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Introduction

This paper is the second of two articles in real harmonic analysis. In the first paper

[A14], we established asymptotic formulas for some natural distributions on a real group.

In this paper we shall establish important relationships among the distributions, as the

group varies.

The group is the set of real points of a connected reductive group G over R. The distri-

butions are weighted orbital integrals JM (γ, f) on G(R), and their invariant counterparts

IM (γ, f). Here, M ⊂ G is a Levi subgroup of G, while γ ⊂ MG-reg(R) is a strongly G-

regular conjugacy class in M(R). The relationships are defined by the invariant transfer of

functions on G(R) to functions attached to endoscopic groups of G. This necessitates our

working with the invariant distributions IM (γ, f). We refer the reader to the introduction

of [A14] for some general remarks on these objects.

The distributions IM (γ, f) are the generic archimedean terms in the invariant trace

formula. We cannot review the trace formula here. The reader might consult the intro-

duction to [A13] and the two papers that precede it for a brief summary. The purpose

of the paper [A13] was to stabilize the invariant trace formula, subject to a condition on

the fundamental lemma that has been established in some special cases. The stable trace

formula is a milestone of sorts. It is expected to lead to reciprocity laws, which relate

fundamental arithmetic data attached to automorphic representations on different groups.

The stable trace formula of [A13] relies upon the results of this paper (as well as a

paper [A16] in preparation). This has been our guiding motivation. The relevant identities

among the nonarchimedean forms of the distributions IM (γ, f) were actually established

in [A13]. They were a part of the global argument that culminated in the stable trace

formula. As such, they are subject to the condition on the fundamental lemma mentioned

above. Our goal here is to establish the outstanding archimedean identities. We shall do

so by purely local means, which are independent of the fundamental lemma.

To simplify the introducton, we assume that the derived group of G is simply con-
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nected. The identities then relate the invariant distributions on G(R) with stable distribu-

tions on endoscopic groups G′(R). We recall that a stable distribution on G′(R) depends

only on the average values assumed by a test function over strongly regular stable conju-

gacy classes in G′reg(R), which is to say, intersections of G′reg(R) with conjugacy classes in

G′(C). (An invariant distribution on G(R) satisfies the broader condition of being invari-

ant under conjugation by G(R).) In general, the endoscopic groups represent a finite family

{G′} of quasisplit groups over R. They are defined in terms of G by a purely algebraic

construction [L1] of Langlands. For any G′, Shelstad has established a correspondence

f → f ′ between test functions on G(R) and G′(R). The image f ′ of f is defined only up

to its averages over stable conjugacy classes in G′(R), but this is enough to yield a pairing

(f, S′) −→ Ŝ′(f ′)

of f with any stable distribution S′ on G′(R). The identities express IM (γ, f) as a linear

combination over G′ of such pairings.

Let us be more precise. We fix an elliptic endoscopic datum M ′ for the Levi subgroup

M of G. We then attach an invariant distribution IM (σ′, f) to a strongly G-regular element

σ′ in M ′(R). This is a straightforward step, taken by applying the Shelstad correspondence

for M to the function

γ −→ IM (γ, f).

The object is to relate this invariant distribution on G(R) to stable distributions on endo-

scopic groups G′ for G. The identity we eventually establish may be formulated as a finite

sum

(∗) IM (σ′, f) =
∑
G′

ιM ′(G,G′)ŜG̃′

M̃ ′(σ′, f ′),

where G′ ranges over endoscopic groups for which M ′ is a Levi subgroup, ιM ′(G,G′) are

explicit coefficients, and SG̃′

M̃ ′(σ′, ·) are uniquely determined stable distributions on the
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groups G′(R). This result can be regarded as a stabilization of the invariant distribution

IM (γ, f).

The identity (∗) might seem somewhat arcane, at least at first reading. However,

it is very natural. It is governed by the very considerations whose global expression in

[A13] led to the stable trace formula. The essential point may be summarized as follows.

One can try to stabilize IM (γ, f) in either of the two arguments γ or f , but it is not a

priori evident that the two operations are compatible. Indeed, IM (γ, f) is defined as an

invariant distribution by a rather formal process [A14, (1.4)], which gives no indication of

how the values it takes on averages of f over conjugacy classes depend on γ. The identity

(∗) asserts that the two ways to stabilize IM (γ, f) are indeed compatible.

How can one establish an identity (∗) with so little knowledge of the explicit behaviour

of IM (γ, f)? The answer comes from an interesting application of methods of classical

analysis. One shows that any of the terms in (∗) is the solution of a (non-homogeneous)

linear boundary value problem. Namely, it satisfies a system of linear differential equations,

it obeys explicit boundary conditions as σ′ approaches the G-singular set in M ′(R), and

it has an explicit asymptotic formula as σ′ approaches infinity in M ′(R).

We formulate the identity, in precise and somewhat more general terms, as Theorem

1.1 at the end of §1. The rest of the paper will be devoted to its proof.

The titles of the various sections are self-explanatory. We discuss the differential

equations in §2. This is partly a review of the paper [A12], where it was shown that the

differential equations satisfied by IM (γ, f) have compatible analogues for the terms in (∗).

In §3, we investigate the boundary conditions attached to compact roots. This reduces to

results of Shelstad [S1] for invariant orbital integrals, which were a part of her construction

of the transfer mapping f → f ′. In §4, we investigate the boundary conditions attached

to noncompact roots. These results require more effort, since they have no analogue for

invariant orbital integrals. We then analyze the asymptotic formula of [A14] in §5. The

problem is to convert the asymptotic expression for IM (γ, f) into a corresponding formula
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for the term IM (σ′, f) on the left hand side of (∗), and compatible formulas for the terms

ŜG̃′

M̃ ′(σ′, f ′) on the right. This requires a separate stabilization of each side of the original

asymptotic formula. In the last section §6, we combine everything. We show that the

difference of the two sides of (∗) is the unique solution of a homogeneous boundary value

problem, and hence vanishes.

Our results are obviously dependent on the work of Shelstad on real groups. Her

construction of the mapping f → f ′ was by geometric transfer, in terms of invariant

orbital integrals. She later showed that the mapping could also be defined by a compatible

spectral transfer [S3], given by L-packets of tempered representations. We shall need

both interpretations. Shelstad based her construction on ad hoc transfer factors, which

predated (and anticipated) the systematic transfer factors of [LS1]. This circumstance

makes it difficult at times to keep track of her arguments. With the hindsight of [LS2,

Theorem 2.6.A], we know that the mapping f → f ′ can also be defined by means of

the general transfer factors of [LS1]. It would be very useful to reformulate Shelstad’s

arguments in terms of the general constructions of [LS1]. Rather than attempting to do

so here, however, we have simply appealed to the original arguments whenever necessary.

The distributions IM (γ, f) that are the source of our identities are subtle objects. It is

perhaps surprising that one can solve the problems implicit in (∗) by purely local methods.

They could probably have been handled more easily by global means, as was done for the

nonarchimedean valuations in [A13]. This is in fact the way the archimedean valuations

were treated in the special case established in [AC]. However, we would still have needed

all the local results established in §2–4 of this paper. Moreover, the final result would then

have been conditional upon the fundamental lemma.

There are other reasons for proving as much as possible by local means. Langlands

has recently outlined a tentative strategy [L5] for applying the trace formula much more

broadly. While it has yet to be seen to work, even in principle, the strategy offers the

possibility of something that has always been missing: a systematic attack on the general
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principle of functoriality. The next step is by no means clear. However, the theory of

endoscopy has been instructive. Shelstad’s study of invariant archimedean orbital integrals

led to the general transfer factors needed for a precise theory of endoscopic transfer at any

place. One can hope that the program outlined in [L5], though much more difficult, will

ultimately turn out to have structure in common with the theory of endoscopy. If this is so,

a careful study of the archimedean terms in the stable trace formula would offer guidance.

It could yield theorems required along the way, suggest what needs to be established at

nonarchimedean places, and at the very least, provide evidence in support of the program.

Some analysis of this sort has been carried out by Langlands [L4] for weighted orbital

inegrals on the group GL(2,R).
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§1. Statement of the theorem

We shall work in a slightly different context than is usual for real groups. We take G

to be a K-group over the field R. The notion of a K-group was introduced in [A11]. It is

an algebraic variety

G =
∐

ι∈π0(G)

Gι

over R, whose connected components Gι are connected reductive groups over R, and which

is equipped with some extra structure.

The supplementary structure is an equivalence class of frames (ψ, u) that also satisfies

the cohomological condition at the beginning of §2 of [A11]. We recall that a frame is a

family of pairs

(ψ, u) =
{
(ψικ, uικ) : ι, κ ∈ π0(G)

}
,

where ψι : Gκ → Gι is an isomorphism of connected groups over C, and uικ is a function

from the Galois group Γ = ΓR = Gal(C/R) to the simply connected cover Gι,sc of the

derived group Gι,der of G. The objects {ψικ} and {uικ} are required to have the three

properties of compatibility listed at the beginning of §1 of [A11]. The cohomological

condition is a further requirement, which includes the stipulation that each function uικ

be a one-cocycle. Moreover, for any fixed ι, the mapping that sends uικ to its image in

H1(R, Gι) is required to be a bijection from the set {uικ : κ ∈ π0(G)} onto the image of

H1(R, Gι,sc) in H1(R, Gι).

We assume a familiarity with the discussion of the first few sections of [A11]. Among

other things, this includes the notion of a Levi (K-) subgroup of G. Any Levi (K-)

subgroup M comes with associated finite sets P(M), L(M), and F(M), which play the

same role as in the connected case. We can also form a dual group Ĝ for G, and a dual

Levi subgroup M̂ ⊂ Ĝ for M . Any such M̂ comes with a bijection L → L̂ from L(M) to

L(M̂), and a bijection P → P̂ from P(M) to P(M̂). We recall that P(M̂), L(M̂), and

F(M̂) consist of subgroups of Ĝ that are stable under the action of Γ.
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The definition of a K-group is clearly somewhat artificial. It was introduced only

to streamline some aspects of the theory of endoscopy for connected groups. The main

theorem of this paper could well be stated in terms of connected groups. However, the

statement for K-groups we shall give presently is somewhat stronger.

Invariant harmonic analysis for connected real groups extends in a natural way to

K-groups. As in [A11], we make use of obvious extensions to G of standard notation for

connected groups. For example, we have the Schwartz space

C(G) =
⊕

ι∈π0(G)

C(Gι)

on G(R), and its invariant analogue

I(G) =
⊕

ι∈π0(G)

I(Gι).

Elements in C(G) are functions on G(R). Elements in I(G) can be regarded either as

functions on the disjoint union

Πtemp(G) =
∐

ι

Πtemp(Gι)

of sets of irreducible tempered representations on the groups Gι(R), or as functions on the

disjoint union

Γreg(G) =
∐

ι

Γreg(Gι)

of sets of strongly regular conjugacy classes in the groups Gι(R).

For purposes of induction, it is convenient to fix a central character datum (Z, ζ) for

G. Then Z is an induced torus over R, with central embeddings

Z
∼−→ Zι ⊂ Gι

that are compatible with the isomorphisms ψικ. (Recall that an induced torus over a field

F is a product of tori of the form RE/F

(
GL(1)

)
.) The second component ζ is a character

on Z(R), which transfers to a character ζι on Zι(R) for each ι. We can then form the space

C(G, ζ) =
⊕

ι

C(Gι, ζι)
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of ζ−1-equivariant Schwartz functions on G(R), and its invariant analogue

I(G, ζ) =
⊕

ι

I(Gι, ζι).

Elements in I(G, ζ) may be regarded either as ζ−1-equivariant functions on Γreg(G), or as

functions on the set

Πtemp(G, ζ) =
∐

ι

Πtemp(Gι, ζι)

of representations in Πtemp(G) whose Z(R)-central character equals ζ.

The paper [A14] of which this is a continuation was written for connected groups with

trivial central character datum. The definitions and constructions of [A14] extend easily to

the K-group G with arbitrary central character datum (Z, ζ). We adopt them here, often

without further comment. In particular, we form the invariant tempered distributions

(1.1) IM (γ, f) = IG
M (γ, f), f ∈ C(G, ζ),

indexed by Levi K-subgroups M of G and strongly G-regular elements γ ∈M(R). In the

present setting, IM (γ, f) is a ζ-equivariant distribution in f and a ζ−1-equivariant function

of γ. In the special case that M = G, the distribution

fG(γ) = IG(γ, f),

is essentially Harish-Chandra’s invariant orbital integral. We recall that the invariant

function space above is defined as the family

I(G, ζ) =
{
fG : f ∈ C(G, ζ)

}
,

regarded as a space of functions of γ ∈ Γreg(G). However, it is the case of general M

that is of interest here. Our aim is to study the stabilization of the general distributions

IM (γ, f).

There are two ways one could try to stabilize IM (γ, f), corresponding to the two

arguments γ and f . If M = G, the two stabilizations are the same. In this case, Langlands
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and Shelstad use the transfer factors of [LS1], and the resulting stabilization in γ, as the

definition of the transfer mapping f → f ′ that stabilizes f . If M 6= G, the two possible

ways of stabilizing IM (γ, f) are thus predetermined. They are dictated by the constructions

from the more elementary case that M = G. The purpose of this paper, simply put, is to

show that they are compatible.

We are assuming a knowledge of the basic constructions of [A11]. These include

the extension to K-groups [A11, §2] of the transfer factors of Langlands and Shelstad, a

construction that follows observations of Vogan and Kottwitz. However, we shall also view

matters from a slightly broader perspective. This is because some of the constructions

become more natural if we treat all the transfer factors attached to a given endoscopic

datum at the same time.

Suppose that G′ represents an endoscopic datum (G′,G′, s′, ξ′) for G [LS1, (1.2)]. In

particular, G′ is a connected quasisplit group over R. A transfer factor for G and G′

includes an implicit choice of auxiliary datum (G̃′, ξ̃′), in which G̃′ is an R-rational central

extension of G′ by an induced torus C̃ ′, and ξ̃′ is an admissible L-embedding of G′ and

LG̃′. For example, one could take G̃′ to be a z-extension of G′ [K1]. The derived group of

G̃′ is then simply connected, and an embedding ξ̃′ can always be found [L1]. A transfer

factor attached to (G̃′, ξ̃′) is a function

∆G(δ′, γ), δ′ ∈ ∆G-reg(G̃′), γ ∈ Γreg(G),

which vanishes unless the projection of δ′ onto G′(R) is an image [LS1, (1.3)] of γ. Its

purpose is to transfer functions f ∈ C(G, ζ) to functions

f ′(δ′) = f G̃′
(δ′) =

∑
γ∈Γreg(G)

∆G(δ′, γ)fG(γ)

of δ′ in the set ∆G-reg(G̃′) of strongly G-regular stable conjugacy classes in G̃′(R). We write

Z̃ ′ for the extension of Z by C̃ ′ given by the preimage of Z in G̃′, η̃′ for the character on

Z̃ ′(R) determined by the auxiliary datum, and ζ̃ ′ for the product of η̃′ with (the pullback
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of) ζ. Then

(1.2) f ′(z′δ′) = ζ̃ ′(z′)−1f ′(δ′), z′ ∈ Z̃ ′(R).

(See [A11, §2], where the objects C̃ ′, Z̃ ′, η̃′ and ζ̃ ′ were denoted by Z̃ ′, Z̃ ′Z, ζ̃ ′ and ζ̃ ′ζ

respectively.) It follows from results of Shelstad [S3] that f ′ belongs to the space

S(G̃′, ζ̃ ′) =
{
hG̃′

: h ∈ C(G̃′, ζ̃ ′)
}

of stable orbital integrals on G̃′(R).

What ambiguity is there in the choice of a transfer factor? If (G̃′, ξ̃′) is fixed, ∆ = ∆G

can be replaced by a scalar multiple

(u∆)(δ′, γ) = u∆(δ′, γ)

by a complex number u ∈ U(1) of absolute value 1, but is otherwise uniquely determined.

If G̃′ only is fixed, ξ̃′ can be replaced by a multiple α′ξ̃′, where α′ is a 1-cocycle from the

real Weil group WR into the center Z( ̂̃
G′) of ̂̃

G′. The Langlands correspondence for tori,

combined with the constructions of [LS1] (especially (3.5) and (4.4)), tells us that there is

a canonical character ω′ on G̃′(R) such that the product

(ω′∆)(δ′, γ) = ω′(δ′)∆(δ′, γ)

is a transfer factor attached to (G̃′, α′ξ̃′). (We assume implicitly that our admissible

embeddings are of unitary type, in the sense that they have bounded image in the abelian

quotient ̂̃
G′ab of ̂̃

G′. This forces ω′ to be unitary.) Finally, we can replace G̃′ by some other

central extension G̃′1 of G′. By taking fibre products, one sees that it is enough to consider

the case that G̃′1 is a central extension of G̃′. The composition ξ̃′1 of a given ξ̃′ with the

standard L-embedding of LG̃′ into LG̃′1 is then an admissible embedding of G′ into LG̃′1.

In this case, the function

∆1(δ′1, γ) = ∆(δ′, γ), δ′1 ∈ ∆G-reg(G̃′1),
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in which δ′ is the image of δ′1 in G̃′(F ), is a transfer factor for (G̃′1, ξ̃
′
1).

It is obvious how the Langlands-Shelstad transfer mapping f → f ′ = f ′∆ depends on

∆. The definitions lead immediately to the three relations

(1.3)


f ′u∆(δ′) = uf ′(δ′)

f ′ω′∆(δ′) = ω′(δ′)f ′∆(δ′)

f ′∆1
(δ′1) = f ′∆(δ′),

governed by the three objects u, ω′ and ∆1 above. These relations, which will be an

implicit part of our understanding, have obvious analogues for the Levi subgroup M .

Suppose that M ′ represents a fixed endoscopic datum (M ′,M′, s′M , ξ′M ) for M . Let

us write T (M,M ′) for the corresponding set of transfer factors for M and M ′. An element

∆M ∈ T (M,M ′) thus comes with an underlying auxiliary datum (M̃ ′, ξ̃′M ), and a character

ζ̃ ′ on the central subgroup Z̃ ′(R) of M̃ ′(R) that depends on the original character ζ on

Z(R). To make matters more concrete in the present setting of real groups, we fix a

maximal torus T ′ in M ′ over R, with preimage T̃ ′ in M̃ ′. We will then work with points

σ′ ∈ T̃ ′G-reg(R), instead of the stable conjugacy classes δ′ in M̃ ′(R) they represent. (As

usual, the subscript G-reg denotes the subset of elements in a given set that are G-regular.)

We are going to treat families of suitably related functions, parametrized by elements

∆ = ∆M in T (M,M ′) and defined on the associated spaces T̃ ′G-reg(R), as sections of an

underlying vector bundle.

We first introduce a bundle L(T ′,M, ζ) of equivalence classes of pairs

(∆, σ′), ∆ ∈ T (M,M ′), σ′ ∈ T̃ ′(R).

The equivalence relation is generated by the elementary relations

(∆, z′σ′) ∼
(
ζ̃ ′(z′)−1∆, σ′

)
, z′ ∈ Z̃ ′(R),

and  (ω′∆, σ′) ∼
(
ω′(σ′)∆, σ′

)
(∆1, σ

′
1) ∼ (∆, σ′),
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where ω′ is an arbitrary character on M̃ ′(R), and σ′1 → σ′ and ∆→ ∆1 are the mappings

attached to a central extension M̃ ′
1 →M̃ ′, as above. The natural projection

(∆, σ′) −→ σ′

makes L(T ′,M, ζ) into a principal U(1)-bundle over the quotient

T ′(R) = T̃ ′(R)/Z̃ ′(R) = T ′(R)/Z(R).

We may as well write L(T ′,M, ζ) also for the complex line bundle attached to the canonical

one-dimensional representation of U(1). We then form the dual line bundle L∗(T ′,M, ζ),

and its restriction L∗(T ′G-reg,M, ζ) to T ′G-reg(R).

With these definitions, we write C∞(T ′G-reg,M, ζ) for the space of smooth sections of

the bundle L∗(T ′G-reg,M, ζ). An element in this space is thus a complex valued function

a′ : (∆, σ′) −→ a′∆(σ′), ∆ ∈ T (M,M ′), σ′ ∈ T̃ ′G-reg(R),

that satisfies relations

(1.2)M a′∆(z′σ′) = ζ̃ ′(z′)−1a′∆(σ′), z′ ∈ Z̃ ′(R),

and

(1.3)M


a′u∆(σ′) = ua′∆(σ′)

a′ω′∆(σ′) = ω′(σ′)a′∆(σ′)

a′∆1
(σ′1) = a′∆(σ′),

parallel to (1.2) and (1.3). We need only specify the values taken by the function at one

transfer factor ∆ = ∆M . We shall often do so, without including ∆M explicitly in the

notation.

We assume from now on that the endoscopic datum M ′ for M is elliptic. The first

stabilization of IM (γ, f) is the more elementary. It simply transforms IM (γ, f) to the

function

(1.4) IM (σ′, f) =
∑

γ∈ΓG-reg(M)

∆M (σ′, γ)IM (γ, f)
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of σ′ ∈ T̃ ′G-reg(R) attached to a transfer factor ∆M ∈ T (M ′,M). It is clear that as ∆M

varies, this function satisfies the relations (1.2)M and (1.3)M . It can therefore be regarded

as a section in the space C∞(T ′G-reg,M, ζ). We have excluded ∆M from the notation

IM (σ′, f), as agreed, with the understanding that there is an implicit dependence on ∆M

governed by (1.3)M .

To describe the second stabilization, it is well to recall some other notions from the

early part of [A11]. Replacing M ′ by an isomorphic endoscopic datum, if necessary, we

assume that M′ is a L-subgroup of LM and that ξ′M is the identity embedding. We then

form the family EM ′(G) of endoscopic data for G, as for example in [A11, §3]. Thus,

EM ′(G) consists of data (G′,G′, s′, ξ′), taken up to translation of s′ by Z(Ĝ)Γ, in which

s′ lies in s′MZ(Ĝ)Γ, Ĝ′ is the connected centralizer of s′ in Ĝ, G′ equals M′Ĝ′, and ξ′ is

the identity L-embedding of G′ into LG. For any datum in EM ′(G) (which we continue to

represent by its first component G′), the dual groupM̂ ′ of M ′ comes with the structure of

a Levi subgroup of Ĝ′. We fix an embedding M ′ ⊂ G′ for which M̂ ′ ⊂ Ĝ′ is a dual Levi

subgroup.

The K-group G is assumed implicitly to have been equipped with a quasisplit inner

twist

ψ =
{
ψι : Gι−→G∗, ι ∈ π0(G)

}
,

where G∗ is a connected quasisplit group over R [A11, §1]. We say that G is quasisplit if

one of its components Gι is quasisplit. In this case, one can arrange that ψι is an R-rational

isomorphism from Gι to G∗. We can then identify the function fG on ∆G-reg(G) given

by the stable orbital integrals of any f ∈ C(G, ζ) with the function f∗ = fG∗
in S(G∗, ζ∗)

given by stable transfer. (See [A11, pp. 226–227].) In general, the transfer factors were

defined explicitly [LS1] in terms of ψ. However, if we identify the dual group Ĝ∗ with Ĝ,

ψ is uniquely determined up to a natural equivalence relation. For this reason, we will

usually not have occasion to refer to ψ. Of course the group G∗ plays an independent role

as the maximal endoscopic datum for G. It lies in EM ′(G) if and only if M ′ is the maximal
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endoscopic datum for M , which is to say that it equals the quasisplit inner form M∗ of

M , a group that can also be regarded as a Levi subgroup of G∗. In general, we set

E0
M (G) =

 EM
′(G)− (G∗), if G is quasisplit,

EM ′(G), otherwise.

If G′ is an arbitrary element in EM ′(G), we also set

ιM ′(G,G′) = |Z(M̂ ′)Γ/Z(M̂)Γ||Z(Ĝ′)Γ/Z(Ĝ)Γ|−1.

The second stabilization of IM (γ, f) is an inductive construction. Suppose that

G′ ∈ E0
M ′(G), that G̃′ is a central extension of G′ by an induced central torus C̃ ′ over R,

and that ζ̃ ′ is a character on the pullback Z̃ ′(R) of Z(R) to G̃′(R). The preimage M̃ ′ of

M ′ in G̃′ is then a Levi subgroup, while the preimage T̃ ′ of T ′ is a maximal torus. We

assume inductively that for every such G′, G̃′ and ζ̃ ′, we have defined a family

SG̃′

M̃ ′(σ′, h′), σ′ ∈ T̃ ′G-reg(R), h′ ∈ C(G̃′, ζ̃ ′),

of tempered, stable, ζ̃ ′-equivariant distributions on G̃′(R), with

(1.5) SG̃′

M̃ ′(z′σ′, h′) = ζ̃ ′(z)−1SG̃′

M̃ ′(σ′, h′), z ∈ Z̃(R).

We assume also that the relations

(1.6)


SG̃′

M̃ ′(σ′, ω′h′) = ω′(σ′)SG̃′

M̃ ′(σ′, h′)

S
G̃′

1

M̃ ′
1
(σ′1, h

′
1) = SG̃′

M̃ ′(σ′, h′)

hold, for a character ω′ on G̃(R), a covering G̃′1 of G̃′ as in (1.3), and pullbacks ζ̃1 and h′1

of ζ̃ ′ and h′ to G̃′1.

Suppose that ∆ is a transfer factor attached to an element G′ ∈ E0
M ′(G). Then ∆

comes with an auxiliary datum (G̃′, ξ̃′) and a character ζ̃ ′ on Z̃ ′(R). It therefore gives rise

to a collection of stable distributions SG̃′

M̃ ′(σ′, ·) on G̃′(R), by hypothesis. It also provides
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the transfer mapping f → f ′ = f ′∆ from C(G, ζ) to S(G̃′, ζ̃ ′). We thus obtain a family of

ζ-equivariant distributions

(1.7) ŜG̃′

M̃ ′(σ′, f ′), f ∈ C(G, ζ), σ′ ∈ T̃ ′G-reg(R),

on G(R). (We write Ŝ′, as usual, for the transfer of a stable linear form S′ on C(G̃′, ζ̃ ′) to

a linear form on S(G̃′, ζ̃ ′).) Now there is a canonical restriction mapping from T (G,G′) to

T (M,M ′), which takes ∆ to a transfer factor ∆M for M with auxiliary datum (M̃ ′, ξ̃′M ). It

follows easily from (1.3), (1.5) and (1.6) that as a function of ∆M and σ′, (1.7) satisfies the

relations (1.3)M (with ∆M in place of ∆). In other words, (1.7) varies in the appropriate

way as ∆M ranges over the image of the injective mapping ∆→ ∆M . It therefore extends

to a section in C∞(T ′G-reg,M, ζ).

We now recall the stabilization of IM (γ, f) with respect to the function f in C(G, ζ).

If G is not quasisplit, we define an “endoscopic” distribution

(1.8) IEM (σ′, f) =
∑

G′∈EM′ (G)

ιM ′(G,G′)ŜG̃′

M̃ ′(σ′, f ′).

In case G is quasisplit we define a “potentially stable” distribution

(1.9) SG
M (M ′, σ′, f) = IM (σ′, f)−

∑
G′∈E0

M′ (G)

ιM ′(G,G′)ŜG̃′

M̃ ′(σ′, f ′).

In this case, we define the endoscopic distribution by the trivial relation

(1.10) IEM (σ′, f) = IM (σ′, f).

The left hand side of each equation is a section in C∞(T ′G-reg,M, ζ), represented as the

function of σ′ ∈ T̃ ′G-reg(R) attached to the given transfer factor ∆M for M ′. Observe that

the coefficient ιM ′(G,G′) vanishes unless Z(Ĝ)Γ is of finite index in Z(Ĝ′)Γ, which is to

say that the endoscopic datum G′ is elliptic. The two sums may therefore be taken over

the finite sets of elliptic endoscopic data in EM ′(G) and E0
M ′(G).
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To complete the inductive definition, one still has to prove something serious in the

special case that G is quasisplit and M ′ = M∗. In this case, we take T ∗ = T ′ = T̃ ′ to be a

maximal torus in M∗ over R, and σ∗ = σ′ to be a strongly G-regular point in T ∗(R). The

problem is to show that the distribution

(1.11) SG
M (σ, f) = SG

M (M∗, σ∗, f)

on G(R) is stable. (We follow the notation of [A11, §2,3] here. In particular, σ represents

the stable conjugacy class in G(R) that is the bijective preimage of the stable class in

G∗(R) represented by σ∗.) Only then would we have a linear form

(1.12) ŜG∗

M∗(σ∗, f∗) = SG
M (σ, f)

on S(G∗, ζ∗) that is the analogue for (G∗,M∗) of the terms ŜG̃′

M̃ ′(σ′, f ′) in (1.8) and (1.9).

Given the stability of (1.11), one has then to check that the stable distributions SG∗

M∗(σ∗, ·)

on G∗(R) satisfy the analogues of the conditions (1.6). This is straightforward. For

example, any character ω∗ on G∗(R) transfers to a family of characters ω = {ωι} on

the components Gι(R). This transfers in turn to a character ω′ on any G̃′(R), with the

property that

(ωf)′ = ω′f ′, f ∈ C(G, ζ).

The analogue for G∗ of the first relation in (1.6) then follows from the definitions (1.8)

and (1.9) [A16].

The discussion of this section has been quite brief, since the constructions are essen-

tially those of [A11, §1–3]. We did not actually account for varying transfer factors in

the definitions of [A11, §3] (and [A12, §4]). The reason was the mistaken view, expressed

on p. 242 of [A11], that the auxiliary data (G̃′, ξ̃′) for the various G′ ∈ EM ′(G) could all

be chosen to have the same restriction to M ′. However, the discrepancy is minor. For a

complete discussion of a more general situation, we refer the reader to the forthcoming

paper [A15].
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Theorem 1.1. Suppose that M , M ′, T ′ and σ′ ∈ T̃G-reg(R) are as above.

(a) If G is arbitrary,

(1.13) IEM (σ′, f) = IM (σ′, f), f ∈ C(G, ζ).

(b) If G is quasisplit, the distribution

f −→ SG
M (M,σ′, f), f ∈ C(G, ζ),

vanishes unless M ′ = M∗, in which case it is stable.

The proof of this theorem will take up the rest of the paper. Notice that (a) is

an assertion about the nonquasisplit case, since it is part of the definition (1.10) if G is

quasisplit. Observe also that (b) includes the stability assertion for quasisplit G needed to

complete the inductive definition above.

We shall say that T ′ is an M -image if any element in T ′G-reg(R) is an image [LS1, (1.3)]

of some element in M . This is always the case if G is quasisplit. If T ′ is not an M -image

(so that G is not quasisplit), the right hand side of (1.13) vanishes, by definition (1.4) and

the basic properties of transfer factors. In this case, the local vanishing theorem [A11,

Theorem 8.6] asserts that the left hand side of (1.13) is also zero. It is therefore enough

for us to prove the theorem if T ′ is an M -image, an assumption we make henceforth.
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§2. Stabilization of the differential equations

Theorem 1.1 will be proved by methods of analysis. The assertions (a) and (b) of the

theorem may both be formulated as the vanishing of a function of σ′. In each case, we

will find that the relevant function satisfies a homogeneous linear boundary value problem.

Our task will then be to show that the problem has no nonzero solution.

Boundary value problems are founded on differential equations. The invariant distri-

butions (1.1) satisfy a family of differential equations, parametrized by elements z in the

center of the universal enveloping algebra. These equations are natural generalizations of

the equations

(2.1) (zf)G(γ) = ∂
(
hT (z)

)
fG(γ)

that play a central role in Harish-Chandra’s study of the invariant orbital integrals. We

shall recall the generalization of (2.1) satisfied by the distributions IM (γ, f). We shall then

review the results of [A12], which provide a stabilization of these equations that is parallel

to the constructions of the last section.

We have to remember that G is a disjoint union of connected groups Gι. For any ι,

we write Z(Gι) for the center of the universal enveloping algebra of gι(C). (As usual, we

denote the Lie algebra of a given algebraic group by a corresponding lower case Gothic

letter.) We then form the quotient Z(Gι, ζι) of ζ−1
ι -covariants in Z(Gι). If the Schwartz

space C(Gι, ζι) is regarded as a space of sections on the line bundle on Gι(R) defined by

(Zι, ζι), Z(Gι, ζι) becomes the algebra of biinvariant differential operators on this space.

The inner twist ψικ from Gκ to Gι provides canonical isomorphisms from Z(Gκ) to Z(Gι)

and Z(Gκ, ζκ) to Z(Gι, ζι). We can therefore attach canonical algebras Z(G) and Z(G, ζ)

of differential operators to G. They come with canonical isomorphisms from Z(G) to

Z(Gι) and Z(G, ζ) to Z(Gι, ζι) for each ι.

For much of the rest of the paper, we shall treat γ as a representative of a conjugacy
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class, rather than the conjugacy class itself. We can then form the centralizer

T = Mγ = Mι,γ

of γ in the component Mι of M that contains γ. In fact, we shall generally fix a maximal

torus T over R in (some component of) M , and allow γ to vary over points in TG-reg(R).

The differential equations (2.1) of course apply to the special case that M = G. The

mapping

z −→ hT (z) = hT,G(z)

is the Harish-Chandra homomorphism attached to the torus T = Gγ . It can be regarded

as an isomorphism from Z(G) onto the vector space of elements in the symmetric algebra

on t(C) that are invariant under the Weyl group

W (G,T ) = W (Gι, T ), T ⊂ Gι,

of (G,T ). We write ∂
(
hT (z)

)
as usual for the corresponding differential operator on T (R)

with constant coefficients, which is to say, with the property of being invariant (under

translation by T (R)). The mapping z → ∂
(
hT (z)

)
descends to an isomorphism from

Z(G, ζ) to the algebra ofW (G,T )-invariant differential operators with constant coefficients

on C∞(T, ζ), the space of sections of the line bundle L∗(T, ζ) on T (R) attached to (Z, ζ).

This is how we will interpret Harish-Chandra’s differential equations (2.1).

The generalization of (2.1) was reviewed in [A12, §1]. It is a family of differential

equations

(2.2) IM (γ, zf) =
∑

L∈L(M)

∂L
M (γ, zL)IL(γ, f),

in which z again lies in Z(G, ζ). For any L, z → zL is the canonical injection of Z(G, ζ)

into Z(L, ζ), and ∂L
M (γ, zL) is a linear differential operator that depends only on L. It

acts on C∞(TG-reg, ζ), the space of smooth sections of the restriction of the line bundle
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L∗(T, ζ) to TG-reg(R). We include γ in the notation because ∂L
M (γ, zL) varies in general

from point to point. However, in the special case that L = M , we note that

∂M
M (γ, zM ) = ∂

(
hT,M (zM )

)
= ∂

(
hT (z)

)
.

The term with L = M in (2.2) will eventually be decisive for us. Of the remaining terms,

it is the one with L = G that is important to understand, since we will be able to apply

inductive arguments to the intermediate terms.

The notation for the differential operators ∂G
M (γ, z) was chosen deliberately to match

that of the distributions IM (γ, f) = IG
M (γ, f). In particular, one can try to stabilize

∂G
M (γ, z) in either γ or z. It turns out that the two stabilizations are compatible. In other

words, the analogue of Theorem 1.1 for ∂G
M (γ, z) has been shown to hold.

We fix an elliptic endoscopic datum M ′ for M , with maximal torus T ′ ⊂ M ′ over R,

as in §1. We are assuming that T ′ is an M -image of T . Then there exists an M -admissible

isomorphism from T to T ′, by which we shall mean an R-rational isomorphism of the form

(2.3) φ = i−1 ◦ Int(h) ◦ ψM ,

where i is an admissible embedding of T ′ into G∗ [LS1, (1.2)], ψM is the inner twist from

M to M∗ compatible with the implicit identification of M̂∗ with M̂ , and h is an element

in M∗ such that hψM (T )h−1 equals i(T ′). We can use φ to transfer differential operators.

This gives an isomorphism

∂ −→ ∂′ = φ∂ = (φ∗)−1 ◦ ∂ ◦ φ∗,

from the space of (linear) differential operators on C∞(TG-reg, ζ) to the corresponding

space of operators on C∞(T ′G-reg, ζ). The isomorphism φ is uniquely determined up to

the action of the real Weyl group WR(M,T ) of M and T . (Recall that WR(M,T ) is the

subgroup of elements in the full Weyl group W (M,T ) that are defined over R. It contains

in turn the subgroup W
(
M(R), T (R)

)
of elements induced from M(R). These groups are
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of course taken relative the component Mι of M that contains T .) If ∂ is invariant under

the action of WR(M,T ), ∂′ does not depend on the choice of φ.

Suppose that ∆M is a transfer factor for M and M ′. As we recall, ∆M comes with

an auxiliary datum (M̃ ′, ξ̃′M ), an extension T̃ ′ of T ′, and a character ζ̃ ′ on the preimage

Z̃ ′(F ) of Z(F ) in T̃ ′(F ). One uses the internal structure of the L-embedding ξ̃′M , together

with symbols of differential operators, to construct an isomorphism ∂′ → ∂′ between

the spaces of (linear) differential operators on C∞
(
T ′G-reg(R), ζ

)
and C∞

(
T̃ ′G-reg(R), ζ̃ ′

)
respectively. Our essential concern is the composition ∂ → ∂′ of the isomorphisms ∂ → ∂′

and ∂′ → ∂′, and its restriction to the space of WR(M,T )-invariant differential operators

on C∞(TG-reg, ζ). It is this mapping that is compatible with endoscopic transfer. More

precisely, suppose that a is a WR(M,T )-invariant function in C∞(TG-reg, ζ), and that

a′ = a′∆M
is the function in C∞(T̃ ′G-reg, ζ̃

′) defined by Langlands-Shelstad transfer. Then

(2.4) (∂a)′(σ′) = (∂′a′)(σ′),

for any WR(M,T )-invariant differential operator ∂ on C∞(TG-reg, ζ) [A12, Lemma 2.2].

The restriction of the mapping ∂ → ∂′ to theWR(M,T )-invariant differential operators

is again independent of φ. It does depend implicitly on the transfer factor ∆M , through the

associated datum (M̃, ξ̃′M ). However, its variance with ∆M is compatible with the relations

(1.2)M and (1.3)M , a fact that is suggested by (2.4), and which is easy to check directly. We

can therefore interpret ∂ → ∂′ as a linear mapping from the space of WR(M,T )-invariant

differential operators on C∞(TG-reg, ζ) to the space of differential operators on the space

of sections C∞(T ′G-reg,M, ζ) of §1. However, we shall generally treat ∂′ as above, namely

as the differential operator on C∞(T̃ ′G-reg, ζ̃
′) provided by an implicit choice of transfer

factor ∆M , following the convention from §1.

There are two examples to bear in mind. The first is the case of a W (G,T )-invariant

differential operator ∂ with constant coefficients on C∞(T, ζ). Then ∂ equals

∂
(
hT (z)

)
, for a unique differential operator z in Z(G, ζ). Suppose that G′ is an endo-
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scopic datum for G of which M ′ is a Levi subgroup. There is then a canonical injection

z → z′ from Z(G, ζ) to Z(G′, ζ) such that

∂
(
hT (z)

)′ = ∂
(
hT ′(z′)

)
.

There is also an injection z → z′ from Z(G, ζ) to Z(G̃′, ζ̃ ′), which depends on a choice of

transfer factor ∆G for G and G′, such that

(2.5) ∂
(
hT (z)

)′ = ∂
(
hT̃ ′(z′)

)
.

(See [A12, p. 84].) The mapping on the left hand side of (2.5) is taken relative to the

restriction ∆M of ∆G to M .

The other example is the differential operator

∂G
M (z) = ∂G

M (γ, z), z ∈ Z(G, ζ),

with variable coefficients. It is easy to check that ∂G
M (z) is WR(M,T )-invariant [A12,

Lemma 2.3]. It follows that for any transfer factor ∆M for M and M ′, ∂G
M (z)′ is a well

defined differential operator on C∞(T̃ ′G-reg, ζ̃
′). We write

(2.6) ∂G
M (z)′ = ∂G

M (σ′, z), σ′ ∈ T̃ ′G-reg(R).

This notation is motivated by (1.4). For if we apply the transfer identity (2.4) to

a(γ) = IM (γ, f) and ∂ = ∂G
M (z), we see that ∂G

M (σ′, z) is an analogue for differential

operators of the function IM (σ′, f) in (1.4). In particular, ∂G
M (σ′, z) can be regarded as

the stabilization of ∂G
M (γ, z) in γ.

The stabilization of ∂G
M (γ, z) in z follows the construction used to stabilize IM (γ, f)

in f . In particular, it is formulated in terms of the set EM ′(G). The inductive definitions

(1.8)–(1.10) all have natural infinitesimal analogues, with the injection z → z′ playing

the role of the transfer mapping f → f ′. They give rise to differential operators on

C∞(T̃ ′G-reg, ζ̃
′) that could be written naturally as ∂G,E

M (σ′, z) and δG
M (M ′, σ′, z). However,
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we will not need to use this notation, since the infinitesimal analogue of Theorem 1.1 is

already known. It is the main result of [A12]. We can therefore state the infinitesimal

analogues of the definitions and the theorem together, following [A12].

Proposition 2.1. For each z ∈ Z(G, ζ), there is an identity

(2.7) ∂G
M (σ′, z) =

∑
G′∈EM′ (G)

ιM ′(G,G′)δG̃′

M̃ ′(σ′, z′),

where

δG̃′

M̃ ′(σ′, z′), G′ ∈ EM ′(G), σ′ ∈ T̃ ′G-reg(R),

is a differential operator on C∞
(
T̃ ′G-reg(R), ζ̃ ′

)
that depends only on the quasisplit pair

(G̃′,M̃ ′) and the element z′ ∈ Z(G̃′, ζ̃ ′).

See [A12, Theorem 3.1]. The summands in (2.7) are to be understood in the same

manner as those in (1.8) and (1.9). Each represents a function of a variable transfer factor

∆M , with a specified value when ∆M is the restriction to M of the transfer factor ∆G

that defines the image z′ of z. I would like to be able to say that this point was implicit

in [A12], but in truth, it was not considered at all. However, the proof from [A12] does

carry over without change.

In case G is quasisplit, we sometimes write

δG
M (σ, z) = δG∗

M∗(σ∗, z∗), σ∗ ∈ T ∗G-reg(R), z∗ ∈ Z(G∗, ζ∗),

for σ as in (1.11), and z the preimage of z∗ in Z(G, ζ). This allows us to study stable

distributions on the K-group G rather than the connected group G∗.

Proposition 2.1 represents the initial step towards a proof of Theorem 1.1. It implies,

roughly speaking, that the assertions of the theorem are compatible with the differential

equations (2.2). To formulate the implication more precisely, we have to take on a slightly

stronger induction hypothesis than is implicit in the definitions of §1.
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We first observe that the equation (2.2) can be combined with the original definition

(1.4). Using the transfer identity (2.4), one finds [A12, (4.5)] that

(2.8) IM (σ′, zf) =
∑

L∈L(M)

∂L
M (σ′, zL)IL(σ′, f).

The functions IL(σ′, f) of σ′ here are to be treated as elements in the space of sections

C∞(T ′G-reg,M, T ) of the bundle L∗(T ′G-reg,M, ζ). This is consistent with the definition

(1.4) (with L in place of M , and any endoscopic datum L′ ∈ EM ′(L) in place of M ′),

since there is a natural bundle mapping from L(T ′G-reg, L, ζ) to L(T ′G-reg,M, ζ) given by

the restriction ∆L → ∆M of transfer factors.

The theorem will ultimately be proved by a double induction, based on the two integers

dder = dim(Gder) = dim(Gι,der),

and

rder = dim(AM ∩Gder) = dim(AMι
∩Gι,der), ι ∈ π0(G).

We will not adopt the full induction hypothesis until we have to in §6. However, we do

assume henceforth that Theorem 1.1(b) holds if (G,M,M ′) is replaced by any quasisplit

triplet (G1,M1,M
′
1) with

dim(G1,der) ≤ dder

if G is not quasisplit, and with

dim(G1,der) < dder,

in case G is quasisplit. This obviously includes our earlier ad hoc assumption that the

summands in (1.7) and (1.8) be well defined. Proposition 2.1 then has the following

corollary, which applies to operators z ∈ Z(G, ζ) and functions f ∈ C(G, ζ).

Corollary 2.2. (a) If G is arbitrary,

(2.9) IEM (σ′, zf) =
∑

L∈L(M)

∂L
M (σ′, zL)IEL(σ′, f).
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(b) If G is quasisplit,

(2.10) SG
M (σ, zf) =

∑
L∈L(M)

δL
M (σ, zL)SG

L (σ, f),

for σ as in (1.11), while

(2.11) SG
M (M ′, σ′, zf) = ∂

(
hT (z)

)′
SG

M (M ′, σ′, f),

if M ′ 6= M∗.

The corollary is proved by combining the proposition with the original equations (1.8)

and (1.9). See [A12, Proposition 4.1].

The terms with L 6= M in (2.8), (2.9) and (2.10) can be simplified by the formulas of

descent satisfied by the various distributions. Let us recall these formulas.

Suppose that the torus T ′ ⊂M ′ is not elliptic. Then it is contained in a proper Levi

subgroup M ′
1 ⊂M ′. We are assuming that T ′ is an M -image. It follows easily that there

is a proper Levi subgroup M1 of M for which M ′
1 represents an elliptic endoscopic datum.

This allows us to identify M ′ with an element in EM ′
1
(M). Given a transfer factor ∆M

for M and M ′, with auxiliary datum (M̃ ′, ξ̃′M ), let ∆M1 be the restricted transfer factor

for M1 and M ′
1, with auxiliary datum (M̃ ′

1, ξ̃
′
M1

). The distributions (1.4) and (1.8) then

satisfy the formulas

(2.12) IM (σ′, f) =
∑

G1∈L(M1)

dG
M1

(M,G1)ÎG1
M1

(σ′, fG1)

and

(2.13) IEM (σ′, f) =
∑

G1∈L(M1)

dG
M1

(M,G1)Î
G1,E
M1

(σ′, fG1)

of parabolic descent. If G is quasisplit and M ′ = M∗, and the point σ′ = σ∗ is the image

of a point σ ∈ TG-reg(R) in M1, we have

(2.14) SG
M (σ, f) =

∑
G1∈L(M1)

eG
M1

(M,G1)ŜG1
M1

(σ, fG1),
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where

eG
M1

(M,G1) = dG
M (M,G1)

∣∣Z(M̂)Γ ∩ Z(Ĝ1)Γ/Z(Ĝ)Γ
∣∣−1

.

Finally, if G is quasisplit but M ′ 6= M∗, we have

(2.15) SG
M (M ′, σ′, f) = 0.

The descent formulas above are all consequences of corresponding formulas [A4, Propo-

sition 7.1] for the distributions IM (γ, f). They were established in greater generality (and

under more baroque induction hypotheses) in [A11, Theorem 7.1]. It is clear that with a

slight extension of the induction hypothesis on dder above (namely, that is applies to both

assertions (a) and (b) of Theorem 1.1), the formulas of descent imply Theorem 1.1 in the

case that T ′ ⊂M ′ is not elliptic. It is also clear that they can be applied (with L and M

in place of M and M1) to the summands L 6= M in (2.8), (2.9) and (2.10).
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§3. Stabilization of elliptic boundary conditions

The next step is to study boundary conditions. We are interested in the behaviour of

the distributions IM (σ′, f), IEM (σ′, f), and SG
M (M ′, σ′, f) of Theorem 1.1 as σ′ approaches

the boundary of T̃ ′G-reg(R) in T̃ ′(R).

As functions of σ′, the distributions do not extend smoothly across singular hyper-

surfaces in the complement of T̃ ′G-reg(R). However, the singularities are quite gentle. One

can modify the functions in a simple way so that their derivatives in σ′ remain bounded

around any point in general position on a singular hypersurface. Moreover, there are

explicit formulas for the jumps of their derivatives across the hypersurface.

Recall that M , M ′ and T ′ are fixed, while T̃ ′ is the extension of T ′ attached to the

auxiliary datum (M̃ ′, ζ̃ ′) of a transfer factor ∆M . By a root of T ′, we shall mean the

transfer

α′ = φ̂−1(α)

of some root α of (G,T ), where T ⊂M is a maximal torus over R, and φ is anM -admissible

isomorphism (2.3). (A root of (G,T ) is of course a root for the component Gι of G that

contains T .) We can treat α′ as a character on either of the groups T ′ or T̃ ′, or as a

linear form on either of the Lie algebras t′ or t̃′. Then α′ is said to be real, imaginary or

complex if its values on t′(R) have the corresponding property. We are interested in the

case that the kernel of α′ in T̃ ′(R) (or T ′(R)) is a hypersurface, which is to say that it

has codimension one. This rules out the complex roots. We shall treat the hypersurfaces

attached to imaginary roots in this section, and real roots in the next.

We first recall an elementary point concerning the original distributions IM (γ, f).

The weighted orbital integrals that are the primary components of these objects were

normalized by the factor |DG(γ)| 12 obtained from the absolute value of Weyl discriminant

[A6, §1]. Harish-Chandra’s jump conditions about imaginary roots require a more subtle

normalization. We have therefore to introduce a familiar (but noncanonical) normalization

28



for the functions of σ′ in Theorem 1.1.

An imaginary root of T ′ comes from an imaginary root of (G,T ), which is in fact an

imaginary root of (M,T ), since it vanishes on the split torus AM . The renormalization

concerns only the subset of imaginary roots of T ′ that are actually roots of (M ′, T ′) in

the usual sense. The set R′I of imaginary roots of (M ′, T ′) is a root system for (M ′
I , T

′),

where M ′
I is the Levi subgroup of M ′ in which T ′ is R-elliptic. The elements in R′I divide

the real vector space it′(R) into chambers, on which the Weyl group W ′
I of R′I acts simply

transitively. If c is any chamber, we write R′c for the corresponding set of positive roots in

R′I . We then set

(3.1) δ′c(σ
′) =

∏
α′∈R′

c

(
1− α′(σ′)−1

)∣∣1− α′(σ′)−1
∣∣−1

,

a function that also equals

∣∣DMI
(σ′)

∣∣− 1
2

∏
α∈R′

c

(
1− α′(σ′)−1

)
,

and is defined for any strongly M ′
I -regular point σ′ in T̃ ′(R). The mapping

a′ −→ a′c, a′ ∈ C∞(T ′,M, ζ),

in which

(3.2) a′c(σ
′) = δ′c(σ

′)a′(σ′), σ′ ∈ T̃ ′G-reg(R),

is easily seen to be a linear automorphism of the space C∞(T ′,M, ζ) of sections of the

line bundle L∗(T ′,M, ζ). The jump conditions of interest apply to the images under this

mapping of the functions of Theorem 1.1.

We fix an arbitrary imaginary root α′ of T ′. We also fix a point in general position in

the corresponding singular hypersurface

(T̃ ′)α′(R) =
{
σ′1 ∈ T̃ ′(R) : α′(σ′1) = 1

}
,
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which we may as well continue to denote by σ′. Given σ′, we then choose a small open

neighbourhood Ũ ′ of the stable class of σ′ in the set of strongly G-regular stable conjugacy

classes ∆G-reg(M̃ ′) in M̃ ′(R). The distributions of §1 can of course be defined for a class

δ′ ∈ Ũ ′ (in place of a point in T̃G-reg(R)).

Lemma 3.1. Suppose that

EM (δ′, f), f ∈ C(G, ζ),

is one of the families of distributions IM (δ′, f), IEM (δ′, f) or SG
M (M ′, δ′, f), defined as in

§1 for the transfer factor ∆M and the classes δ′ ∈ Ũ ′. Then there is a function e′f in

S(M̃ ′, ζ̃ ′) such that

(3.3) EM (δ′, f) = e′f (δ′), δ′ ∈ Ũ ′.

Proof. Let U ′ ⊂ ∆G-reg(M ′) be the projection of Ũ ′ onto M ′(R), and let U be

the set of conjugacy classes γ ∈ ΓG-reg(M) in M(R) of which some element in U ′ is an

image. Then U is a finite disjoint union of sets U(γ1), where γ1 ranges over a set of

elements in M(R) of which the projection of σ′ onto M ′(R) is an image, and U(γ1) is

a small open neighbourhood of the class of γ1 in ΓG-reg(M). Any class in U(γ1) has a

representative γ ∈M(R) that commutes with γ1, and is close to γ1. It follows easily from

the general position of σ′ in (T̃ ′)α′(R) that the centralizer of each γ1 in (its component in)

G is contained in M . If we apply [A4, (2.3)] to each of the points γ1, we deduce that there

is a function ef in I(M, ζ) such that

IM (γ, f) = ef (γ), γ ∈ U.

It follows from the definition (1.4) that

IM (δ′, f) = e′f (δ′), δ′ ∈ Ũ ′,

where e′f is the transfer of ef to a function in S(M̃ ′, ζ̃ ′). This establishes (3.3) in case

EM (δ′, f) equals IM (δ′, f).
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Suppose then that EM (δ′, f) equals either IEM (δ′, f) or SG
M (M ′, δ′, f). In each of these

cases, we deduce that (3.3) holds for some function e′f in S(M̃ ′, ζ̃ ′) by combining the case

we have just established with an application of the appropriate induction hypothesis to

the summands in either (1.8) or (1.9). �

Remark. It follows from the definitions that e′f is compatible with the underlying transfer

factor ∆M , in the sense that it represents an element in C∞(T ′,M, ζ). In fact, one can

show that it is the image of a function ef ∈ I(M, ζ), just as in the special case that

EM (δ′, f) equals IM (δ′, f).

The relation (3.3) we have just established reduces the singularities around σ′ of the

distributions of §1 to corresponding singularities of stable orbital integrals. The explicit

description of the latter was one of the initial steps taken by Shelstad [S1] in developing a

theory of endoscopy for real groups.

Since the fixed root α′ is imaginary, its corresponding coroot is of the form

(α′)∨ = iH ′
α,

for a vector H ′
α = Hα′ in the Lie algebra t̃′(R). We write

jα′
(
a′(σ′)

)
= lim

θ→0+
a′(σ′exp θH ′

α)− lim
θ→0−

a′(σ′exp θH ′
α),

for any section a′ ∈ C∞(T ′G-reg,M, ζ) for which the two half limits exist. Our concern is

the jump attached to the section

a′(·) = D′
ce
′
c(·),

where e is any function in I(M, ζ) and D′
c is an invariant differential operator on

C∞(T ′,M, ζ). The existence of the two sided limits in this case is an immediate con-

sequence of a general theorem of Harish-Chandra on invariant orbital integrals. The dif-

ference represents the obstruction to being able to extend D′
ce
′
c to a continuous function
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at σ′. The results of Shelstad, which follow similar results of Harish-Chandra, give precise

formulas for this difference. We shall apply them to the functions

e′(δ′) = e′f (δ′) = EM (δ′, f)

of the last lemma.

The results of Harish-Chandra and Shelstad are expressed in terms of Cayley trans-

forms. Suppose that α′ is the transfer of the imaginary root α of (M,T ) under an M -

admissible isomorphism φ from T to T ′. The projection of σ′ onto T ′ then equals φ(γ),

where γ is a point in general position in the singular hypersurface

Tα(R) =
{
γ ∈ T (R) : α(γ) = 1

}
.

The centralizer Gγ of γ (in its component Gι) is a connected reductive group over R,

whose derived group Gγ,der is three dimensional. Recall that α is said to be compact or

noncompact according to whether the group Gγ,der(R) has the corresponding property.

Suppose that α is noncompact. We will again write

α∨ = iHα,

for a vector Hα in the Lie algebra of T (R)∩Gγ,der(R). The group Gγ,der is now isomorphic

over R to either SL(2) or PGL(2). Let Tα be a maximal torus in Gγ over R such that the

Lie algebras of Tα ∩Gγ,der and T ∩Gγ,der are orthogonal with respect to the Killing form

on gγ,der. Then Tα ∩Gγ,der is a (one-dimensional) split torus in Gγ,der. We write Mα for

a maximal Levi (K-) subgroup of M whose intersection with Gγ,der coincides with that of

Tα. By a Cayley transform, we mean an isomorphism from T to Tα of the form

Cα = Int(sα), sα ∈ Gγ,der.

If Cα is fixed, we write β for the transfer of α by Cα to a root of (Gγ , Tα). We then form

the vector

Zα = Hβ = β∨ = (dCα)(α∨)
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in the Lie algebra of Tα(R) ∩Gγ,der(R).

The pair (Tα, Cα) is of course not uniquely determined by α and γ. For example, we

can always replace Cα by its complex conjugate

Cα = Cαwα,

where wα is the reflection in T about α. We set dα equal to 1 or 2, according to whether or

not wα lies in the subgroup W
(
M(R), T (R)

)
of WR(M,T ). Then Cα is Gγ(R)-conjugate

to Cα if and only if dα = 1. In fact, dα equals the number of Gγ(R) conjugacy classes of

pairs (Tα, Cα) attached to α and γ. It also equals the number of Gγ(R)-orbits in gγ(R)

represented by the pair {α∨,−α∨}, or equivalently, the number of Gγ(R)-conjugacy classes

represented by the pair
{
γ exp(±θHα)

}
defined for any θ 6= 0. These conditions are well

known. They are readily verified with an inspection of the group PGL(2,R) and its abelian

extensions.

The notions above have obvious analogues if the K-group M is replaced by the con-

nected group M ′, and α is replaced by our fixed imaginary root α′. If α′ belongs to the set

R′I,nc of noncompact roots in R′I , we can form objects T ′α = T ′α′ , M
′
α = M ′

α′ , w
′
α = wα′ ,

C ′α = Cα′ , β′ and Z ′α = Zα′ , as above. In this case, we write

σ′α(r) = σ′exp(rZ ′α),

for any small number r 6= 0. We also write cα = c′α for the chamber in it′α(R) defined by

the system R′cα
of positive imaginary roots that are mapped by the transpose of Ad(C ′α)

to R′c.

We will now state the jump conditions. They include a vanishing assertion, which

pertains to the set R′I,nc(α
′) of noncompact roots in R′I of the form w′α′, for some w′ ∈W ′

I ,

and the set RI,nc(α′) of noncompact roots of (M,T ) (for some T ) that transfer to α′.

Proposition 3.2. Suppose that EM (δ′, f) represents one of the three families of distribu-

tions IM (δ′, f), IEM (δ′, f) or SG
M (M ′, δ′, f), as in Lemma 3.1.
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(i) Suppose that α′ is a noncompact root in R′I that is the transfer of a noncompact

root α of (M,T ), as above. Then

(3.4) jα′
(
D′

cEM,c(σ′, f)
)

= lim
r→0

D′
c,αEM,cα

(
σ′α(r), f

)
,

where D′
c,α = D′

c,α′ is an invariant differential operator on C∞(T ′α,M, ζ) attached to the

invariant differential operator D′
c on C∞(T ′,M, ζ) and the chamber c.

(ii) Suppose that one of the two sets R′I,nc(α
′) or RI,nc(α′) is empty. Then

jα′
(
D′

cEM,c(σ′, f)
)

= 0.

Proof. Applying Lemma 3.1, we write

(3.5) jα′
(
D′

cEM,c(σ′, f)
)

= jα′
(
D′

ce
′
f,c(σ

′)
)
,

for a function e′f ∈ S(M̃ ′, ζ̃ ′). The required assertions then reduce to statements about

singularities of stable orbital integrals on M̃ ′(R).

The reduction (3.5) holds without restriction on α′. If α′ belongs to R′I , it gives rise

to an associated Cayley transform on M ′. In this case, we can use Shelstad’s result [S1,

Lemma 4.3] for stable orbital integrals on M̃ ′(R). It implies that

(3.6) jα′
(
D′

ce
′
f,c(σ

′)
)

= lim
r→0

D′
c,α′e

′
f,cα

(
σ′α(r)

)
,

for an invariant differential operator D′
c,α′ on C∞(T̃ ′G-reg, ζ̃

′) attached to D′
c and ∆M . If

α′ is also the transfer of a noncompact root α of (M,T ), one sees easily that the operator

D′
α,c = D′

α′,c represents an element in the space C∞(T ′α,G-reg,Mα, ζ). Part (i) follows.

Part (ii) really contains two assertions. For the first, we recall that any conjugacy

class in the stable class of σ′ in M̃ ′(R) can be represented by a point w′σ′ in (T̃ ′)w′α′(R),

for some w′ ∈ W ′
I . The orbital integral of any function in C(M̃ ′, ζ̃ ′) extends to a smooth

function around this point, unless w′α′ is a noncompact root in R′I . The jump (3.4)

therefore vanishes if the set R′I,nc(α
′) is empty, and in particular, if α′ is not a root of
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(M ′, T ′). For the second assertion of (ii), we assume that RI,nc(α′) is empty. We can also

assume that R′I,nc(α
′) is non-empty, since we have just seen that the jump would otherwise

vanish. Since the quotient

(3.7) (δ′c ◦ w′)(δ′c)−1 = (δ′(w′)−1c)(δ
′
c)
−1

extends to a smooth function on T̃ ′(R), for any element w′ ∈ W ′
I , e

′
f,c extends to a

smooth function around w′σ′ if it extends to a smooth function around σ′. We may

therefore assume that the root α′ itself is noncompact, and hence that (3.6) holds. But

our assumption that α′ transfers only to compact roots of M implies that the point σ′α(r)

in T̃ ′α(R) on the right hand side of (3.6) is not an image of any point in M(R). This means

that G is not quasisplit, and hence that EM (δ′, f) equals either IM (δ′, f) or IEM (δ′, f). It

then follows, from either the definition (1.4) or the local vanishing property [A11, Theorem

8.6], that the right hand side of (3.6) itself vanishes. So therefore does the jump on the

left hand side. The required assertion follows from (3.5). �

We supplement the proposition with a few elementary remarks. Suppose for a moment

that α′ is a variable index, as in (3.1). If the derived group of M̃ ′ is simply connected, the

linear form

ρc =
1
2

∑
α′∈R′

c

α′

lifts to a character

ξ′c(expH ′) = eρc(H
′), H ′ ∈ t̃′(C),

on T̃ ′(C). In this case, the product

(ξ′cδ
′
c)(expH) =

∏
α′∈R′

c

(
e

1
2 α′(H′) − e− 1

2 α′(H′)
)∣∣1− e−α′(H′)

∣∣−1

is a locally constant function on T̃ ′reg(R), since α′(H ′) is purely imaginary for H ′ ∈ t̃′(R).

Since ξ′c is a smooth function on T̃ ′(R), the singularities of the function EM,c(·, f) of the

proposition are similar to those of the product of the original function EM (·, f) with the
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locally constant function ξ′cδ
′
c. It is in terms of this second normalization (or rather, a local

version that applies to the case that M̃ ′
der is not simply connected) that Harish-Chandra

first expressed the jump conditions satisfied by invariant orbital integrals [H2, Theorem

9.1]. Since its normalizing factor is locally constant, this normalization offers the minor

simplification of commuting with differential operators on T̃ ′(R). The first normalization

satisfies the slightly more complicated formula

(D′a′)c = D′
ca
′
c, a′ ∈ C∞(T ′,M, ζ),

where D′ → D′
c is the isomorphism of the space of invariant differential operators on

C∞(T ′,M, ζ) induced by the mapping

H ′ −→ H ′ + ρc(H ′)I, H ′ ∈ t̃′(C).

(See [S1, p. 24].)

Suppose again that α′ and σ′ are fixed as in the proposition. Replacing α′ by (−α′), if

necessary, we can assume that α′ belongs to R′c. Consider the original normalizing factor

δ′c(σ
′exp θH ′

α) as a function of θ around 0. The term corresponding to α′ in the product

(3.1) that defines δ′c is then

(
1− α′(σ′exp θH ′

α)−1
)∣∣1− α′(σ′exp θH ′

α)−1
∣∣−1

.

Since

α′(H ′
α) = α′

(
i−1(α′)∨

)
= −2i,

this equals

(1− e2iθ)|1− e2iθ|−1 = eiθε(θ),

where

(3.8) ε(θ) = −i · sign θ.
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The other factors in (3.1) all extend to smooth functions of θ at θ = 0. We can there-

fore normalize EM (σ′exp θH ′
α, f) by multiplying it by the locally constant function ε(θ).

We conclude that there is a linear mapping D′ → D′
α between the spaces of invari-

ant differential operators on C∞(T ′,M, ζ) and C∞(T ′α,M, ζ) such that the assertions of

the proposition hold with ε(θ)EM (σ′exp θH ′
α, f), EM

(
σ′α(r), f

)
, D′ and D′

α in place of

EM,c(σ′exp θH ′
α, f), EM,cα

(
σ′α(r), f

)
, D′

c and D′
c,α, respectively. This is essentially the

normalization of Harish-Chandra mentioned above. It is simpler, but has the disadvantage

of applying only locally in a neighbourhood of σ′.

We will not need to know much about the differential operator D′
c,α in the formula

(3.4), but it is easy to describe in terms of D′
c. It satisfies the formula

D′
c,α = k′α(C ′αD

′)cα ,

where k′α = kα′ is a constant, D′ is the preimage of D′
c under the mapping D′ → D′

c, and

C ′αD
′ is the differential operator on C∞(T ′α,M, ζ) obtained from D′ and the isomorphism

C ′α. (See [S1, p. 24].) The operators D′ and D′
α that apply to the normalization defined

by ε(θ) satisfy the simpler relation

D′
α = k′α(C ′αD

′).

The function EM

(
σ′α(r), f

)
that gives the jump in this second normalization is symmetric

in r about 0. It follows that if D′ is antisymmetric with respect to reflection about α′ in

T̃ ′(R), then

lim
r→0

D′
αEM

(
σ′α(r), f

)
= 0.

In this case, the function

D′(ε(θ)EM (σ′exp θH ′
α, f)

)
, θ 6= 0,

extends continuously about θ = 0. Such matters are of course well known. We mention

them only to clarify some aspects of the discussion of the next section.
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The constant k′α depends on the choices of measures in the weighted orbital integrals

that are the source of the various distributions. We have implicitly normalized the measures

by the conventions of Harish-Chandra [H2, §7] rather than those of Shelstad [S1, §4]. (See

[A6, §1].) For example, if T is elliptic in M , the Haar measure on T (R) is given by the

measure on the group AM (R)0 ∼= aM attached to a fixed Euclidean norm ‖·‖ on the vector

space aM , and the normalized Haar measure on the compact group T (R)/AM (R)0. The

norms ‖ · ‖ on the various vector spaces aM , aMα
, aM̃ ′ , etc. are understood to have been

chosen so that they satisfy all the natural compatibility conditions.

It is easy to describe the value of k′α, with these conventions on the measures. We shall

infer it from the exact jump formula, stated in the special case that D′ = 1, G = M and

M quasisplit, and with (M,α, σ) in place of (M̃ ′, α′, σ′). If h ∈ C(M, ζ), Harish-Chandra’s

original jump formula for the invariant orbital integral

hM (γ exp θHα), θ 6= 0,

takes the form

(3.9) jα
(
εhM (γ)

)
= −πi ‖Hα‖hMα

(γ),

expressed in terms of the obvious variant of notation above. (See [H2, Theorem 9.1], [A2,

Lemma 6.3].) Shelstad’s jump formula for the stable orbital integral

hM (σ exp θHα), θ 6= 0,

becomes

(3.10) jα
(
εhM (σ)

)
= −πi dα ‖Hα‖hMα(σ),

for dα ∈ {1, 2}, as above. It can be derived from (3.9) in the same way that [S1, Lemma

4.3] was proved on p. 30 of [S1] from Lemmas 4.5 and 4.2 of [S1], provided of course that
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one takes into account the different normalizations of measures. The original constant is

thus given by

k′α = −πi d′α ‖H ′
α‖,

where d′α = dα′ is the analogue for α′ of dα.
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§4. Stabilization of parabolic boundary conditions

In this section we shall consider the boundary component defined by a real root β′

of T ′. We will again obtain jump conditions for the discontinuities of our distributions.

In this case, it will be necessary to describe the values of the jumps quite precisely. To

simplify matters, we may as well assume that T ′ is R-elliptic in M ′.

The problem is to stabilize the corresponding discontinuities for the basic invariant

distributions IM (γ, f). Suppose that T is a maximal torus in M over R for which T ′ is

an M -image in M ′. Then T is R-elliptic in M . The real root β′ corresponds to a real

root β of (G,T ). As in §3, we shall sometimes treat γ as an element in T (R) rather than

an elliptic conjugacy class in M(R). In particular, we often regard IM (γ, f) as a smooth

function of γ ∈ TG-reg(R).

The discontinuities for IM (γ, f) about β are expressed in terms of a modified distri-

bution. Let Mβ ⊃M be the Levi subgroup of G for which

aMβ
=

{
H ∈ aM : β(H) = 0

}
.

We then set

Iβ
M (γ, f) = IM (γ, f) + ‖β∨‖ log |β(γ)− β(γ)−1|IMβ

(γ, f),

where ‖β∨‖ is the norm of the coroot β∨, relative to the inner product on aM that is implicit

in the definition of IM (γ, f). (It is understood that IMβ
(γ, f) is defined with respect to

the restriction to aMβ
of the inner product on aM .) This the modified distribution. We

shall review the jump conditions it satisfies about β, and then see how to stabilize them.

There is a preliminary matter to be treated first. It is to reformulate the definitions

of §1 in terms of the β-modified distributions Iβ
M (γ, f). In proving the required compat-

ibility conditions, we shall introduce some notions that will also be needed in our later

stabilization of the boundary conditions.
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The objects M ′, T ′ and β′ are fixed. We again work with a given transfer factor ∆M ,

with associated data (M̃ ′, ξ̃′M ) and T̃ ′, even though ∆M is ultimately supposed to vary. A

root β of (G,T ) that transfers to β′ is unique, in contrast to the case studied in the last

section. This is because β can be identified with a character on the split component AM

of the center of M , (and hence also a character on each split component AMι
). It therefore

transfers under the canonical isomorphism between AM and AM ′ to a character on AM ′ ,

which can be identified with β′.

The coroot β∨ can be identified with a character on M̂ . The kernel

Ẑβ =
{
z ∈ Z(M̂)Γ : β∨(z) = 1

}
of its restriction to Z(M̂)Γ will be of special interest. Observe that Z(M̂β)Γ is a subgroup

of Ẑβ , with finite quotient

Kβ = Ẑβ/Z(M̂β)Γ.

We shall write Eβ
M ′(G) for the subset of data G′ ∈ EM ′(G) such that β′ is a root of (G′, T ′).

Recall that EM ′(G) is parametrized by the set of points s′ in s′MZ(M̂)Γ, taken modulo

Z(Ĝ)Γ. An element G′ in EM ′(G) belongs to Eβ
M ′(G) if and only if the corresponding point

s′ lies in

Ẑ+
β =

{
s′ ∈ s′MZ(M̂)Γ : β∨(s′) = 1

}
,

a set on which Ẑβ acts simply transitively.

Let σ′ be a point in T̃ ′G-reg(R). We define modified forms of distributions in §2 by

Iβ
M (σ′, f) = IM (σ′, f) + ‖β∨‖ log |β′(σ′)− β′(σ′)−1|IMβ

(σ′, f)

and

IE,β
M (σ′, f) = IEM (σ′, f) + ‖β∨‖ log |β′(σ′)− β′(σ′)−1|IEMβ

(σ′, f).

If G is quasisplit, we set

SG,β
M (σ, f) = SG

M (σ, f) + |Kβ |−1‖β∨‖ log |β(σ)− β(σ)−1|SG
Mβ

(σ, f),
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for any σ ∈ TG-reg(R). We also set SG,β
M (M ′, σ′, f) equal to the original distribution

SG
M (M ′, σ′, f) if M ′ 6= M∗, and equal to the distribution

ŜG∗,β∗

M∗ (σ∗, f∗) = SG,β
M (σ, f)

if M ′ = M∗ and (β, σ) maps to the pair (β∗, σ∗) = (β′, σ′). It follows inductively from the

descent formulas (2.12)–(2.15) that the β-versions of the distributions satisfy the obvious

analogue of Theorem 1.1 if and only if the original distributions satisfy the theorem itself.

We will need to know that the β-distributions also satisfy analogues of the relations (1.4),

(1.8), (1.9) and (1.10).

It follows from the definitions that

Iβ
M (σ′, f) =

∑
γ∈ΓG-reg(M)

∆M (σ′, γ)Iβ
M (γ, f),

since β′(σ′) = β(γ) whenever ∆M (σ′, γ) 6= 0. This is the analogue of (1.4). If G is

quasisplit, the analogue

IE,β
M (σ′, f) = Iβ

M (σ′, f)

of (1.10) holds by definition. To formulate analogues of the other two relations, we define

ŜG̃′,β′

M̃ ′ (σ′, f ′) for any G′ ∈ EM ′(G) by using the prescription above if G′ belongs to Eβ
M ′(G),

and setting it equal to ŜG̃′

M̃ ′(σ′, f ′) otherwise.

Lemma 4.1. (a) If G is not quasisplit,

IE,β
M (σ′, f) =

∑
G′∈EM′ (G)

ιM ′(G,G′)ŜG̃′,β′

M̃ ′ (σ′, f ′).

(b) If G is quasisplit,

SG,β
M (M ′, σ′, f) = Iβ

M (σ′, f)−
∑

G′∈E0
M′ (G)

ιM ′(G,G′)ŜG̃′,β′

M̃ ′ (σ′, f ′).

Proof. Following [A11, §3], we set ε(G) equal to 1 or 0, according to whether G is

quasisplit or not. The formulas (1.8)–(1.10) can then be combined as an identity between

the difference

(4.1) IEM (σ′, f)− ε(G)SG
M (M ′, σ′, f)
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and the sum

(4.2)
∑

G′∈E0
M′ (G)

ιM ′(G,G′)ŜG̃′

M̃ ′(σ′, f ′).

We need to establish a similar identity between their β-analogues

(4.3) IE,β
M (σ′f)− ε(G)SG,β

M ′ (M ′, σ′, f)

and

(4.4)
∑

G′∈E0
M′ (G)

ιM ′(G,G′)ŜG̃′,β′

M̃ ′ (σ′, f ′).

By definition, (4.4) equals the sum of (4.2) and the product of

(4.5) ‖β∨‖ log |β′(σ′)− β′(σ′)|−1

with

(4.6)
∑

G′∈Eβ

M′ (G)∩E0
M′ (G)

|Kβ′ |−1ιM ′(G,G′)ŜG̃′

M̃ ′
β

(σ′, f ′).

We have written M ′
β for the Levi subgroup M ′

β′ ∈ L(M ′) of G′ defined for the real root

β′ as above. We identify it with an element in Eβ
M ′(Mβ) by projecting the point s′ in Ẑ+

β

that represents G′ onto its image in Ẑ+
β /Z(M̂β)Γ. This allows us to decompose the sum

over G′ in (4.6) into a double sum over M ′
β ∈ E

β
M ′(Mβ) and G′β ∈ E0

M ′
β
(G). Since

ιM ′(G,G′) = ιM ′(Mβ ,M
′
β) ιM ′

β
(G,G′β),

the expression (4.6) becomes

∑
M ′

β
∈Eβ

M′ (Mβ)

|Kβ′ |−1ιM ′(Mβ ,M
′
β)

∑
G′

β
∈E0

M′
β

(G)

ιM ′
β
(G,G′)ŜG̃′

M̃ ′
β

(σ′, f ′).

The sum over G′β equals

IEMβ
(σ′, f)− ε(G)SG

Mβ
(M ′

β , σ
′, f).
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The coefficients in the sum over M ′
β satisfy

|Kβ′ |−1ιM ′(Mβ ,M
′
β)

=|Ẑβ′/Z(M̂ ′
β)Γ|−1|Z(M̂ ′)Γ/Z(M̂)Γ||Z(M̂ ′

β)Γ/Z(M̂β)Γ|−1

=|Ẑβ′/Z(M̂β)Γ|−1|Z(M̂ ′)Γ/Z(M̂)Γ|

=|Ẑβ/Z(M̂β)Γ|−1

=|Kβ |−1,

since every class in Z(M̂ ′)Γ/Z(M̂)Γ has a representative in the subgroup Ẑβ′ of Z(M̂ ′)Γ.

The expression (4.6) therefore equals the difference

|Kβ |−1
∑
M ′

β

IEMβ
(σ′, f)− |Kβ |−1

∑
M ′

β

ε(G)SG
Mβ

(M ′
β , σ

′, f).

From the descent formula (2.13) (with Mβ in place of M), we see that IEMβ
(σ′, f) is in-

dependent of M ′
β . Since M ′

β ranges over a set on which Kβ acts simply transitively, the

first term reduces to IEMβ
(σ′, f). By the descent formula (2.15) (applied again to Mβ),

the distribution ŜG
Mβ

(M ′
β , σ

′, f) vanishes unless M ′
β equals M∗

β . If M ′
β does equal M∗

β , M ′

equals M∗, and the distribution equals SG
Mβ

(σ, f), for a point σ that maps to σ′ = σ∗. It

follows that (4.6) equals

IEMβ
(σ′, f)− |Kβ |−1 ε(G,M ′)SG

Mβ
(σ, f),

where

ε(G,M ′) =

 1, if G is quasisplit and M ′ = M∗,

0, otherwise.

We can now add (4.1) to the product of (4.5) with the expression we have obtained

for (4.6). The resulting expression equals (4.3), according to the definitions above. Since

(4.1) equals (4.2), we conclude that (4.3) does indeed equal (4.4).

If G is not quasisplit, ε(G) = 0 and E0
M ′(G) = EM ′(G). The equality of (4.3) and (4.4)

then reduces to the required formula of (a). If G is quasisplit, ε(G) = 1 and IE,β
M (σ′, f)

44



equals Iβ
M (σ′, f). In this case, the equality of (4.3) and (4.4) becomes the required formula

of (b). �

We now recall the jump conditions about β satisfied by Iβ
M (γ, f). Following §3, we

change notation slightly, taking γ now to be a point in general position in the subgroup

T β(R) =
{
γ ∈ T (R) : β(γ) = 1

}
of T (R). The centralizer Gγ is a connected reductive group over R, whose derived group

Gγ,der is isomorphic over R to either SL(2) or PGL(2). Let Tβ be an elliptic maximal

torus in Gγ such that the Lie algebras of Tβ ∩Gγ,der and T ∩Gγ,der are orthogonal with

respect to the Killing form. Then Tβ is R-elliptic in the Levi subgroup Mβ . This takes us

back to the setting of §3, with M , T , Mβ and Tβ here in place of the groups denoted Mα,

Tα, M and T in §3. In fact, if we fix an inverse Cayley transform

Cβ = Int(sβ), sβ ∈ Gγ,der,

that takes T to Tβ , and let α be the root of (Mβ , Tβ) corresponding to β, we have

(Mβ)α = M , (Tβ)α = T and Cα = C−1
β . In particular, we have the elements Hβ = Zα and

Zβ = Hα in the Lie algebra of Gγ,der defined in §3.

Suppose thatD is an invariant differential operator on C∞(T, ζ). If wβ is the reflection

in T about β, the composition

wβD = wβ ◦D ◦ w−1
β

is also an invariant differential operator C∞(T, ζ), and the transform

Dβ = Dβ,cβ
= Cβ(wβD −D)

is an invariant differential operator on C∞(Tβ , ζ). We write jβ
(
DIβ

M (γ, f)
)

for the jump

lim
r→0+

DIβ
M (γ exp rHβ , f)− lim

r→0−
DIβ

M (γ exp rHβ , f).
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The jump condition for Iβ
M (γ, f) is the identity

(4.7) jβ
(
DIβ

M (γ, f)
)

= lim
θ→0

ε(θ)DβIMβ

(
γβ(θ), f

)
,

for

ε(θ) = −i · sign θ,

as in (3.8), and

γβ(θ) = γβ(Cβ , θ) = γ exp(θZβ).

It of course includes the existence of the two half limits on the left hand side of (4.7). The

existence of the limit on the right hand side follows from the fact that Dβ is antisymmetric

with respect to reflection about α in Tβ . (See [A2, Theorem 6.1 and Corollary 8.4] and

[A3, Lemma 13.1]. The factor ε(θ) was inadvertently omitted from the second reference.)

Our task is to stabilize (4.7). The starting point will be a fixed element σ′ in general

position in the kernel (T̃ )β′(R) of β′ in T̃ ′(R), and an invariant differential operator D′

on C∞(T ′,M, ζ). We note that σ′ is still strongly M -regular, even though it is not G-

regular, since β is not a root of (M,T ). The transfer H ′
β of Hβ under any M -admissible

isomorphism from T to T ′ depends only on β′. We write

jβ′
(
a′(σ′)

)
= lim

r→0+
a′(σ′exp rH ′

β)− lim
r→0−

a′(σ′exp rH ′
β),

for any section a′ ∈ C∞(T ′G-reg,M, ζ) for which the two half limits exist.

Our main concern will be the jump attached to the section

a′(·) = D′Iβ
M (·, f).

According to the definition (1.4), we can express this jump as a sum over classes

γ ∈ Γreg(M) with ∆M (σ′, γ) 6= 0.. Writing γ also for a fixed representative in M(R)

of a given class, we obtain a unique M -admissible isomorphism from the maximal torus
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T = Mγ to T ′ that takes γ to the image of σ′ in T ′. We use it to transfer D′ to an invariant

differential operator D on C∞(T, ζ). It then follows from (1.4) and (2.4) that

(4.8) jβ′
(
D′Iβ

M (σ′, f)
)

=
∑

γ∈Γreg(M)

∆M (σ′, γ)jβ
(
DIβ

M (γ, f)
)
.

The formula (4.7) allows us to express the right hand side of (4.8) as a limit

lim
θ→0

ε(θ)
∑

γ∈Γreg(M)

∆M (σ′, γ)DβIMβ

(
γβ(θ), f

)
,

in which the differential operator Dβ on the right depends on D′, γ and Cβ . We would

like to express this limit in terms of endoscopic data M ′
β for Mβ . The basic problem is to

inflate the sum over Γreg(M) to one over Γreg(Mβ).

The right hand side of (4.8) amounts to a sum over the finite subset of elements

γ ∈ Γreg(M) with ∆M (σ′, γ) 6= 0. We fix one such element γ. The sum can then be taken

over the set of γ1 ∈ Γreg(M) in the stable class of γ. There is a bijection

(4.9) γ1 −→ inv(γ, γ1),

from this set onto the group

E(T ) = Im
(
H1(R, Tsc)−→H1(R, T )

)
,

whose definition we recall.

Since M is supposed to be a K-group in its own right, it comes with an isomorphism

ψιι1 from the component Mι1 of γ1 onto the component Mι of γ. The image ψιι1(γ1) of γ1

is Mι-conjugate to γ. We can therefore write

γ = hψιι1(γ1)h−1,

for some point h ∈Mι,sc(C). If τ belongs to the Galois group Γ = Gal(C/R), we have

γ = τ(γ) = τ(h)τ
(
ψιι1(γ1)

)
τ(h−1)

= τ(h)
(
τ(ψιι1)

)
(γ1)τ(h−1),
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since γ and γ1 are both defined over R. It follows that

γ1 =
(
τ(ψιι1)

−1 ◦ Int
(
τ(h)

)−1)(γ),
and consequently that

γ =
(
Int(h) ◦ ψιι1

)
(γ1)

=
(
Int(h) ◦ ψιι1 ◦ τ(ψιι1)

−1 ◦ Int
(
τ(h)

)−1)(γ)
= Int

(
huιι1(τ)τ(h)

−1
)
(γ),

in view of condition (i) on [A11, p. 212]. Since γ is strongly M -regular, the function

τ −→ huιι1(τ)τ(h)
−1, τ ∈ Γ,

takes values in the preimage Tsc of T in Mι,sc. This function is a 1-cocycle, by virtue of the

fact that M is a K-group. We define inv(γ,γ1) to be its image in H1(R, T ). It is then easy

to check that the mapping (4.9) is a bijection from the original set of conjugacy classes

onto the group E(T ). (The surjectivity of the mapping also relies on the fact that G is a

K-group.)

We recall that by Tate-Nakayama duality, there is a canonical isomorphism from E(T )

onto the dual of the finite abelian group

K(T ) = π0

(
T̂Γ/Z(Ĝ)Γ

)
= T̂Γ/Z(M̂)Γ.

(See for example [K2]. The second equality is a consequence of the fact that T is elliptic in

M . It is easy to see that K(T ) is in fact a 2-group.) Keep in mind that there is a unique

admissible isomorphism from T = Mγ onto T ′ that takes γ to the image in T ′(R) of σ′. We

write κ′M = κ(σ′, γ) for the projection onto K(T ) of the image of s′M in T̂Γ under the dual

isomorphism from T̂ ′ to T̂ . We recall here that s′M denotes the element in the subgroup

Z(M̂ ′)Γ of (T̂ ′)Γ attached to M ′. The transfer factors in (4.8) then satisfy an identity

(4.10) ∆M (σ′, γ) = ∆M (σ′, γ1)〈κ′M , inv(γ, γ1)〉.
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(See [A11, p. 224] or [KS, Lemma 5.1.D]. The usual custom [LS1] to take T to be a maximal

torus in the quasisplit inner twist G∗ of G that we have generally suppressed here. The

preimage κ′M in T̂Γ, denoted by (s′M )T in [LS1], then depends on a choice of admissible

embedding of T ′ into G∗ with image T .)

We need to relate both E(T ) and K(T ) with the corresponding groups E(Tβ) and

K(Tβ) attached to Tβ . Our discussion at this point is motivated by that of [S1, §4]. The

inverse Cayley transform Cβ = Int(sβ) is an isomorphism from T to Tβ . We use it to

identify the dual group T̂β with T̂ . Then

K(Tβ) = π0

(
T̂Γβ/Z(Ĝ)Γβ

)
= T̂Γβ/Z(M̂β)Γβ ,

where Γβ = {1, σTβ
} represents the action of the Galois group Γ on T̂ obtained from Tβ .

The nontrivial operator in Γβ satisfies

σTβ
= σTw

∨
β ,

where σT is the corresponding operator on T̂ obtained from T , and w∨β = wβ∨ is the simple

reflection in T̂ about β∨. In particular,

Z(M̂β)Γβ = Z(M̂β)Γ,

since w∨β centralizes Z(M̂β). Following standard notation, we write

w∨β (t) = t
(
β∨(t)

)−β
, t ∈ T̂ .

The group Ẑβ , defined prior to Lemma 4.1 as the kernel of β∨ in Z(M̂)Γ, is therefore

contained in T̂Γβ . Its quotient

Kβ = Ẑβ/Z(M̂β)Γ = Ẑβ/Z(M̂β)Γβ

is a subgroup of K(Tβ), whose associated quotient in K(Tβ) we denote by

Kβ(Tβ) = K(Tβ)/Kβ .
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As a co-root for Ĝ, β represents a mapping ofGL(1,C) into T̂ whose image is contained

in Z(M̂)Γ, since β is real and T is R-elliptic in M . Any point t ∈ T̂Γ therefore has a

Z(M̂)Γ-translate

tβ = tz, z ∈ Z(M̂)Γ,

with β∨(tβ) = 1, and which consequently lies in T̂Γβ . Since z is uniquely determined

modulo Ẑβ , the correspondence t → tβ gives a well defined injection from K(T ) into

Kβ(Tβ). Since β∨ is trivial on Ẑβ , it descends to a character on the quotient Kβ(Tβ) of

K(Tβ). The image of the injection is then the kernel

Kβ(T ) =
{
t ∈ Kβ(Tβ) : β∨(t) = 1

}
of β∨ in Kβ(Tβ).

We have constructed a commutative diagram

(4.11)

K(Tβ) � Kβ(Tβ) ←↩ Kβ(T )xo
K(T )

homomorphisms of (abelian) 2-groups. This in turn is dual to a commutative diagram

(4.12)

E(Tβ) ←↩ Eβ(Tβ) � Eβ(T )yo
E(T )

of homomorphisms among corresponding dual groups. The group Eβ(Tβ) is the annihilator

of Kβ in E(Tβ). As a character on Kβ(Tβ), of order dβ equal to 1 or 2, β∨ generates a

subgroup of Eβ(Tβ) of order dβ . The group Eβ(T ) is the associated quotient. (Notice that

by regarding β∨ as an element in Eβ(Tβ), we are identifying it with the coroot α∨. This is

of course a consequence of our having identified T̂β with T̂ .)
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The mappings in (4.11) were defined in terms of the inverse Cayley transform Cβ .

Now Cβ is determined by T and Tβ only up to the action of Γ. If Cβ is replaced by its

complex conjugate

Cβ = Cβwβ = wαCβ ,

the isomorphism of T with Tβ , which was attached to Cβ and allowed us to identify T̂β

with T̂ , has to be composed with wβ . However, it follows from the definitions that the

vertical mappings on the right hand sides of (4.11) and (4.12) do not change, and are

therefore independent of Cβ . This is essentially equivalent to the identity

(4.13) inv
(
γβ , wα(γβ)

)
= β∨

of elements in E(Tβ) attached to any G-regular element γβ in Tβ(R). (See also [S2, Propo-

sition 2.1].) The identity (4.13) implies also that the order dβ equals the integer dα of

§3.

Suppose now that M ′
β belongs to Eβ

M ′(Mβ). Then β′ is a real root of (M ′
β , T

′). It

provides the setting for an inverse Cayley transform C ′β = C ′β′ from T ′ to an elliptic

maximal torus T ′β = T ′β′ in M ′
β . This gives us an element Z ′β = Zβ′ in the Lie algebra of

T ′β(R), and a strongly G-regular point

σ′β(θ) = σ′exp(θZ ′β)

in T̃ ′β(R) for each small θ 6= 0. It also attaches an invariant differential operator

D′
β = D′

β′ = C ′β(w′βD
′ −D′) = Cβ′(wβ′D

′ −D′)

on C∞(T ′β ,Mβ , ζ) to the original differential operator D′. One sees easily from the defi-

nitions that D′
β is the transfer of the differential operator Dβ , relative to the admissible

isomorphism from Tβ to T ′β that takes γβ(θ) to σ′β(θ). In other words, it fits into the

commutative diagram
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(4.14)

D′ −→ D′
βy y

D −→ Dβ

Lemma 4.2. Suppose that ∆M is the restriction of a transfer factor ∆Mβ
∈ T (M ′

β ,Mβ)

to M . Then

∆M (σ′, γ) = ∆Mβ

(
σ′β(θ), γβ(θ)

)
,

for any γ ∈ Γreg(M) and θ 6= 0.

Proof. This lemma is implicit in the work of Shelstad, specifically the transfer of

elliptic boundary conditions that was part of her proof of the transfer of functions. The

proof was actually carried out before the introduction of general transfer factors, but was

later shown to be compatible with the transfer factors [LS2, Theorem 2.6.A]. Rather than

attempt to relate Shelstad’s original arguments [S1] to the later transfer factors of [LS1],

we shall work backwards. We shall deduce the lemma from the existence of the general

transfer mapping for Mβ .

We can assume that σ′ is an M -image of γ, since both sides of the putative for-

mula would otherwise vanish. As a nonvanishing function on a domain in the product

of T̃ ′β,G-reg(R) with Tβ,G-reg(R), the transfer factor ∆Mβ
(·, ·) is the product of a locally

constant function with a character on M̃ ′
β(R). It follows that the function

∆Mβ
= ∆Mβ

(
σ′β(θ), γβ(θ)

)
, θ > 0,

of θ is actually constant. In fact, it follows from (4.10), (4.13) and the fact that σ′β(θ) is

stably conjugate to σ′β(−θ) that

∆Mβ
= ∆Mβ

(
σ′β(θ), γβ(θ)

)
= ∆Mβ

(
σ′β(θ), γβ(−θ)

)
, θ 6= 0.

Our task is to show that ∆Mβ
equals ∆M (σ′, γ).

We shall compare the explicit jump conditions for invariant and stable orbital integrals

discussed at the end of the last section. Recall that these conditions are formulated in
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terms of the imaginary noncompact root α of (Mβ , Tβ) attached to β and Cβ , and the

corresponding integer dα = dβ . These objects of course have analogues α′ and d′α = dα′

for M̃ ′
β .

Suppose that h is any function in C(Mβ , ζ). We then have the formula

jα′
(
εh′(σ′)

)
= −πi d′α ‖H ′

α‖h′M (σ′),

for the jump

jα′
(
εh′(σ′)

)
= lim

θ→0+

(
ε(θ)h′

(
σ′β(θ)

)
− ε(−θ)h′

(
σ′β(−θ)

))
= lim

θ→0+
(−i)

(
h′

(
σ′β(θ)

)
+ h′

(
σ′β(−θ)

))
,

given by (3.10). Suppose further that h is a non-negative function with h(γ) 6= 0, and is

supported on a small neighbourhood of γ. The right hand side of the formula then reduces

to

−πi d′α ‖H ′
α‖∆M (σ′, γ)hM (γ).

Moreover, if θ 6= 0 is small, the points γβ(θ) and γβ(−θ) represent the only classes in

ΓG-reg(Mβ) in the support of hMβ
of which σ′β(θ) is an image. We recall that dα equals 1

or 2, according to whether or not these points represent the same class. Therefore

h′
(
σ′β(θ)

)
=

 ∆M hMβ

(
γβ(θ)

)
, if dα = 1,

∆M

(
hMβ

(
γβ(θ)

)
+ hMβ

(
γβ(−θ)

))
, if dα = 2.

The left hand side of the formula consequently equals

lim
θ→0+

(−i)dα ∆Mβ

(
hMβ

(
γβ(θ) + hMβ

(
γβ(−θ)

))
= lim

θ→0+
dα ∆Mβ

(
ε(θ)hMβ

(
γβ(θ)

)
− ε(−θ)hMβ

(
γβ(−θ)

))
= dα ∆Mβ

jα
(
εhMβ

(γ)
)

= −πi dα ‖Hα‖∆Mβ
hM (γ),

by (3.9). The norms ‖H ′
α‖ and ‖Hα‖ are equal, since it is understood that the underlying

inner products on the spaces aG
M and aG̃′

M̃ ′ match. Moreover, d′α equals dα. This is a conse-

quence of the properties of the diagram (4.11) and the identity dα = dβ , or alternatively,
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Proposition 4.4 of [S1]. Since hM (γ) 6= 0, the required identity

∆Mβ
= ∆M (σ′, γ)

then follows from the jump formula. �

Corollary 4.3. If γ and γ1 are as in (4.9), inv
(
γβ(θ), γ1,β(θ)

)
belongs to the subgroup

Eβ(Tβ) of E(Tβ), and its image in E(T ) under the mappings of (4.12) equals inv(γ, γ1).

Proof. If κ′M = κ(σ′, γ) and κ′β = κ′Mβ
= κ

(
σ′β(θ), γβ(θ)

)
, we can write〈

κ′β , inv
(
γβ(θ), γ1,β(θ)

)〉
= ∆Mβ

(
σ′β(θ), γ1,β(θ)

)−1∆Mβ

(
σ′β(θ), γβ(θ)

)
= ∆M (σ′, γ1)−1∆M (σ′, γ)

=
〈
κ′M , inv(γ, γ1)

〉
,

by the lemma and (4.10). If M ′
β ranges over groups in Eβ

M ′(Mβ), κ′β ranges over the

preimage in K(Tβ) of the image of κ′M in Kβ(Tβ) under the mappings (4.11). It follows

from the last identity that inv
(
γβ(θ), γ1,β(θ)

)
belongs to Eβ(Tβ). The endoscopic datum

M ′ is supposed to be fixed. However, we can still let it vary here in order to establish the

corollary. Since κ′M will then vary over K(T ), the second assertion of the corollary also

follows from the identity. �

We can now apply what we have learned to the jump formula (4.8). It follows from

(4.7) and Lemma 4.2 that the right hand side of (4.8) equals the limit

(4.17) lim
θ→0

ε(θ)
∑

γ∈Γreg(M)

∆Mβ

(
σ′β(θ), γβ(θ)

)
DβIMβ

(
γβ(θ), f

)
.

Let Γβ(Mβ , θ) be the set of classes in ΓG-reg(Mβ) that lie in the stable class of γβ(θ), for

some γ ∈ Γreg(M) in the stable class attached to σ′, and whose invariant relative to γβ(θ)

lies in the subset Eβ(Tβ) of E(Tβ). By Corollary 4.3, Γβ(Mβ , θ) consists of the classes of

elements of the form γβ(C̃β , θ), where γ ranges over the given stable class in Γreg(M),
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and C̃β ranges over inverse Cayley transforms. Since the right hand side of the original

limit (4.7) does not depend on the choice of Cayley transform, we can sum over the set of

Gγ(R)-conjugacy classes of Cayley transforms, a set whose order dα = dβ is independent

of γ, provided that we divide by the order dβ . Changing notation, we write γβ in place of

γβ(C̃β , θ). The expression (4.17) then equals

d−1
β lim

θ→0
ε(θ)

∑
γβ∈Γβ(Mβ ,θ)

∆Mβ

(
σ′β(θ), γβ

)
DβIMβ

(γβ , f).

Keep in mind that the differential operator Dβ here is attached to D′ and γβ , according to

our earlier conventions. It is defined in either of two equivalent ways by the commutative

diagram (4.14).

As an endoscopic datum in Eβ
M ′(Mβ), M ′

β corresponds to an point s′β in the subquo-

tient

K+
β = Ẑ+

β /Z(M̂β)Γ

of s′MZ(M̂)Γ on which the group Kβ acts simply transitively. If s belongs to Kβ , we write

M ′
β,s for the datum in Eβ

M ′(M) attached to the point s′βs, and σ′β,s(θ) for a representative

of the corresponding stable class in M ′
β,s. Suppose that γβ belongs to Γβ(Mβ , θ). By

Lemma 4.2, we have

∆Mβ

(
σ′β,s(θ), γβ

)
= ∆M (σ′, γ) = ∆Mβ

(
σ′β(θ), γβ

)
,

for some γ ∈ Γreg(M). We also have

κ
(
σ′β,s(θ), γβ

)
= κ′βs,

where κ′β = κ
(
σ′β(θ), γβ

)
. If γβ,1 is a general element in the Mβ-stable class of γβ , an

application of (4.10) to Mβ tells us that

∆Mβ

(
σ′β,s(θ), γβ,1

)
= ∆Mβ

(
σ′β,s(θ), γβ

)〈
κ′βs, inv(γβ , γβ,1)

〉−1

= ∆Mβ
(σ′, γ)

〈
κ′β , inv(γβ , γβ,1)

〉−1〈
s, inv(γβ , γβ,1)

〉−1
.
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Suppose that γβ,1 lies in the complement of Γβ(Mβ , θ). As a function of s ∈ Kβ , this

product is then a nontrivial affine character on Kβ . Its sum over s vanishes. We can

therefore inflate the last sum over γβ from Γβ(Mβ , θ) to ΓG-reg(Mβ), provided that we

also replace σ′β(θ) by σ′β,s(θ), and then take the normalized sum over s ∈ Kβ . For a

general element γβ of which σ′β(θ) is an image, we can still define objects Tβ and Dβ by

the natural transfer of the corresponding objects attached to any element in Γβ(Mβ , θ), or

equivalently, by the transfer of objects T ′β,s and D′
β,s attached to σ′β,s(θ) (defined by the

upper horizontal and right hand vertical arrows in (4.14)).

We have now shown that our expression for the right hand side of (4.8) can be written

as the product of the constant

εβ = d−1
β |Kβ |−1

with the limit

lim
θ→0

ε(θ)
∑

s∈Kβ

∑
γβ∈ΓG-reg(Mβ)

∆Mβ

(
σ′β,s(θ), γβ

)
DβIMβ

(γβ , f).

Recall that dβ is equal to the order of β∨ as an element in E(Tβ). An inspection of the

diagrams (4.11) and (4.12) reveals that the constant εβ then equals the order of E(T )

divided by that of E(Tβ). In the last limit, the sum over s can be replaced by a sum over

M ′
β in Eβ

M ′(Mβ), if we replace σ′β,s(θ) by the associated point σ′β(θ) defined by Cayley

transform in the given group M ′
β . The differential operator Dβ on C∞(Tβ , ζ) transfers to

the operator D′
β on C∞(T ′β ,Mβ , ζ) attached to M ′

β , and can be taken outside the sum over

γβ , by (2.4). The limit becomes

lim
θ→0

∑
M ′

β
∈Eβ

M′ (Mβ)

ε(θ)D′
βIMβ

(
σ′β(θ), f

)
,

since

D′
βIMβ

(
σ′β(θ), f

)
=

∑
γβ∈ΓG-reg(Mβ)

∆Mβ

(
σ′β(θ), γβ

)
DβIMβ

(γβ , f).
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We have at last obtained a satisfactory formula for the jump in (4.8). Let us write

(4.18) εβ(θ) = εβ ε(θ) = |E(T )||E(Tβ)|−1(−i sgn θ).

Our formula is then

(4.19) jβ′
(
D′Iβ

M (σ′, f)
)

= lim
θ→0

εβ(θ)
∑
M ′

β

D′
βIMβ

(
σ′β(θ), f

)
,

where M ′
β is summed over the set Eβ

M ′(Mβ).

Proposition 4.4. Suppose that M ′, T ′, β′, σ′ and D′ are as above, and that M ′
β represents

a variable element in Eβ
M ′(Mβ).

(a) If G is arbitrary,

(4.20) jβ′
(
D′IE,β

M (σ′, f)
)

= lim
θ→0

εβ(θ)
∑
M ′

β

D′
βI
E
Mβ

(
σ′β(θ), f

)
.

(b) If G is quasisplit,

(4.21) jβ′
(
D′SG,β

M (M ′, σ′, f)
)

= lim
θ→0

εβ(θ)
∑
M ′

β

D′
βS

G
Mβ

(
M ′

β , σ
′
β(θ), f

)
.

Remarks. 1. It is implicit in the assertions that the half limits defined by the left hand

sides of the two formulas all exist.

2. In the special case that M ′ = M∗, Theorem 1.1(b) asserts that the sum in (4.21)

can be taken over the single element M ′
β = M∗

β . Assuming the assertion, the formula

(4.20) could then be written in this case as

(4.22) jβ
(
DSG,β

M (σ, f)
)

= lim
θ→0

εβ(θ)DβS
G
Mβ

(
σβ(θ), f

)
,

where D, σ and Dβ denote analogues for G of the objects D′ = D∗, σ′ = σ∗ and D′
β = D∗

β .

Proof. We assume inductively that the analogue of (b) holds for any pair (G′,M ′) in

which G′ lies in both E0
M ′(G) and Eβ

M ′(G). At the end of §2, we took on a similar induction

hypothesis for the assertion of Theorem 1.1(b). This means that the analogue

(4.23) jβ′
(
D′ŜG̃′,β′

M̃ ′ (σ′, f ′)
)

= lim
θ→0

εβ′(θ)D′
βŜ

G̃′

M̃ ′
β

(
σ′β(θ), f ′

)
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of (4.22) for (G′,M ′) holds. If G′ belongs to the complement of Eβ
M ′(G), β′ is not a root

of (G′, T ′), and the point σ′ is strongly G′-regular. In this case ŜG̃′,β′

M̃ ′ (σ′, f ′) is smooth at

σ′, and the jump on the left hand side of (4.23) vanishes.

The proof is now similar to that of Lemma 4.1. It follows from Lemma 4.1 and the

definition of jβ′ that the difference

(4.24) jβ′
(
D′IE,β

M (σ′, f)
)
− ε(G)jβ′

(
D′SG,β

M (M ′, σ′, f)
)

equals ∑
G′∈E0

M′ (G)

ιM ′(G,G′) jβ′
(
D′ŜG̃′,β′

M̃ ′ (σ′, f ′)
)
.

The last expression can in turn be written as

∑
G′∈E0

M′ (G)∩Eβ

M′ (G)

ιM ′(G,G′)
(

lim
θ→0

εβ′(θ)D′
βŜ

G̃′

M̃ ′
β

(
σ′β(θ), f ′

))
,

by the discussion above. Following the proof of Lemma 4.1, we decompose the last sum

over G′ into a double sum over M ′
β ∈ E

β
M ′(Mβ) and G′β ∈ E0

M ′
β
(G), and write

ιM ′(G,G′) = ιM ′(Mβ ,M
′
β) ιM ′

β
(G,G′β).

We then write

ιM ′(Mβ ,M
′
β) εβ′(θ)

= |Z(M̂ ′)Γ/Z(M̂)Γ||Z(M̂ ′
β)Γ/Z(M̂β)Γ|−1||(T̂ ′)Γ/Z(M̂ ′)Γ||(T̂ ′β)Γ/Z(M̂ ′

β)Γ|−1ε(θ)

= |T̂Γ/Z(M̂)Γ||T̂Γ
β/Z(M̂β)Γ|−1ε(θ)

= εβ(θ).

The difference (4.24) therefore equals the sum over M ′
β of the expression

∑
G′

β

lim
θ→0

εβ(θ) ιMβ
(G′, G′β)D′

βŜ
G̃′

M̃ ′
β

(
σ′β(θ), f ′

)
, G′β ∈ E0

M ′
β
(G).
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The last step is to take the limit operation outside the two sums, and then apply the

definitions (1.8)–(1.10) (with Mβ in place of M) to the resulting sum over Gβ . We conclude

that the difference (4.24) equals the limit

(4.25) lim
θ→0

εβ(θ)
∑
M ′

β

(
D′

βI
E
Mβ

(
σ′β(θ), f

)
− ε(G)D′

βS
G
M

(
M ′

β , σ
′
β(θ), f

))
.

If G is not quasisplit, ε(G) = 0. The equality of (4.24) and (4.25) then reduces to the

required formula (4.20) of (a). If G is quasisplit, ε(G) = 1, and the formula of (a) follows

from (4.19) and the definition (1.10). In this case, the equality of (4.24) and (4.25) reduces

to the required formula (4.21) of (b). �
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§5. Stabilization of the asymptotic formula

There is one more ingredient we need for our proof of Theorem 1.1. It is the invariant

asymptotic formula

(5.1) lim
T−→

P,r
∞
IM (γT , fT ) =

∫
TεP

(M,ζ)

θM (γ, τ)IP
M (τ, f)dτ

that was the main result [A14, Corollary 6.2] of the last paper. We can in fact regard this

formula as a boundary condition at infinity in the noncompact torus T (R). An essential

object to be stabilized here is the linear form

(5.2) IP
M (γ, f) =

∫
TεP

(M,ζ)

θM (γ, τ)IP
M (τ, f)dτ

that occurs on the right hand side of the formula. We begin by recalling some of the terms

in the formula, as we will be applying them here in slightly greater generality.

First of all, the function f in (5.1) and (5.2) has to be taken from a subspace of C(G, ζ)

for the formulas to make sense. It suffices to let f be a function in the ζ−1-equivariant

Hecke algebra

H(G, ζ) =
⊕

ι∈π0(G)

H(Gι, ζι)

on G(R). The mapping f → fG takes H(G, ζ) to a subspace

IH(G, ζ) =
⊕

ι

IH(Gι, ζι)

of I(G, ζ). As a space of functions on Πtemp(G, ζ), IH(G, ζ) was characterized in [CD]. One

can also identify IH(G, ζ) with the Paley-Wiener space on the space of virtual characters

Ttemp(G, ζ) =
∐

ι

Ttemp(Gι, ζι).

(See [A6]. For any ι, Ttemp(Gι, ζι) is the subset of virtual characters in the set denoted

T
(
Gι(R)

)
in [A6] whose Zι(R)-central character equals ζι.)
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We write a∗M,Z for the kernel of the projection of a∗M onto a∗Z . There are then free

actions π → πλ and τ → τλ of ia∗M,Z on the sets Πtemp(M, ζ) and Ttemp(M, ζ). These

mappings can obviously also be defined if λ is any element in the complexification a∗M,Z,C

of a∗M,Z , but their images will then consist of nontempered virtual characters. If ε belongs

to the real space a∗M,Z , we write Tε(M, ζ) for the set of virtual characters

{
τλ : λ ∈ ε+ ia∗M,Z , τ ∈ Ttemp(M, ζ)

}
.

The asymptotic formula (5.1) depends on a fixed parabolic subgroup P ∈ P(M). The

domain of integration on the right hand side of the formula is then defined by a small

point ε = εP in general position in the corresponding chamber (a∗M,Z)+P in a∗M,Z . The limit

on the left hand side is over points T in the set

ar
P =

{
H ∈ aM : α(H) > r‖H‖, α ∈ ∆P

}
,

defined by the simple roots ∆P of (P,AM ), and a fixed, small positive number r.

The other ingredients in (5.1) are given essentially by the definitions of [A14]. For

example

γT = γ expT,

while f → fT is the isomorphism of C(G, ζ) defined as in §1 of [A14]. The function θM (γ, τ)

is the kernel of the transformation

aM (γ) =
∫

Ttemp(M,ζ)

θM (γ, τ)aM (τ)dτ, aM ∈ I(M, ζ),

that relates to two ways of viewing a function in I(M, ζ). The linear form IP
M (τ, f) is the

invariant distribution

IP
M (τ, f) = tr

(
mM (τ, P )IP (τ, f)

)
= mM (τ, P )fM (τ),

where

fM (τ) = fG(τG)
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is the restriction of fG to the induced image of Ttemp(M, ζ) in Ttemp(G, ζ), and mM (τ, P )

is defined in terms of Plancherel densities as in [A14, §6].

What does it mean to stabilize IP
M (γ, f) ? In theory, the process entails repeating the

definitions of §1 with IP
M (γ, f) in place of IM (γ, f). However, the distributions IP

M (γ, f)

are much simpler than the original ones. The basic step will be to stabilize the function

mM (τ, P ) by an analogue of Theorem 5 of [A10].

We write Φtemp(M, ζ) for the set of (M̂ -orbits of) tempered Langlands parameters

φ : WR −→ LM

whose central character on Z(R) equals ζ. Any such parameter φ determines a finite packet

Πφ =
∐

ι

Πφι
, Πφι

⊂ Πtemp(Mι, ζι),

of representations in Πtemp(M, ζ), and a finite packet

Tφ =
∐

ι

Tφι , Tφι ⊂ Ttemp(Mι, ζι),

of virtual representations in Ttemp(M, ζ). The packet Πφι
for the connected group Mι is

defined as in [L3], with the understanding that it is empty if φι is not relevant to Mι. The

packet Tφι
is defined as the subset of Ttemp(M, ζ) whose linear span equals that of Πφι

.

The Langlands classification for real groups asserts that both Πtemp(M, ζ) and Ttemp(M, ζ)

can be decomposed into disjoint unions over φ of the associated packets. Our notation is

not completely standard here, since Φtemp(M, ζ) usually denotes the subset of parameters

φ that are relevant to M . In the present context, this means that any Levi subgroup of

LM that contains the image of φ is dual to a Levi K-subgroup of M , or equivalently, that

the packet Πφ (or Tφ) is nonempty.

There is a free action φ→ φλ of ia∗M,Z on Φtemp(M, ζ), obtained by identifying a∗M,Z,C

with a subspace of the Lie algebra of Z(M̂)Γ. This action is compatible with the two kinds

of packets, and the two actions of ia∗M,Z on Πtemp(M, ζ) and Ttemp(M, ζ). It again extends
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to the complexification a∗M,Z,C, but if λ lies in the complement of ia∗M,Z , φ → φλ maps

Φtemp(M, ζ) to its complement in the set Φ(M, ζ) of general Langlands parameters. We

again write

Φε(M, ζ) =
{
φλ : λ ∈ ε+ ia∗M,Z , φ ∈ Φtemp(M, ζ)

}
,

for any point ε in a∗M,Z .

Suppose that {τλ} is the a∗M,Z,C-orbit of an element τ = τ0 in Ttemp(M, ζ). The set

of values {mM (τλ, P )} assumed by the function used to define IP
M (τ, f) is a meromorphic

function of λ, whose restriction to ia∗M,Z is analytic. It is defined in terms of the (inverses

of) Plancherel densities

mQ|P (τλ) = µQ|P (τλ)−1, Q ∈ P(M),

attached to the virtual character τλ. One forms the (G,M)-family

mQ(ζ, τλ, P ) = mQ|P (τλ)−1mQ|P (τλ+ 1
2Λ), Q ∈ P(M), Λ ∈ ia∗M,Z ,

and then defines the function mM (τλ, P ) as the associated limit

(5.3) mM (τλ, P ) = lim
Λ→0

∑
Q∈P(M)

mQ(Λ, τλ, P )θQ(Λ)−1.

(See [A14, §5,6].) Let φ ∈ Φtemp(M, ζ) be the parameter such that τ lies in Tφ. The

functions mQ|P (φλ) = mQ|P (τλ) then depend on τλ through φλ. To be more precise, let

ρQ|P be the representation of LM on the intersection of the Lie algebras of the unipotent

radicals of P̂ and Q̂. If λ is purely imaginary, the inverse Plancherel density is defined

explicitly in terms of archimedean L-functions by

mQ|P (φλ) = cQ|P
∣∣L(0, ρQ|P ◦ φλ)

∣∣2∣∣L(1, ρQ|P ◦ φλ)
∣∣−2

,

where cQ|P is a constant that depends only on the choice of Haar measure on

NP̄ (R) ∩ NQ(R) implicit in the Plancherel density [A5, §3]. For general λ, mQ|P (φλ)
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is defined by meromorphic continuation of the real analytic function given by imaginary

λ. Since this function depends only on φ, so does the limit

mM (φλ, P ) = mM (τλ, P ).

Suppose that M ′ is the elliptic endoscopic datum for M fixed earlier, with auxiliary

datum (M̃ ′, ξ̃′). The embedding of Z(M̂)Γ into Z(̂̃M)Γ allows us to identify a∗M,Z,C with

the subspace a∗
M̃ ′,Z̃′,C of the Lie algebra of Z(̂̃M)Γ. We therefore have an action φ′ → φ′λ

of ia∗M,Z on Φtemp(M̃ ′, ζ̃ ′). From our point of view, the most important aspect of the

Langlands parameters forM̃ ′ is that they form the domain of a canonical mapping φ′ → φ

from Φtemp(M̃ ′, ζ̃ ′) to Φtemp(M, ζ). Indeed, the central character η′ of any φ′ on C̃ ′(R) is

derived from ξ̃′ in such a way that φ′ descends to an L-homomorphism φ′ from the Weil

group WR to M′. We define φ to be the composition ξ′ ◦ φ′ of the two horizontal arrows

in the diagram
LM̃ ′

↗φ′

xξ̃′

WR
φ̄′−→ M′ ξ′−→ LM.

The mapping φ′ → φ is compatible with the actions of ia∗M,Z on Φtemp(M̃ ′, ζ̃ ′) and Φ(M, ζ).

The stabilization we seek takes the form of an inductive family of identities among

the functions

mM (φλ, P ) = mG
M (φλ, P ).

The identities are parallel to those of Proposition 2.1, and relate quantities defined in-

ductively by varying G, M and ζ. In particular, they are formulated in terms of the set

EM ′(G). Recall that any element G′ ∈ EM ′(G) comes with an implicit choice of embedding

M ′ ⊂ G′ for which M̂ ′ ⊂ Ĝ′ is a dual Levi subgroup. A parabolic subgroup P ′ ∈ PG′
(M ′)

can therefore be identified with a chamber a+
P ′ in the space aM ′ = aM . We use this to

define a mapping P → P ′ from P(M) to PG′
(M ′) by requiring that a+

P be contained in

a+
P ′ .

64



Proposition 5.1. For each φ′ ∈ Φtemp(M̃ ′, ζ̃ ′), there is an identity

(5.4) mG
M (φλ, P ) =

∑
G′∈EM′ (G)

ιM ′(G,G′)nG̃′

M̃ ′(φ′λ, P
′),

where

nG̃′

M̃ ′(φ′λ, P
′), G′ ∈ EM ′(G), φ′ ∈ Φtemp(M̃ ′, ζ̃ ′),

is a meromorphic function of λ ∈ a∗M,Z,C that depends only on the quasisplit pair (G̃′,M̃ ′),

and the elements φ′ ∈ Φtemp(M̃ ′, ζ̃ ′) and P ′ ∈ PG̃′
(M̃ ′).

Proof. The proposition is reminiscent of Theorem 5 of [A10]. Since the proof is quite

similar, we can be brief.

If G is quasisplit, the “stable” function

nG
M (φλ, P ) = nG∗

M∗(φ∗λ, P
∗), φ ∈ Φtemp(M, ζ),

is uniquely determined by the required identity. We define it inductively by setting

nG
M (φλ, P ) = mG

M (φλ, P )−
∑

G′∈E0
M∗ (G)

ιM∗(G,G′)nG̃′

M∗(φ∗λ, P
∗).

Having made this definition, we then fix general objects G, M , ζ, P , M ′ and φ′. We have

to show that if φ is the image of φ′ in Φtemp(M, ζ), the original function mG
M (φλ, P ) equals

the endoscopic expression

(5.5) mG,E
M (φ′λ, P ) =

∑
G′∈EM′ (G)

ιM ′(G,G′)nG̃′

M̃ ′(φ′λ, P
′).

By analytic continuation in λ, it would be enough to consider the case that λ is purely

imaginary. As in [A10], it will be best to establish a slightly more general identity.

For any Q ∈ P(M), let

ρQ|P =
⊕

a

ρa

be the decomposition of the representation ρQ|P of WR relative to the adjoint action of

Z(M̂)Γ. The elements a range over characters on Z(M̂)Γ that are trivial on Z(Ĝ)Γ, with
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the subrepresentations ρa being nontrivial only if a lies in the intersection Σ(Q̂)∩Σ(P̂ ) of

the sets of roots of Q̂ and P̂ . Then

L(s, ρQ|P ◦ φλ) =
∏
a

L(s, ρa ◦ φλ).

Since λ is purely imaginary, we can then write

mQ|P (φλ) =
∏
a

ma(φλ),

for functions

ma(φλ) = mG
a (φλ) = ca

∣∣L(0, ρa ◦ φλ)
∣∣2∣∣L(1, ρa ◦ φλ)

∣∣−2
,

defined for constants ca whose product equals cQ|P . The constants are actually irrele-

vant, since it is only a logarithmic derivative of ma(φλ) that contributes to the function

mG
M (φλ, P ).

Suppose that a represents any character on Z(M̂)Γ/Z(Ĝ)Γ. The kernel Ẑa of a in

Z(M̂)Γ acts by translation on Z(M̂)Γ/Z(Ĝ)Γ, and hence on EM ′(G). We write EM ′(G)/Ẑa

for the set of orbits. If G′ ∈ EM ′(G) is elliptic, the canonical mapping from Z(M̂)Γ/Z(Ĝ)Γ

to Z( ̂̃
M ′)Γ/Z( ̂̃

G′)Γ is surjective with finite kernel, and if a is trivial on the kernel, it transfers

to a unique character a′ on Z( ̂̃
M ′)Γ/Z( ̂̃

G′)Γ. One establishes a decomposition

L(s, ρa ◦ φλ) =
∏

G′∈EM′ (G)/Ẑa

L(s, ρa′ ◦ φ′λ),

in which the factor corresponding to G′ is understood to be 1 unless G′ is elliptic and a

transfers to a character a′ in this way. The decomposition follows from the proof of Lemma

4 of [A10] with the family of conjugacy classes c′ in [A10] replaced by the Langlands

parameter φ′λ here. (One observes that the factors do depend only on the Ẑa-orbits in

EM ′(G) and in the special case of M ′ = M∗, that there is only one nontrivial factor.) We

can then arrange that

(5.6) mG
a (φλ) =

∏
G′∈EM′ (G)/Ẑa

mG̃′

a′ (φ
′
λ),
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by choosing the constants {ca′ = cG̃
′

a′ } appropriately.

The generalization of (5.5) is provided by a finite set A of characters on Z(M̂)Γ/Z(Ĝ)Γ.

As in p. 1144 of [A10], we define a (G,M)-family

mQ(Λ, φλ, P,A) =
∏

a∈A∩Σ(Q̂)∩Σ(P̂ )

ma(φλ)−1ma(φλ+ 1
2Λ)

of functions of Λ ∈ ia∗M,Z , with values in the space of meromorphic functions of λ. This

yields in turn a meromorphic function mG
M (φλ, P,A) by the analogue of the limit (5.3).

We define generalizations nG
M (φλ, P,A) and mG,E

M (φ′λ, P,A) of the original functions

nG
M (φλ, P ) = nG

M

(
φλ, P,Σ(P̂ )

)
and

mG,E
M (φ′λ, P ) = mG,E

M

(
φ′λ, P,Σ(P̂ )

)
by setting

nG
M (φλ, P,A) = mG

M (φλ, P,A)−
∑

G′∈E0
M∗ (G)

ιM∗(G,G′)nG′

M∗(φ∗λ, P
∗, A∗)

for G quasisplit, and

mG,E
M (φ′λ, P,A) =

∑
G′∈EM′ (G)

ιM ′(G,G′)nG̃′

M̃ ′(φ′λ, P
′, A′)

in general. We have written A′ here for the set of characters a′ on Z( ̂̃
M ′)Γ/Z( ̂̃

G′)Γ obtained

as above from elements a ∈ A. These definitions set the stage for proving the equality of

mG,E
M (φ′λ, P,A) and mG

M (φλ, P,A) by induction on A.

The main step is when A consists of one element a. In this case, the relevant functions

mG
M (φλ, P, a) and mG,E

M (φ′λ, P, a) both vanish if M is not a maximal Levi subgroup. As-

sume therefore that M is maximal. Then mG
M (φλ, P, a) is a logarithmic derivative of the
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functionma(φλ) (relative to the coordinate 1
2a(λ)). Since logarithmic derivatives transform

products to sums, the formula (5.6) gives rise to an identity

mG
M (φλ, P, a) =

∑
G′∈EM′ (G)/Ẑa

mG̃′

M̃ ′(φ′λ, P
′, a′).

We can then show that the right hand side of this identity matches the right hand side of

the formula

mG,E
M (φ′λ, P, a) =

∑
G′∈EM′ (G)

ιM ′(G,G′)nG̃′

M̃ ′(φ′λ, P
′, a′),

if we set

nG̃′

M̃ ′(φ′λ, P
′, a′) =

∣∣Ẑa′/Ẑa′ ∩ Z( ̂̃
G′)Γ

∣∣−1
mG̃′

M̃ ′(φ′λ, P
′, a′).

The argument is identical to that of [A10, pp. 1145–1146], and is also reminiscent of a part

of the proof of Lemma 4.1 from the last section. One shows that

ιM ′(G,G′)nG̃′

M̃ ′(φ′λ, P
′, a′) =

∣∣Ẑa/Ẑa ∩ Z(Ĝ)Γ
∣∣−1

mG̃′

M̃ ′(φ′λ, P
′, a′)

by a simple comparison of the relevant coefficients. (In the analogue of this formula on

p. 1146 of [A10], the intersection Ẑa ∩ Z(Ĝ)Γ was mistakenly written as Ẑa ∩ Z(Ĝ′)Γ,

or rather Za ∩ Z(Ĝ′)Γ, since Ẑa was denoted by Za in [A10].) This establishes that

mG
M (φλ, P, a) equals mG,E

M (φ′λ, P, a).

With the required identity established in the case that A consists of one element a, we

apply the standard splitting formula for (G,M)-families to prove it inductively for general

A. The argument is identical to that in [A10, pp. 1146–1147]. It allows us to conclude that

mG
M (φλ, P,A) equals mG,E

M (φ′λ, P,A) for any A. Taking A equal to Σ(P̂ ), we then obtain

the required result that mG
M (φλ, P ) equals mG,E

M (φ′λ, P ). �

We will now be able to stabilize the linear form IP
M (γ, f) on the Hecke algebraH(G, ζ).

The objects M ′ and T ′ are fixed, while T̃ ′ is the extension of T ′ attached to the auxil-

iary datum (M̃ ′, ξ̃′) that comes with the transfer factor ∆M . The first ingredient in the
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stabilization of IP
M (γ, f) is the function

(5.7) IP
M (σ′, f) =

∑
γ∈ΓG-reg(M)

∆M (σ′, γ)IP
M (γ, f)

of σ′ ∈ T̃ ′G-reg(R) that is analogous to (1.4). Then IP
M (σ′, f) equals the integral over

τ ∈ TεP
(M, ζ) of the product of

(5.8)
∑

γ

∆M (σ′, γ)θM (γ, τ)

with

(5.9) mM (τ, P )fM (τ).

In [S3, §4–5], Shelstad establishes a spectral theory of endoscopy that is dual to the

geometric theory she had developed earlier. We shall briefly review the results here, in the

context of the K-group G and our discussion at the beginning of the section.

Suppose that φ belongs to Φtemp(M, ζ). Then the linear form

hM (φ) =
∑

τ∈Tφ

hM (τ), h ∈ C(M, ζ),

on C(M, ζ) is a stable distribution, called the stable character of φ. In case G is quasisplit,

it attaches a continuous linear form

h∗(φ∗) = h(φ), h∗ ∈ S(M∗, ζ∗),

on S(M∗, ζ∗) to every parameter φ∗ ∈ Φtemp(M∗, ζ∗), since there is a bijection φ → φ∗

from Φtemp(M, ζ) to Φtemp(M∗, ζ∗). Assume that G is general, but that φ is the image in

Φtemp(M, ζ) of a parameter φ′ ∈ Φtemp(M̃ ′, ζ̃ ′). Then the mapping

h −→ hM̃ ′
(φ′), h ∈ C(M, ζ),
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is an invariant, tempered distribution on M(R). Shelstad shows that it is a linear combina-

tion of characters of representations in the packet Πφ. It is therefore a linear combination

of virtual characters in the packet Tφ. In other words

hM ′
(φ′) =

∑
τ∈Tφ

∆M (φ′, τ)hM (τ),

for coefficients ∆M (σ′, τ) that depend on the transfer factor ∆M .

It follows from the existence of the function θM (γ, τ), together with the results of

Shelstad, that we can write

hM (σ) =
∫

Φtemp(M,ζ)

ηM (σ, φ)hM (φ)dφ, σ ∈ Treg(R), h ∈ C(M, ζ),

for a smooth function

ηM (σ, φ), σ ∈ Treg(R), φ ∈ Φtemp(M, ζ).

This function satisfies

ηM (σ, φλ) = e−λ(HM (σ))ηM (σ, φ), λ ∈ ia∗M,Z .

It therefore continues analytically to a tempered function of φ in the space ΦεP
(M, ζ). The

integral can consequently be deformed from Φtemp(M, ζ) to ΦεP
(M, ζ), if we take h to be

in the Hecke algebra H(M, ζ). We shall write

η′M (σ′, φ′) = ηM̃ ′(σ′, φ′)

for the analogue of ηM (σ, φ) for M̃ ′.

We claim that the sum (5.8) in the formula for IP
M (σ′, f) equals

∑
φ′∈ΦεP

(M̃ ′,ζ̃′)

η′M (σ′, φ′)∆M (φ′, τ).

To see this, we need only integrate the two functions of τ ∈ TεP
(M, ζ) against an arbitrary

function aM (τ) in IH(M, ζ), and then observe that the resulting integrals are equal by the
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definitions above. It follows that

IP
M (σ′, f)

=
∫

TεP
(M,ζ)

( ∑
φ′

η′M (σ′, φ′)∆M (φ′, τ)
)
mM (τ, P )fM (τ)dτ

=
∫

ΦεP
(M,ζ)

∑
φ′

η′M (σ′, φ′)mM (φ, P )fM̃ ′
(φ′)dφ,

since the function mM (φ, P ) = mM (τ, P ) depends only on φ. The last sum over φ′ is

understood to be taken over the preimage of φ in ΦεP
(M̃ ′, ζ̃ ′). It can be combined with

the integral over ΦεP
(M, ζ) to give an integral∫

ΦεP
(M̃ ′,ζ̃′)

η′M (σ′, φ′)mM (φ, P )fM̃ ′
(φ′)dφ′

over ΦεP
(M̃ ′, ζ̃ ′). Substituting the formula (5.4) of the proposition into this expression, we

find that IP
M (σ′, f) equals∫

ΦεP
(M̃ ′,ζ̃′)

η′M (σ′, φ′)
∑

G′∈EM′ (G)

ιM ′(G,G′)nG̃′

M̃ ′(φ′, P ′)fM̃ ′
(φ′)dφ′.

If G is quasisplit, we define

(5.10) SG,P
M (σ, f) =

∫
ΦεP

(M,ζ)

ηM (σ, φ)nG
M (φ, P )fM (φ)dφ

and

ŜG∗,P∗

M∗ (σ∗, f∗) = SG,P
M (σ, f),

for any point σ ∈ TG-reg(R) with image σ∗ ∈ T ∗G-reg(R) in G∗(R). The linear form

SG,P
M (σ, f) on H(G, ζ) is stable, so the last definition here makes sense. Applying it to G̃′,

M̃ ′, P̃ ′ and σ′, where P̃ ′ is the preimage of P ′ in PG̃′
(M̃ ′), we conclude that

(5.11) IP
M (σ′, f) =

∑
G′∈EM′ (G)

ιM ′(G,G′)ŜG̃′,P̃ ′

M̃ ′ (σ′, f ′).

This formula represents a stabilization of the right hand side of (5.1). It amounts to a

single assertion that combines the definitions of §1, but with IP
M (γ, f) in place of IM (γ, f)
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and f taken to be function in H(G, ζ), with the corresponding assertions from Theorem

1.1.

To exploit (5.11), we shall need also to stabilize the left hand side of (5.1). We begin

by noting that any character on AM (R)0 can be lifted to a character on AM̃ ′(R)0, since

AM̃ ′(R)0 is isomorphic to the additive group of the real vector space aM̃ ′ . It follows from

[LS1, (4.4)] that we can choose the representative data (M̃ ′, ξ̃′) and ∆M for M ′ so that

(5.12) ∆M (σ′a′, γa) = ∆M (σ′, γ), a′ ∈ AM̃ ′(R)0,

where a is the image of a′ in AM (R)0. If

σ′T = σ′expT, T ∈ aM̃ ′ ,

the distribution IM (σ′T , ·) then depends only on the image of T in the quotient aM of aM̃ ′

(which we continue to denote by T ). It follows from (5.1) that

(5.13) lim
T−→

P,r
∞
IM (σ′T , fT ) = IP

M (σ′, f).

Incidentally, the original limit (5.1) was shown in [A14] to be uniform for γ in any relatively

compact subset Γ of TG-reg(R). It follows that the limit (5.13) is uniform for σ′ in any

relatively compact subset Γ′ of T̃ ′G-reg(R).

The function fT represents the image of f under the Schwartz multiplier αT introduced

in [A14, §1]. To help us understand its transfer, we shall say a word about the transfer of

general multipliers.

The notion of a Schwartz multiplier in [A14, §1] extends in a natural way to the space

C(G, ζ) of this paper. A Schwartz multiplier for C(G, ζ) is an endomorphism

α : f =
⊕

ι

f −→ fα =
⊕

ι

fι,αι
, f ∈ C(G, ζ),

where for each ι ∈ π0(G), fι → fι,αι
is a continuous endomorphism of C(Gι, ζι) that

commutes with left and right translation. It is characterized by the property

(5.14) π(fα) = α̂(π)π(f), π ∈ Πtemp(G, ζ), f ∈ C(G, ζ),
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where α̂ is a smooth complex valued function in Πtemp(G, ζ), of which any derivative is

slowing increasing, and for which the value α̂(π) depends only on the imaginary part νπ

of the infinitesimal character of π. We can identify α̂ with a function α̂(τ) on Ttemp(G, ζ),

thereby treating α as a multiplier in the invariant Schwartz space I(G, ζ). We write

M(G, ζ) for the algebra of multipliers on C(G, ζ).

We shall say that a multiplier α ∈M(G, ζ) is stable if its value α̂(τ) depends only on

the L-packet of τ . With this condition, α can be identified with a smooth function

α̂(φ) = α̂(τ), φ ∈ Φtemp(G, ζ), τ ∈ Tφ,

on Φtemp(G, ζ). Suppose that G′ is an endoscopic datum for G, with transfer factor ∆G,

and that φ′ ∈ Φtemp(G̃′, ζ̃ ′) maps to a parameter φ ∈ Φtemp(G, ζ). Then if α is a Schwartz

multiplier, we see that

(fα)′(φ′) =
∑

τ∈Tφ

∆G(φ′, τ)(fα)′(τ)

=
∑

τ∈Tφ

∆G(φ′, τ)α̂(τ)f ′(τ) = α̂(φ)f ′(φ′).

It follows that

(fα)′ = (f ′)α′ ,

where α′ is the stable multiplier for (G̃′, ζ̃ ′) defined by setting

(5.15) α̂′(φ′) = α̂(φ), φ′ ∈ Φtemp(G̃′, ζ̃ ′),

for the image φ of φ′ in Φtemp(G, ζ). We write SM(G, ζ) for the subalgebra of stable

multipliers inM(G, ζ).

We can regard the multiplier αT that gives rise to the function fT = fαT
in (5.1) as

an element inM(G, ζ). It is given by a double sum

αT =
∑
{L}

∑
u∈U(M,L)

αuT ,
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in the notation of [A14, §1]. More concretely, we have

α̂T (πG) =
∑

u∈U(M,L)

eνπ(uT ), π ∈ Πtemp,cusp(L, ζ),

where πG = IQ(π) is the induced representation, and νπ is the imaginary part of the

infinitesimal character of π. Since it is defined in terms of the infinitesimal character, αT

is stable. The same goes for the multiplier αS attached to any point S ∈ aL. Notice also

that

fT+Z = ζ(expZ)fT , Z ∈ aZ ,

from which it follows that the function IM (σ′T , fT ) in (5.1) depends only on the image of

T in aM/aZ .

To study the stabilization of the left hand side of (5.1), we fix a relatively compact

subset Γ′ of T̃ ′G-reg(R). For the moment, we may as well take f ∈ C(G, ζ) to be a general

Schwartz function. Beginning with the usual argument, we write the difference

(5.16) IEM (σ′T , fT )− ε(G)SG
M (M ′, σ′T , fT )

as a sum

(5.17)
∑

G′∈E0
M′ (G)

ιM ′(G,G′)ŜG̃′

M̃ ′(σ′T , f
′
T ).

The function f ′T = (fT )′ = (fαT
)′ here equals the image of f ′ under the multiplier (αT )′ in

SM(G̃′, ζ̃ ′). However, (αT )′ is not generally equal to the multiplier (α′)T . In other words,

f ′T need not equal (f ′)T . The following lemma tells us that this discrepancy is not serious.

Lemma 5.2. For any G′ ∈ E0
M ′(G), we have

(5.18) lim
T−→

P,r
∞

(
ŜG̃′

M̃ ′(σ′T , f
′
T )− ŜG̃′

M̃ ′

(
σ′T , (f

′)T

))
= 0,

uniformly for σ′ ∈ Γ′.
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Proof. We assume that the implicit transfer factor ∆G that defines f ′ satisfies the

obvious analogue for G of (5.12). The terms in (5.18) are then well defined functions of

T ∈ aM/aZ .

Consider a G-relevant parameter φ′ ∈ Φtemp(G̃′, ζ̃ ′) for G̃′, with image φ in

Φtemp(G, ζ). Then φ′ and φ are induced respectively from cuspidal parameters

φ′1 ∈ Φtemp,cusp(L̃′1, ζ̃1) and φ1 ∈ Φtemp,cusp(M1, ζ), for Levi subgroups L′1 ⊂ G′ and

M1 ⊂ G. We have
(f ′T )(φ′) = (fαT

)′(φ′)

= (αT )′(φ′)f ′(σ′) = αT (φ)f ′(φ′)

=
( ∑

u∈U(M,M1)

eν1(uT )
)
f ′(φ′),

where ν1 ∈ ia∗M1
represents the imaginary part of the infinitesimal character of φ1. For

the given L′1 and M1, we fix an admissible embedding aL′1
↪→ aM1 . By this, we mean the

injection attached to an admissible embedding of a maximal torus of L′1 over R into G

that takes AL′1
into AM1 . It is a consequence of the construction (and the condition above

on ∆G) that we can choose the embedding so that ν1 lies in the subspace ia∗L′1 of ia∗M1
,

thereby representing the infinitesimal character of φ′. We have then

(f ′)T (φ′) = (f ′)(αT )′(φ′)

=
( ∑

u′∈U ′(M ′,L′1)

eν1(u
′T )

)
f ′(φ′).

We have written U ′(M ′, L′1) = UG′
(M ′, L′1) here for the set of embeddings from aM ′ into

aL′1
induced by the adjoint action of G′. This set comes with embeddings

U ′(M ′, L′1) ⊂ U(M,L1) ⊂ U(M,M1),

where U(M,L1) = UG(M,L1) is the associated set of embeddings of aM
∼= aM ′ into

aL1
∼= aL′1

attached to G, and U(M,M1) is the larger set that indexes the earlier sum.

(We have written L1 ∈ L(M1) here for the Levi subgroup of G corresponding to the
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subspace aL′1
of aM1 .) We conclude that

f ′T (φ′)− (f ′)T (φ′) = α′T,L′1,M1
(φ′)f ′(φ′),

where

(5.19) α′T,L′1,M1
(φ′) =

∑
u∈U(M,M1)−U ′(M ′,L′1)

eν1(uT ).

The pair (L′1,M1) is not uniquely determined by φ′. The correspondence that assigns

any such pair to a given φ′ gives rise to a mapping

φ′ −→
{
(L′1,M1)

}
,

from the set of G-relevant parameters in Φtemp(G̃′, ζ̃ ′) onto a finite set of equivalence

classes of pairs. It is not hard to see that α′T,L′1,M1
(φ′) depends only on the equivalence

class
{
(L′1,M1)

}
of (L′1,M1). This function represents a stable multiplier α′T,L′1,M1

in

SM(G̃′, ζ̃ ′), whose value at any φ′ ∈ Φtemp(G̃′, ζ̃ ′) equals the finite sum (5.19) if φ′ maps

to
{
(L′1,M1)

}
, and equals 0 otherwise. It follows that

(5.20) f ′T − (f ′)T =
∑

{(L′1,M1)}

f ′T,L′1,M1
,

where f ′T,L′1,M1
denotes the transform of f ′ by the multiplier α′T,L′1,M1

. Observe that any

summand on the right hand side of (5.19) satisfies

eν1(uT ) = eν1((uT )′1),

where (uT )′1 is the projection of the point uT ∈ aM1 onto aL1 . Using the definitions (5.19)

and [A14, (1.12)], it is then not hard to show that

(5.21) f ′T,L′1,M1
=

∑
u

(f ′)αS′ =
∑

u

(f ′)S′ , S′ = (uT )′1,

where the sums are each taken over the complement of U ′(M ′, L′1) in U(M,M1).
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To complete the proof, we must show that the contribution to the limit (5.18) of a

summand f ′T,L′1,M1
in (5.20) vanishes. This requires another lemma. We need the stable

analogue of an important estimate (5.16) from [A14], which applies to the case that G

is quasisplit. We state it in terms of a minimal Levi subgroup M0 ⊂ M , with minimal

parabolic subgroup P0 ∈ P(M0) for which both M and a second given Levi subgroup M1

are standard. The lemma pertains to an open cone c0 = c+0 in a+
0 = a+

P0
, points S ∈ aM1

and T ∈ a+
P such that T is (c0, S)-dominant, and the associated distance function dc0(T, S),

all introduced in the preamble to Lemma 4.4. of [A14].

Lemma 5.3. Assume that G is quasisplit, and that Γ is a relatively compact subset of

TG-reg(R). Then for any n ≥ 0, there is a continuous seminorm ‖ · ‖n on C(G, ζ) such that

(5.22)
∣∣SG

M (σT , f
S)

∣∣ ≤ ‖f‖n(
1 + dc0(T, S)

)−n
,

for any σ ∈ Γ, f ∈ C(G, ζ), T ∈ a+
P and S ∈ aM1 such that T is (c0, S)-dominant.

Proof. The derivation of (5.22) from the inequality [A14, (5.16)] is similar in principle

to the argument [A14, Corollary 5.2(b)] by which the earlier inequality was deduced from

its noninvariant analogue [A14, (5.15)]. It is an inductive proof, with the mappings f → f ′

taking the place of the earlier mappings f → φL(f).

By definition, SG
M (σT , f

S) equals

(5.23) IM (σT , f
S)−

∑
G′∈E0

M∗ (G)

ιM∗(G,G′)ŜG̃′

M∗

(
σ∗T , (f

S)′
)
.

The analogue of (5.22) for IM (σT , f
S) follows from (1.4) and the estimate [A14, (5.16)] for

IM (γT , f
S). To estimate the summands, we need to say something about the function

(fS)′ = (fαs)′ = (f ′)(αS)′, G′ ∈ E0
M∗(G).

The argument at this stage becomes a little more elaborate than that of [A14]. How-

ever, the complications can be treated as a special case of the discussion above that led to
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the decomposition (5.20). It follows easily from this discussion that there is a decomposi-

tion

(fS)′ = |W (M1)|−1
∑

w∈W (M1)

∑
i

(f ′)(wS)′i

for any given G′ ∈ E0
M∗(G), where i indexes a finite set of Levi subgroups {L′i} of G′, with

admissible embeddings aL′
i
⊂ aM1 , and (wS)′i is the projection of wS onto the subspace

aL′
i
of aM1 . This is the analogue of the decomposition [A14, (5.17)] from the proof of [A14,

Corollary 5.2(b)]. We are assuming that G is quasisplit and that M∗ is a Levi subgroup of

G′. We can consequently fix a minimal Levi subgroup M∗
0 of G′ that is at the same time a

quasisplit inner form of M0. We take P ′0 ∈ P(M∗
0 ) to be the minimal parabolic subgroup of

G′ whose chamber a+
P ′

0
in the space aM∗

0
= aM0 contains the chamber a+

0 = a+
P0

, and hence

also the open cone c0. We are free to choose the Levi subgroups L′i of G′ to be standard

with respect to P ′0. For any i, and any element w′ in the Weyl group W (M ′
0), w

′(wS)′i is

easily seen to belong to the convex hull of W (M0)S in aM0 . It follows from the definitions

in [A14, §4] that if T is (c0, S)-dominant (relative to G), it is also
(
c0, (wS)′i

)
-dominant

(relative to G′). Moreover, the corresponding distance functions satisfy

dc0(T, S) = dG
c0

(T, S) ≤ dG̃′

c0

(
T, (wS)′i

)
.

We assume inductively that the analogue of (5.22) holds for each group G′ ∈ E0
M∗(G).

The required inequality for G then follows from what we have just done, and the formula

(5.23) for SG
M (σT , f

S). This completes the proof of Lemma 5.3. �

Returning to the proof of Lemma 5.2, we write the left hand side of (5.18) as

(5.24) lim
T−→

P,r
∞

∑
{(L′1,M1)}

∑
u

ŜG̃′

M̃ ′

(
σ′T , (f

′)S′
)
, S′ = (uT )′1,

with {(L′1,M1)} and u summed as in (5.20) and (5.21) respectively. We shall apply Lemma

5.3 to each of the summands. We can choose the representative (L′1,M1) of a given class

so that both M ′ and L′1 are standard with respect to a fixed minimal parabolic subgroup
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P ′0 ∈ P(M ′
0), both M∗ and M∗

1 are standard with respect to a fixed minimal parabolic

subgroup P ∗0 ∈ P(M∗
0 ) forG∗ and so that there is a fixed admissible embedding aM ′

0
↪→ aM∗

0

such that the intersection c′0 of the closure of a+
P∗

0
with the chamber a+

P ′
0

is an open chamber

in aM ′
0
. As an elliptic endoscopic datum for M , M ′ comes with an admissible isomorphism

aM ′
∼−→aM = aM ′ . The chamber ar

P is an open cone in the chamber a+
P ′ in aM ′ attached

to a unique group P ′ ∈ P(M ′). We claim that if T lies in ar
P , and S′ = (uT )′1 as in (5.24),

then T is (c′0, S
′)-dominant, and the distance function

dc′0
(T, S′) = inf

w′∈W (M ′
0)
‖T − w′S′‖

is bounded below by a constant multiple of ‖T‖. The first assertion follows from standard

properties of convex hulls, and the fact that the dual chamber +c′0 of c′0 in aM ′
0

contains

the dual +aP ′
0

of a+
P ′

0
. The second assertion follows from the fact that the closures of ar

P

and w′uar
P in aM ′

0
intersect only at the origin if u belongs to U(M,L1), and the fact that

‖w′S′‖ = ‖w′(uT )′1‖ = ‖(uT )′1‖ < δ1‖T‖,

for some fixed δ1 < 1, if u lies in the complement of U(M,L1).

We can now apply Lemma 5.3, with G̃′ in place of G, to each summand in (5.24). We

have just shown that the conditions of this lemma apply to any point T in the subset ar
P

of c′0, and that

dc′0
(T, S′) ≥ ε‖T‖,

for some ε > 0. We conclude that the limit (5.24) vanishes uniformly for σ′ ∈ Γ′. The orig-

inal limit (5.18) therefore also vanishes uniformly for σ′ ∈ Γ′, as required. This completes

the proof of Lemma 5.2. �

Lemma 5.2 allows us to replace (5.17) by an expression whose limit we can handle

inductively. The process can be regarded as a stabilization of the left hand side of (5.1),

for any Schwartz function f ∈ C(G, ζ).
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In fact, we have done enough to stabilize the entire limit formula (5.1), so long as

we again restrict f to the Hecke algebra H(G, ζ). We state the final result formally as a

corollary of Proposition 5.1, though it is really a culmination of all the discussion of this

section.

Corollary 5.4. (a) If G is arbitrary, then

lim
T−→

P,r
∞
IEM (σ′T , fT ) = IP

M (σ′, f), f ∈ H(G, ζ),

uniformly for σ′ ∈ Γ′. In particular, this limit equals the limit on the left hand side of

(5.13).

(b) If G is quasisplit, the limit

lim
T−→

P,r
∞
SG

M (M ′, σ′T , fT ), f ∈ H(G, ζ),

converges uniformly for σ′ ∈ Γ′, and vanishes unless (M ′, σ′) = (M∗, σ∗), in which case it

equals ŜG∗,P∗

M∗ (σ∗, f∗). In particular, we have

(5.25) lim
T−→

P,r
∞
SG

M (σT , fT ) = SG,P
M (σ, f), σ ∈ TG-reg(R),

so this last limit is stable in f ∈ H(G, ζ).

Proof. We assume inductively that for any G′ ∈ E0
M ′(G),

(5.26) lim
T−→

P̃ ′,r
∞
ŜG̃′

M̃ ′

(
σ′T , (f

′)T

)
= ŜG̃′,P̃ ′

M̃ ′ (σ′, f ′),

uniformly for σ′ ∈ Γ′. Together with the assertion (5.18) of Lemma 5.2 and the fact that

ar
P̃ ′ contains ar

P , this implies that

lim
T−→

P,r
∞

∑
G′∈E0

M′ (G)

ιM ′(G,G′)ŜG̃′

M̃ ′(σ′T , f
′
T )

=
∑

G′∈E0
M′ (G)

ιM ′(G,G′) lim
T−→

P,r
∞
ŜG̃′

M̃ ′

(
σ′T , (f

′)T

)
=

∑
G′∈E0

M′ (G)

ιM ′(G,G′)ŜG̃′,P̃ ′

M̃ ′ (σ′, f ′),
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uniformly for σ′ ∈ Γ′. According to the stabilization (5.11) we have deduced as a conse-

quence of Proposition 5.1, this last sum can be written in turn as

(5.27) IP
M (σ′, f)− ε(G,M ′)ŜG∗,P∗

M∗ (σ∗, f∗),

for ε(G,M ′) as before. We recall that ε(G,M ′) = 0, unless G is quasisplit and (M ′, σ′)

equals (M∗, σ∗), in which case ε(G,M ′) = 1.

We have established a uniform limit formula for the sum (5.17). The same formula

therefore holds for the difference (5.16) with which we began. Namely, the limit of (5.16)

converges uniformly for σ′ ∈ Γ′ to (5.27). The assertions of the corollary then follow

directly from the definitions, as for example in the proof of Lemma 4.1. Notice that the

induction argument based on (5.26) is resolved by the formula (5.25) (together with the

running induction assumption that SG̃′

M̃ ′(σ′T , ·) is stable, which will be resolved finally in

the coming section). �
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§6. Proof of the theorem

We are now ready to prove Theorem 1.1. We recall that M ′ is an elliptic endoscopic

datum for M with a maximal torus T ′ ⊂ M ′ over R, that ∆M is a transfer factor for M

and M ′ with auxiliary datum (M̃ ′, ξ̃′M ), and that σ′ represents a strongly G-regular point

in the corresponding torus T̃ ′(R). The assertions of Theorem 1.1 can be formulated as the

vanishing of certain functions of σ′.

We define

εM (σ′, f) = IEM (σ′, f)− IM (σ′, f), f ∈ C(G, ζ).

Part (a) of Theorem 6.1 asserts that this function vanishes. If G is quasisplit, we also set

εM ′
(σ′, f) = SG

M (M ′, σ′, f), f ∈ C(G, ζ).

In the further case that M ′ = M∗, we assume implicitly that f is unstable, in the sense that

fG = 0. With this condition on f , part (b) of the theorem is the assertion that εM ′
(σ′, f)

vanishes. In general, it is clear that as ∆M and σ′ vary, εM (σ′, f) and εM ′
(σ′, f) represent

sections in C∞(T ′G-reg,M, ζ). It suffices to fix ∆M , and study these objects as functions

in C∞(T̃ ′G-reg, ζ).

If G is quasisplit, εM (σ′, f) vanishes by definition. We can therefore treat both cases

of the theorem together by setting

(6.1) ε′M (σ′, f) =

 εM (σ′, f), if G is not quasisplit,

εM ′
(σ′, f), if G is quasisplit.

Let us also set C′(G, ζ) equal to C(G, ζ) unless G is quasisplit and M ′ = M∗, in which case

we take C′(G, ζ) to be the closed subspace of unstable functions in C(G, ζ). The assertion

we have to establish is that ε′M (σ′, f) vanishes for any σ′ ∈ T̃ ′G-reg(R) and f ∈ C′(G, ζ).

We have been working up to this point with a partial induction assumption. We now

take on the full assumption, based on the two integers dder and rder at the end of §2. We
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suppose from now on that the required assertion holds if (G,M,M ′) is replaced by any

triplet (G1,M1,M
′
1) such that either

dim(G1,der) < dder,

or

dim(G1,der) = dder, ε(G1) = 1, and ε(G) = 0,

or

dim(G1,der) = dder, and dim(AM1 ∩G1,der) < rder.

The first two conditions are to accommodate an argument of increasing induction on dder,

which requires that we treat the case of quasisplit G first. Together, they include the initial

assumption we took on in §1 in order that the terms in the original definitions make sense.

The third condition is designed for a supplementary argument of decreasing induction on

rder. It includes the assumption that ε′L(σ′, f) vanishes for any Levi subgroup L ∈ L(M)

that properly contains M .

As we noted at the end of §1, the descent formulas (2.12)–(2.15) imply that ε′M (σ′, f)

vanishes if T ′ is not elliptic in M ′. We therefore assume henceforth that T ′ is elliptic.

Our concern now will be the finer analytic properties of ε′M (σ′, f), as a smooth function of

σ ∈ T̃ ′G-reg(R). We shall study them by combining our general induction hypothesis with

the results of §2–5.

Consider the differential equations of §2. In the case that G is not quasisplit, we

combine the two sets of equations (2.2) and (2.9) satisfied by IM (σ′, f) and IEM (σ′, f)

respectively. Subtracting one equation from the other, we see that they may be written

together as

εM (σ′, zf) =
∑

L∈L(M)

∂L
M (σ′, zL)εL(σ′, f),

for any element z ∈ Z(G, ζ). If L is properly contains M , our induction hypothesis tells

us that εL(σ′, f) vanishes. Since

∂M
M (σ′, zM ) = ∂

(
hT (z)

)′
,
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we see that

εM (σ′, zf) = ∂
(
hT (z)

)′
εM (σ′, f).

If G is quasisplit, we apply the equations (2.10) or (2.11), according to whether M ′ = M∗

or not. In case M ′ = M∗, our induction hypothesis tells us that SG
L (σ, f) vanishes for any

Levi subgroup L that properly contains M , any point σ in TG-reg(R), and any f ∈ C(G, ζ)

with the required property that fG = 0. It follows from the two sets of equations that

εM ′
(σ′, zf) = ∂

(
hT (z)

)′
εM ′

(σ′, f).

In the case that M ′ = M∗, the function zf is also unstable since

(zf)G = zGfG = 0,

so the notation εM ′
(σ′, zf) here is consistent. We conclude that

(6.2) ∂
(
hT (z)

)′
ε′M (σ′, f) = ε′M (σ′, zf), z ∈ Z(G, ζ),

in all cases.

Consider next the noncompact boundary conditions of §4. Suppose that β′ is a real

root of T ′. It follows from our induction hypothesis and the definitions at the beginning

of §4 that
εM (σ′, f) = IEM (σ′, f)− IM (σ′, f)

= IE,β
M (σ′, f)− Iβ

M (σ′, f),

if G is not quasisplit, and that

εM ′
(σ′, f) = SG

M (M ′, σ′, f) = SG,β
M (M ′, σ′, f),

if G is quasisplit. The formulas (4.20)–(4.22) can therefore be stated uniformly as jump

conditions for the function ε′M (σ′, f). To do so, we have of course to specialize σ′ tem-

porarily to a point in general position in the kernel (T̃ ′)β′(R). The jump formulas then

take the form

jβ′
(
D′ε′M (σ′, f)

)
= lim

θ→0
εβ(θ)

∑
M ′

β
∈Eβ

M′ (Mβ)

D′
βε
′
Mβ

(
σ′β(θ), f

)
,
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for any invariant differential operator D′ on C∞(T ′,M, ζ). The functions ε′Mβ

(
σ′β(θ), f

)
on the right are attached to Levi subgroups Mβ that properly contain M . They vanish by

our induction hypothesis. It follows that

(6.3) jβ′
(
D′ε′M (σ′, f)

)
= 0.

The compact boundary conditions of §3 depend on an R′I -chamber c for T ′. For any

such c, we form the smooth function

ε′M,c(σ
′, f) = δ′c(σ

′)ε′M (σ′, f), σ′ ∈ T̃ ′G-reg(R),

on T̃ ′G-reg(R), and the automorphism

D′ −→ D′
c = δ′c ·D′ ◦ (δ′c)

−1

of the linear space of invariant differential operators on C∞(T ′,M, ζ). The differential

equations (6.2) can then be written

(6.2)c ∂
(
hT (z)

)′
c
ε′M,c(σ

′, f) = 0.

The boundary conditions (6.3) we have already obtained can be written

jβ′
(
D′

c ε
′
M,c(σ

′, f)
)

= 0,

or if we prefer,

(6.3)c jβ′
(
D′ε′M,c(σ

′, f)
)

= 0,

since D′ is an arbitrary invariant differential operator on C∞(T ′,M, ζ).

Suppose that α′ is an imaginary root of T ′, and that σ′ is specialized temporarily to

a point in general position in the kernel (T̃ ′)α′(R). Since Proposition 3.2 applies to any of

the functions from which ε′M,c(·, f) was constructed, we can use it to describe the jumps

of ε′M,c(·, f) about α′. If α′ satisfies the condition (i) of the proposition, we have

jα′
(
D′

cε
′
M,c(σ

′, f)
)

= lim
r→0

D′
c,αε

′
M,cα

(
σ′α(r), f

)
,
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where D′
c,α is the differential operator on C∞(T ′α,M, ζ) in (3.4). As a Cayley transform of

T ′, the torus T ′α in M ′ is not elliptic. Therefore ε′M,cα

(
σ′α(r), f

)
vanishes by our induction

assumption. The jump thus equals 0 in this case. If α′ satisfies the condition (ii) of the

proposition, the jump automatically vanishes. On the other hand, if α′ does not satisfy

condition (ii), the root w′α′ satisfies condition (i), for some element w′ in the real Weyl

group WR(M ′, T ′) = W ′
I . Since the transform of ε′M,c(·, f) by any element in W ′

I equals

the product of ε′M,c(·, f) with a smooth function (3.6), the jump vanishes in this case as

well. We conclude that

(6.4)c jα′
(
D′

cε
′
M,c(σ

′, f)
)

= 0,

in all cases.

Lemma 6.1. The function

ε′M,c(f) : σ′ −→ ε′M,c(σ
′, f), σ′ ∈ T̃ ′G-reg(R),

extends to a (ζ̃ ′)−1-equivariant Schwartz function on T̃ ′(R), and the correspondence

f → ε′M,c(f) is a continuous linear mapping from C′(G, ζ) to C(T̃ ′, ζ̃ ′).

Proof. We have fixed a Euclidean norm ‖ · ‖ on aM . Its restriction to the orthogonal

complement of aZ in aM can be regarded as a aZ-invariant function ‖ · ‖Z on aM , which

becomes in turn an aZ̃′ -invariant function on aM̃ ′ . We then obtain a function

‖σ′‖ = ‖HM̃ ′(σ′)‖Z , σ′ ∈ T̃ ′(R),

on T̃ ′(R)/Z̃ ′(R). The Schwartz space C(T̃ ′, ζ̃ ′) is the space of smooth (ζ̃ ′)−1-equivariant

functions φ′ on T̃ ′(R) such that for every n ≥ 0 and every invariant differential operator

D′ on T̃ ′(R), the seminorm

sup
σ′∈T̃ ′(R)

(
‖D′φ′(σ′)‖(1 + ‖σ′‖)n

)
is finite.
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We have also to introduce a function δ′(σ′) on T̃ ′(R)/Z̃ ′(R) that measures the distance

to the G-singular set. The G-singular set in T̃ ′(R) is a union

S̃ ′ =
⋃
α′

{
σ′1 ∈ T̃ ′(R) : σ′1 ∈ T̃ ′(R), α′(σ′1) = 1

}
of kernels, taken over all roots α′ of T ′ in the general sense defined at the beginning of §3.

The complement of S̃ ′ in T̃ ′(R) is the set of G-regular elements in T̃ ′(R), an open set that

contains the set T̃ ′G-reg(R) of strongly G-regular elements. We extend ‖ · ‖Z to a Euclidean

norm on t̃′(R)/̃z′(R) whose inverse image under any M -admissible isomorphism from T to

T ′ is a WR(G,T )-invariant norm on t(R)/z(R). Let U ′ be a small fixed neighbourhood of

1 in T̃ ′(R)/Z̃ ′(R). We set δ′(σ′) = 1 unless σ′U ′ intersects S̃′, in which case we set

δ′(σ′) = inf
{h′∈U ′:σ′h′∈S̃′}

(log ‖h′‖).

The function ε′M (σ′, f) of σ′ ∈ T̃ ′G-reg(R) extends to a smooth function on the larger

open set T̃ ′(R)−S̃ ′ of G-regular elements. This follows from a natural variant of Lemma 3.1

that applies to points σ′1 in T̃ ′(R)− S̃ ′, since the property [A4, (2.3)] on which the lemma

relies holds for any element γ1 ∈ M(R) whose connected centralizer in G is contained in

M . We claim that for every n, there is a continuous seminorm ‖ · ‖n on C(G, ζ) such that

(6.5) |ε′M (σ′, f)| ≤ ‖f‖n δ′(σ′)−1(1 + ‖σ′‖)−n,

for every σ′ in T̃ ′(R) − S̃ ′ and f ∈ C′(G, ζ). The first step is to show that a similar

estimate holds with IM (σ′, f) in place of ε′M (σ′, f). The estimate in this case follows from

the definition (1.4), the definition [A14, §1] of the invariant distribution IM (γ, f), and

the original estimate [A2, Corollary 7.4] for its noninvariant analogue JM (γ, f). Similar

estimates for IEM (σ′, f) and SG
M (M ′, σ′, f) follow inductively from (1.8)–(1.10), and the

fact that f → f ′ is a continuous linear mapping from C(G, ζ) to S(G̃′, ζ̃ ′). The required

estimate (6.5) then follows from the definition of ε′M (σ′, f).

We shall now apply an important and well known technique of Harish-Chandra, by

which we can use the differential equations (6.2) to extend the estimate (6.5) to derivatives.
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The basic idea was introduced in [H1, Lemma 48], and is quite familiar from other contexts

[A2], [L2] and [AC] as well. We shall sketch the technique as it applies here, to see that it

yields the kind of estimates we want at infinity in T̃ ′(R).

Suppose that D′ is an invariant differential operator on C∞(T ′,M, ζ). According to

[H1, §25], there is an identity

r∑
j=1

(
∂
(
hT (zi)

)′)∗
Ej,ε = (D′)∗δ + βε

of distributions on the orthogonal complement t̃′(R)Z of z̃′(R) in t̃′(R). The notation is

essentially that of [H1, p. 498] and [A2, p. 252], adapted to the context at hand. In

particular, δ is the Dirac distribution at 0, ε is any positive number with ε ≤ 1
3 , and

{zj : 1 ≤ j ≤ r} are elements in Z(G, ζ), while βε(H) and

Ej,ε(H) = Ψε(H)Ej(H), 1 ≤ j ≤ r,

are functions supported on the ball of radius 3ε. We are regarding invariant differential

operators on T̃ ′(R) also as differential operators of constant coefficients on the Lie algebra

t̃′(R), and we are writing X∗ for the real adjoint of any such operator X. If σ′ is any given

point in T̃ ′G-reg(R), we set

ε =
1
4
δ′(σ′).

We then evaluate the distributions on each side of the equation at the function

H −→ ε′M (σ′expH, f).

This gives a formula for D′ε′M (σ′, f) as a difference of integrals∫ r∑
j=1

(
∂
(
hT (zi)

)′
ε′M (σ′expH, f)

)
Ej,ε(H)dH

and ∫
ε′M (σ′ expH, f)βε(H)dH
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over t̃′(R)Z . The function Ej,ε is bounded independently of ε, while βε(H) is bounded by

a constant multiple of a power of ε−1 = 4δ′(σ′)−1. Since

∂
(
hT (zi)

)′
ε′M (σ′expH, f) = ε′M (σ′expH, zif),

we can apply the estimate (6.5) to each of the two integrals. We conclude that there is

nonnegative integer q′, and a continuous seminorm ‖f‖D′,n for any positive integer n, such

that

(6.6) |D′ε′M (σ′, f)| ≤ ‖f‖D′,n δ′(σ′)−q′(1 + ‖σ′‖)−n,

for any σ′ in T̃ ′(R)− S̃ ′ and f ∈ C′(G, ζ).

The exponent q′ = q′(D′) in (6.6) depends a priori on D′. However, we can remove

this dependence by selecting a set of generators {D′
1, . . . , D

′
d} for the space of invariant

differential operators on C∞(T ′,M ′, ζ) as a module over (the image of) Z(G, ζ). Any

invariant differential operator D′ can then be written in the form

D′ = D′
1∂

(
hT (z1)

)′ + · · ·+D′
d∂

(
hT (zd)

)′
,

for elements z1, . . . , zd in Z(G, ζ). It follows from (6.2) that

D′ε′M (σ′, f) =
d∑

i=1

D′
i ε
′
M (σ′, zif).

The estimate (6.6) then holds for any D′, if we take

q′ = max
1≤i≤d

q′(D′
i).

A separate technique of Harish-Chandra [H1, Lemma 49] establishes that one can in

fact take q′ = 0. The technique is summarized in the following lemma, whose elementary

proof we leave to the reader. (See [L2, pp. 21–22], [AC, p. 169].)

Lemma 6.2. Suppose that λ1, . . . , λk are linear forms on Rd, and that φ is a smooth

function on the set

Breg =
{
ξ ∈ Rd : ‖ξ‖ ≤ 1,

k∏
i=1

λi(ξ) 6= 0
}
.
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Assume that there is a nonnegative integer q with the property that for any invariant

differential operator D on Rd,

|Dφ(ζ)| ≤ cD
∣∣∣ k∏

i=1

λi(ζ)
∣∣∣−q

, ζ ∈ Breg,

for a constant cD that depends on D′. Then for any D, we can choose a constant of the

form

c∗D = c0

( ∑
α

cDα

)
,

where {Dα} is a finite set of invariant differential operators that depends only on D, and

c0 is independent of D and φ, such that

|Dφ(ξ)| ≤ c∗D, ξ ∈ Breg. �

It is clear how to combine Lemma 6.2 with the estimate (6.6). Together, they imply

that for any D′ and n, there is a continuous seminorm ‖ · ‖D′,n on C′(G, ζ) such that

(6.7) |D′ε′M (σ′, f)| ≤ ‖f‖D′,n (1 + ‖σ′‖)−n,

for any σ′ in T̃ ′(R)− S̃ ′ and f ∈ C′(G, ζ).

Suppose that Ω is a connected component in the complement of S̃ ′ in T̃ ′(R). The

estimate (6.7) implies that ε′M (σ′, f) extends to a Schwartz function on the closure of Ω,

in the sense that there is a (ζ̃ ′)−1-equivariant Schwartz function on T̃ ′(R) whose restriction

to Ω equals ε′M (σ′, f). One observes without difficulty that the factor δ′c(σ
′) extends to a

smooth function on the closure of Ω, whose derivatives are tempered. It follows that the

product ε′M,c(σ
′, f) also extends to a Schwartz function on the closure of Ω. As Ω varies,

we thus have a family {
ε′M,c(σ

′, f) : σ′ ∈ Ω
}

of Schwartz functions. The jump conditions (6.3)c and (6.4)c imply that these func-

tions have compatible normal derivatives across common hypersurfaces. We conclude
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that ε′M,c(σ
′, f) extends to a (ζ̃ ′)−1-equivariant Schwartz function ε′M,c(f) on T̃ ′(R). The

estimate (6.7) then tells us that the mapping f → ε′M,c(f) is continuous. This completes

the proof of Lemma 6.1. �

The next step is to take the Fourier transform of ε′M,c(f), regarded now as a (ζ̃ ′)−1-

equivariant Schwartz function on T̃ ′(R). Since the function is invariant under the Weyl

group W (M̃ ′, T̃ ′), we may as well make use of the family of W (M̃ ′, T̃ ′)-invariant eigenfunc-

tions provided by the set Φtemp,cusp(M̃ ′, ζ̃ ′) of tempered, cuspidal, ζ̃ ′-equivariant Langlands

parameters for M̃ ′. Any φ′ in this family has a normalized stable character

η′M (φ′, σ′) =
∑

π′∈Πφ′

θ′M (π′, σ′),

where

θ′M (π′, σ′) = |DM̃ ′
(σ′)| 12 Θ′

M (π′, σ′), σ′ ∈ T̃ ′G-reg(R),

is the normalized character of the representation π′. Set

ε′M (φ′, f) = |W (M ′, T ′)|−1

∫
T̃ ′(R)/Z̃′(R)

η′M (φ′, σ′)ε′M (σ′, f)dσ′.

We can also write

ε′M (φ′, f) = |W (M ′, T ′)|−1

∫
T̃ ′(R)/Z̃′(R)

η′M,−c(φ
′, σ′)ε′M,c(σ

′, f)dσ′,

since δ′c(σ
′) is a complex number of absolute value 1 whose complex conjugate equals

δ′−c(σ
′). The function

σ′ −→ η′M,−c(φ
′, σ′)

on T̃ ′reg(R) extends to a smooth function on T̃ ′(R). Its explicit formula as a linear combi-

nation of characters on T̃ ′(R) [S1], coupled with standard abelian Fourier analysis, yields

an inversion formula

ε′M,c(σ
′, f) =

∫
Φtemp,cusp(M̃ ′,ζ̃′)

η′M,c(σ
′, φ′)ε′M (φ′, f)dφ′,
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where

η′M (σ′, φ′) = η′M (φ′, σ′)

is the function introduced in §5. Multiplying each side by δ′−c(σ
′), we see that

ε′M (σ′, f) =
∫

Φtemp,cusp(M̃ ′,ζ̃′)

η′M (σ′, φ′)ε′M,c(φ
′, f)dφ′.

It is therefore enough to show that ε′M (φ′, f) vanishes for any parameter φ′ in

Φtemp,cusp(M̃ ′, ζ̃ ′).

The smooth function η′M,−c(φ
′, σ′) on T̃ ′(R) is an eigenfunction of the space of in-

variant differential operators on T̃ ′(R). It follows from (6.2)c, the fact that ε′M,c(σ
′, f) is

a smooth function on T̃ ′(R), and the second formula above for ε′M (φ′, f), that the linear

form

f −→ ε′M (φ′, f), f ∈ C′(G, ζ),

is an invariant tempered eigendistribution of Z(G, ζ). In other words,

(6.8) ε′M (φ′, zf) = χG
φ (z)ε′M (φ′, f), z ∈ Z(G, ζ),

for a character χG
φ on the algebra Z(G, ζ). To be precise,

χG
φ (z) = χφ(zM ), z ∈ Z(G, ζ),

is induced from the infinitesimal character χφ of the image φ of φ′ in Φtemp(M, ζ). We

note for future reference that the imaginary part of χφ can be represented by a linear form

νφ in ia∗M . This is a consequence of the fact that φ′ is cuspidal.

The distribution ε′M (φ′, f) is supported on characters, in the sense that it depends only

on the image fG of f in I(G, ζ). This follows from the definitions and the corresponding

property [A7] of the distribution IM (γ, f). (Using the main theorem of [A1], one can in fact

show that any invariant tempered distribution on G(R) is supported on characters.) We

claim that ε′M (φ′, f) actually depends only on the image fM of fG in I(M, ζ). To see this,
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we recall that there are free actions φ′ → φ′λ and φ → φλ of the vector space ia∗M,Z that

commute with the mapping φ′ → φ. The set Φtemp,cusp(M̃ ′, ζ̃ ′) is in fact a discrete union

of associated ia∗M,Z-orbits. The imaginary part νπλ
∈ ia∗M satisfies the obvious identity

νπλ
= νφ + λ.

Consequently, if λ is in general position, and π is an irreducible tempered representation

of G(R) that is not parabolically induced from a tempered representation of M(R), the

infinitesimal character χπ of π is distinct from χφλ
. Since ε′M (φ′λ, f) equals a (finite)

linear combination of eigendistributions with infinitesimal character χφλ
, the support of

its invariant Fourier transform is disjoint from π. The claim follows from the fact that

ε′M (φ′λ, f) is continuous in λ.

We need to say a word about the space of eigendistributions to which ε′M (φ′, f) be-

longs. It is composed of induced distributions

fG(ρG) = fM (ρ), f ∈ C(G, ζ),

obtained from invariant, ζ-equivariant, tempered distributions ρ on M(R). Let T+
φ be the

set of distributions on M(R) that belong to Ttemp(M, ζ), and whose infinitesimal character

equals χφ. The corresponding induced family consists of eigendistributions on G(R) with

infinitesimal character χG
φ , but it might not span the space that contains ε′M (φ′, f). Sup-

pose that τ ∈ T+
φ equals an induced virtual character τM

1 attached to an elliptic element

τ1 ∈ Tell(M1, ζ), for some Levi subgroup M1 ⊂ M , and that D is an invariant differential

operator on the space ia∗M1
/ia∗M . The linear form

(6.9) hM (ρ) = lim
µ→0

DhM (τM
1,µ), hM ∈ I(M, ζ),

is a generalized eigendistribution for Z(M, ζ) with infinitesimal character χφ. In other

words, (
zM − χφ(zM )

)d
ρ = 0, zM ∈ Z(M, ζ),
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for a positive integer d. Under certain circumstances, there are nonconstant operators D

for which one can take d = 1. Let F+
φ be the (infinite dimensional) space of distributions on

M(R) spanned by distributions of the form (6.9). It is then a consequence of the various

definitions that if φ′ is in general position, the image of F+
φ under the induction map-

ping ρ→ ρG contains the (finite dimensional) space of invariant, ζ-equivariant, tempered

eigendistributions on G(R) with infinitesimal character χG
φ . In particular, it contains the

distribution ε′M (φ′, f).

If λ belongs to the space ia∗M,Z , the twist ρλ of any element in F+
φ belongs to F+

φλ
.

Let R+
φ be a fixed basis of F+

φ that contains T+
φ , and consists of distributions of the form

(6.9). For any λ, the family

R+
φλ

= {ρλ : ρ ∈ R+
φ }

is then a basis of F+
φλ

. It provides an expansion

ε′M (φ′λ, f) =
∑

ρ∈R+
φ

ε′M (φ′λ, ρλ)fM (ρλ)

of the associated distribution, for complex numbers ε′M (φ′λ, ρλ) that vanish for almost all

ρ.

We return to the problem of showing that ε′M (φ′, f) vanishes for any given φ′. It will

be convenient to take φ′ to be a parameter within a given ia∗M,Z-orbit, such that the linear

form νφ is trivial on the kernel aG
M of the projection of aM onto aG. In fact, we may as

well fix a (noncanonical) isomorphism from aM/aZ onto a complement aZ
M of aZ in aM

that contains aG
M . For example, we could take aZ

M to be the orthogonal complement of aZ

relative to underlying (noncanonical) Euclidean inner product. We then take φ′ to be the

parameter within the given ia∗M,Z-orbit such that νφ vanishes on aZ
M . With this restriction,

our task is to show that ε′M (φ′λ, f) vanishes for every λ ∈ ia∗M,Z .

It is here that we will use the limit formula from [A14], or rather its stabilization

obtained in the last section. We are free to express ε′M (φ′, f) as an iterated integral

ε′M (φ′, f) =
∫

aM /aZ

εM (φ′, X, f)dX,
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for the function

(6.10) ε′M (φ′, X, f) = |W (M ′, T ′)|−1

∫
T̃ ′(R)X

η′M (φ′, σ′)ε′M (σ′, f)dσ′,

defined in terms of an integral over the compact subset

T̃ ′(R)X =
{
σ′ ∈ T̃ ′(R)/Z̃ ′(R) : HM̃ ′(σ′) = X

}
of T̃ ′(R)/Z̃ ′(R). Suppose for the moment that f belongs to the Hecke algebra H(G, ζ), as

in §5. We continue of course to assume that fG = 0 in the case that G is quasisplit and

M ′ = M∗, which is to say that f belongs to the subspace

H′(G, ζ) = H(G, ζ) ∩ C′(G, ζ)

of H(G, ζ). It then follows from Corollary 5.3 and the definitions at the beginning of this

section that

lim
T−→

P,r
∞
ε′M (σ′T , fT ) = 0, P ∈ P(M), r > 0,

uniformly for σ′ in the compact set T̃ ′(R)X attached to a given X in aM/aZ . Since we are

taking the limit of an aZ-invariant function of T ∈ aM , we may as well restrict T to points

in our complement aZ
M of aZ . We write

ε′M (φ′, X + T, fT )

= |W (M ′, T ′)|−1

∫
T̃ ′(R)X+T

η′M (φ′, σ′)ε′M (σ′, fT )dσ

= |W (M ′, T ′)|
∫

T̃ ′(R)X

η′M (φ′, σ′T )ε′M (σ′T , fT )dσ.

Since the normalized stable character η′M (φ′, σ′T ) is bounded independently of σ′T , we

conclude that

(6.11) lim
T−→

P,r
∞

(
ε′M (φ′, X + T, fT )

)
= 0, f ∈ H′(G, ζ).

In order to apply (6.11), we need to examine ε′M (φ′, Y, fT ) as a function of T , for

any Y ∈ aM/aG. We shall do so with f in the Schwartz space C′(G, ζ), and T in the

complement aZ
M of aZ .
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We can obviously write the function (6.10) as a Fourier transform

(6.12) ε′M (φ′, Y, f) =
∫

ia∗
M,Z

ε′M (φ′λ, f)e−λ(Y )dλ, f ∈ C′(G, ζ),

on ia∗M,Z . Then

ε′M (φ′, Y, f) =
∑

ρ∈R+
φ

ε′M (φ′, ρ, Y, f),

where

ε′M (φ′, ρ, Y, f) =
∫

ia∗
M,Z

ε′M (φ′λ, ρλ)fM (ρλ)e−λ(Y )dλ.

The coefficient ε′M (φ′λ, ρλ) is a smooth function of λ, any derivative of which is slowly

increasing. Allowing a minor abuse of notation, we write

ε′M (φ′, ρ,H), H ∈ aM/aZ ,

for its Fourier transform as a tempered distribution (of rapid decrease) on aM/aG. Since

fM (ρλ) is a Schwartz function of λ, its Fourier transform

fM (ρ,H) =
∫

ia∗
M,Z

fM (ρλ)e−λ(H)dλ, H ∈ aM/aZ ,

is a Schwartz function on aM/aZ . We then write

ε′M (φ′, ρ, Y, f) =
∫

aM /aZ

ε′M (φ′, ρ, Y −H)fM (ρ,H)dH,

where the integral represents the convolution of a tempered distribution with a Schwartz

function. It remains to describe fT,M (ρ,H) as a function of T .

The Langlands parameter φ′ for M̃ ′ is cuspidal, but its image φ in Φtemp(M, ζ) of

course need not be. We have already accounted implicitly for this possibly in the form

(6.9) taken by elements ρ of the basis F+
φ . Consider such a ρ. The associated virtual

character τ = τM
1 in T+

φ is induced from a linear combination of constituents of a rep-

resentation π1 = πM1
ρ of M1(R) that is induced in turn from a cuspidal representation

πρ ∈ Πtemp,cusp(Mρ, ζ). The distribution ρ is thus attached to a chain

Mρ ⊂M1 ⊂M
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of Levi subgroups of M . We can therefore identify the imaginary part νφ of χφ with an

imaginary linear form νρ on aMρ
, which represents the imaginary part of the infinitesimal

character of ρ. Of course νρ still lies in the subspace ia∗M of ia∗Mρ
, and by the condition

we have placed on φ′, it vanishes on the subspace aZ
M that contains T . The value of

fT,M at any deformation τM
1,Λ of τ by a point Λ ∈ ia∗M1,Z is given by a sum over the set

U(M,Mρ) = UG(M,Mρ) of embeddings of aM into aMρ
. Since the imaginary part of the

infinitesimal character τM
1,Λ corresponds to the linear form νρ + Λ, and

e(νρ+Λ)(uT ) = eνρ(uT )eΛ(uT ) = eΛ(uT ), u ∈ U(M,Mρ),

we can write

fT,M (τM
1,Λ) =

∑
u∈U(M,Mρ)

eΛ(uT )fM (τM
1,Λ).

We shall apply this formula, with

Λ = µ+ λ, µ ∈ ia∗M1,Z , λ ∈ ia∗M,Z ,

to compute fT,M (ρλ).

The differential operator D in (6.9) is defined on ia∗M1
/ia∗M . It acts on functions of

µ+ λ through the variable µ. It follows from Leibnitz’ rule that

lim
µ→0

D(e(µ+λ)(uT ))fM (τM
1,µ+λ) =

nD∑
i=1

pi(D,uT )
(

lim
µ→0

DifM (τM
1,µ+λ)

)
eλ(uT ),

for invariant differential operators {Di} on ia∗M1
/ia∗M and polynomials {pi(D, ·)} on aM

M1
.

The distribution ρ in (6.9) consequently satisfies

fT,M (ρλ) =
∑

u∈U(M,Mρ)

( ∑
i

pi(ρ, uT )fM (ρi,λ)
)
eλ(uT ),

where

fM (ρi,λ) = lim
µ→0

DifM (τM
1,µ+λ),
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and

pi(ρ, uT ) = pi(D,uT ).

We can therefore write

fT,M (ρ,H) =
∫

ia∗
M,Z

fT,M (ρλ)e−λ(H)dλ

=
∑

u∈U(M,Mρ)

∑
i

pi(ρ, uT )fM

(
ρi,H − (uT )M

)
,

where (uT )M is the projection of uT onto aM . Notice that if u equals the identity embed-

ding 1 of aM into aMρ
, then

D
(
e(µ+λ)(uT )fM (τM

1,µ+λ)
)

= e(µ+λ)(T )DfM (τM
1,µ+λ).

In this case, nD = 1, p1(ρ, uT ) = 1 and ρ1 = ρ.

We conclude that

ε′M (φ′, Y, fT ) =
∑

ρ∈R+
φ

∫
aM /aZ

ε′M (φ′, ρ, Y −H)fT,M (ρ,H)dH

=
∑

ρ

∑
u∈U(M,Mρ)

∑
i

pi(ρ, uT )ε′i
(
φ′, ρ, Y − (uT )M , f

)
,

where

ε′i(φ
′, ρ, U, f) =

∫
aM /aG

ε′M (φ′, ρ, U −H)fM (ρi,H)dH,

for any U ∈ aM/aG and f ∈ C′(G, ζ). It is a consequence of the discussion that

ε′i(φ
′, ρ, U, f) is a Schwartz function of U . If u = 1, the corresponding inner sum is taken

over the one element i = 1, and reduces simply to ε′M (φ′, ρ, Y − T, f).

We apply the last expansion to any function f ∈ H′(G, ζ). We have established that

ε′M (φ′, X + T, fT ) equals

∑
ρ∈R+

φ

∑
u∈U(M,Mφ)

∑
i

pi(ρ, T )ε′i
(
φ′, ρ,X + T − (uT )M , f

)
.

If u 6= 1, ‖T − (uT )M‖ is bounded below by a positive multiple of ‖T‖, for any T ∈ ar
P .

Since ε′i(φ
′, ρ, ·, f) is a rapidly decreasing function on aM,Z , and pi(ρ, ·) is a polynomial on

98



aM,Z , the summands corresponding to any u 6= 1 approaches 0 as T approaches infinity in

ar
P . If u = 1, the inner sum over i reduces simply to the function

ε′M
(
φ′, ρ,X + T − (uT )M , f

)
= ε′M (φ′, ρ,X, f).

Combining these observations with the limit formula (6.11), we conclude that

ε′M (φ′, X, f) =
∑

ρ∈R+
φ

ε′M (φ′, ρ,X, f)

= lim
T−→

P,r
∞
ε′M (φ′, X + T, fT ) = 0,

for any X ∈ aM,Z and f ∈ H′(G, ζ). It then follows from (6.12) that ε′M (φ′λ, f) = 0 for

any λ ∈ ia∗M.Z and f ∈ H′(G, ζ).

We have agreed that ε′M (φ′λ, f) is supported on characters. In other words, it descends

to a continuous linear form

ε̂′M (φ′λ, fG) = ε′M (φ′λ, f), f ∈ C′(G, ζ),

on the image I ′(G, ζ) of C′(G, ζ) in I(G, ζ). From what we have just seen, ε̂′M (φ′λ, ·)

vanishes on the subspace

IH′(G, ζ) = IH(G, ζ) ∩ I ′(G, ζ)

of I ′(G, ζ). But by the two versions [CD] and [A8] of the trace Paley-Wiener theorem,

IH′(G, ζ) is dense in I ′(G, ζ). We conclude that ε′M (φ′λ, f) vanishes for any f ∈ C′(G, ζ).

This is what we had to prove. As we have seen, it implies that ε′M (σ′, f) vanishes for any

σ′ ∈ T̃ ′(R), the uniform statement to which we have reduced all the assertions of Theorem

1.1. Our proof of Theorem 1.1 is at last complete. �

We close with a couple of comments. For fixed f , the objects of Theorem 1.1 belong

to the space

C∞G-reg(T
′,M, ζ) = C∞(T ′G-reg,M, ζ)
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of smooth sections of a line bundle over T ′G-reg(R). We have been treating the variable σ′

as a representative in T̃ ′G-reg(R) of a point in the base space

T ′G-reg(R) = T ′G-reg(R)/Z(R) = T̃ ′G-reg(R)/Z̃ ′(R).

The associated functions of Theorem 1.1 depend only on the stable conjugacy class δ′ of

σ′ in M̃ ′(R). They can in fact be regarded as sections of a line bundle that depends only

on the isomorphism class of M ′.

Let us change notation slightly. We write δ′ in place of σ′, and we let M ′ denote

simply an isomorphism class of elliptic endoscopic data for M . We still take T (M ′,M)

to be the associated set of transfer factors ∆ = ∆M , with the understanding that any

∆ now includes an implicit choice of representative within the isomorphism class M ′, as

well as an auxiliary datum (M̃ ′, ξ̃′) for that representative. We can then define a bundle

LG-reg,ell(M ′,M, ζ), consisting of the set of equivalence classes of pairs

(∆, δ′), ∆ ∈ T (M,M ′), δ′ ∈ M̃ ′
G-reg,ell(R).

The prescription is similar to that of §1, except that it has an extra condition of equivalence,

corresponding to isomorphisms of endoscopic data. Then LG-reg,ell(M ′,M, ζ) becomes

a principal U(1)-bundle over the space ∆G-reg,ell(M ′, Z) of isomorphism classes of pairs

(M ′, δ′), where M ′ is the quotient by Z of a representative within the class M ′, and δ′ is

a strongly G-regular, elliptic element in M ′(R). We set C∞G-reg,ell(M
′,M, ζ) equal to the

space of smooth sections of the line bundle dual to LG-reg,ell(M ′,M, ζ). One can then show

that for fixed f , the objects IM (δ′, f), IEM (δ′, f) and SG
M (M ′, δ′, f) of Theorem 1.1 belong

to C∞G-reg,ell(M
′,M, ζ). We refer the reader to forthcoming papers [A15, §1–2] and [A16,

§4], where these notions are treated in greater generality.

Suppose that γ is a strongly G-regular, elliptic conjugacy class in M(R). If ∆M

belongs to T (M ′,M), the function

δ′ −→ ∆M,ζ(δ′, γ) =
∑

z∈Z(R)

∆M (δ′, zγ)ζ(z)−1
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can be regarded as a section of LG-reg,ell(M ′,M, ζ) of finite support. Set

∆M,ζ(γ, δ′) = n−1
γ ∆M,ζ(δ′, γ),

where nγ is the number of M(R)-conjugacy classes in the stable class of γ. If γ1 is another

strongly G-regular, elliptic class in M(R), the sum

∑
M ′

∑
δ′∈∆G-reg(M̄ ′)

∆M,ζ(γ, δ′)∆M,ζ(δ′, γ1)

vanishes unless γ1 = γz, for some element z ∈ Z(R), in which case it equals ζ(z). This

relation follows from [A11, Lemma 2.3]. It provides an inversion formula

IM (γ, f) =
∑
M ′

∑
δ′∈∆G-reg(M̄ ′)

∆M,ζ(γ, δ′)IM (δ′, f)

for the function (1.4) that is the source of Theorem 1.1. Set

(6.13) IEM (γ, f) =
∑
M ′

∑
δ′∈∆G-reg(M̄ ′)

∆M,ζ(γ, δ′)IEM (δ′, f).

The statement (a) of Theorem 1.1 is then equivalent to the identity

(6.14) IEM (γ, f) = IM (γ, f).

The statement (b) of Theorem 1.1 is of course unchanged if σ′ is replaced by δ′. It is in

this form that Theorem 1.1 was conjectured [A11, Conjecture 3.3], and later applied as

[A13, Local Theorem 1 (p. 775)].
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