductively that it 
r1 

depends only on c". The numbers o(C) are scalar analogues of the 

stable distribution defined by (3.2.3). 

Theorem 3.4.2: Plith the possible exclusion OF the case that C' 

has exceptional simple factors, we have 

for every component x of C. 

The details will avpear in [l(c)]. (I have not yet had a chance 

to look at the exceptional qroups.) 



Equations (1.3.6). (3.1.21 and (3.4.11 are all in the same spirit. 

They each provide an inductive definition for a set of objects (stable 

distributions, for example) in tern's of oiven objects (such as invar- 

iant distributions). The inductive definition in each case is bv a SLIP 

over indices which are closely related to endoscopic crroups. Equations 

(1.3.6) and ( 3.1.2) should have twisted analocrues. These should be 

true identities, involvinq the objects defined by the oricrinal equations. 

The twisted analo-e of (3.4.1) we have just encountere$. It is the 

formula (3.4.3). 
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Note added in proof: The sign function 
Â£4 

in the local Conjecture 

1.3.3 and the sign character s in the global Conjecture 2.1.1 should 

both have simple formulas. 

Suppose that 

is given as in Conjecture 1.3.3. Then 

- 
belongs to the centralizer C Let b be the image of A in C,. * '  * 4) 
Then E, should be given in terms of the pairing on C x IT by * 4) 

e (IT) = <A,,lT>, T e n  
1̂ 4)' 

In particular, if the ur-ipotent element 



in G O  is even, the function E, will be identically 1. 

Suppose that F is olobal and 

is qiven as in Conjecture 2.1.1. Assume that C is finite. Let g * 
be the Lie algebra of G O ,  and define a finite dimensional representa- 

tion 

for c â ‚  w ? G n  ID ' (F)  
and g â SL(2 ,S) . Then there is a 

temp 
decomposition 

where ti, \ and pi are irreducible (finite-dimensional) representa- 

a given i, the represents-tion @ is equivalent to its contragredient. 

Then from the anticipated functional equation of the L-function 

L ( b , ^ ) ,  we see that 

1 
Let I- be the set of such indices i such that E ( ~ , @ J ~ )  actually 

'!' 
equals -1, and such that in addition, the dimension of pi is even. 

Then the sign character should be given by 

Such a formula (assuminq it is true) is rather intruiginq. It ties 

1 
the values of â‚¬-facto at in an essential way to multiplicities 

of cusp forms, and it also suggests that the adjoint representation of 

the L-group might play some role in questions of L-indistinguishability. 




