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The purpose of this article is to discuss some questions in the harmonic 
analysis of real and padic groups. We shall be particularly concerned with 
the properties of a certain family of invariant distributions. These distri- 
butions arose naturally in a global context, as the terms on the geometric 
side of the trace formula. However, they are purely local objects, which 
include the ordinary invariant orbital integrals. One of our aims is to de- 
scribe how the distributions also arise in a local context. They appear as 
the terms on the geometric side of a new trace formula, which is simpler 
than the original one, and is the solution of a natural question in local har- 
monic analysis. The local trace formula seems to be a promising tool. It  
plight have implications for the difficult local problems which are holding 
up progress in automorphic forms. 

We have organized the paper loosely around three general problems. 
We shall describe the problems and the distributions together in $1. This 
section is entirely expository. In $2, which is also largely expository, we shall 
discuss the role of the distributions in the local trace formula. Finally, in $3, 
we shall see how the local trace formula can be applied to some questions 
in local harmonic analysis. We shall sketch an application to each of the 
three general problems of $1. These results are all more or less immediate 
consequences of the same kind of approximation argument. It remains to be 
seen whether a deeper study of the local trace formula will lead to further 
applications. 

Let G be a connected reductive algebraic group over a local field F.  We 
assume that F is of characteristic 0. Then F equals the real field IR, or 
a padic field on, or a finite extension of one of these. In particular, our 
discussion of the group G ( F )  of rational points applies to both real and 
p-adic groups. 
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We fix a suitable maximal compact subgroup K of G(F). We can then 
form the Hecke algebra 

of smooth, compactly supported, K-finite functions on G(F). The Hecke 
algebra is contained in the space CF(G(F)) of smooth functions of compact 
support (the two spaces are in fact equal in the padic case), and CT(G(F)) 
is contained in Harish-Chandra's Schwartz space C(G(F)). There are nat- 
ural topologies on the three spaces for which the embeddings 

are continuous, and have dense image. 
By a distribution on WG),  we shall mean a continuous linear functional 

I on X(G). This is a slight abuse of terminology, for it is only those I which 
extend to continuous linear functionals on CT(G(F)) which are distribu- 
tions on G(F). The functionals which in addition extend continuously to 
C(G(F)) are of course the tempered distributions on G(F). The functional 
I is said to be invariant if 

In case I extends to CF(G(F)), this condition is easily seen to be equivalent 
to the more familiar property 

I ( f Y )  = I ( f ) ,  f c ~ ? ( G ( F ) ) l  !I G(F)l - 
where fY(x) = f ( ! ~ x ~ ' ) .  The most fundamental invariant distributions 
are the two families of orbital integrals and tempered characters. 

Recall that orbital integrals are parametrized by points y in Grea(F), the 
set of regular semisimple elements in G(F). They are defined by integrals 

where G7 is the centralizer of y in G, and 

is the Weyl discriminant. Orbital integrals are invariant distributions, 
which have been shown by Harish-Chandra to be tempered. They are 
basic objects in local harmonic analysis. Orbital integrals are also very 
important for the theory of automorphic forms, for they are the terms on 
the geometric side of the Selberg trace formula for compact quotient. 
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The tempered characters 

can be regarded as dual analogues of orbital integrals. They too are invari- 
ant tempered distributions, which are parametrized by the set ntemp(G(F)) 
of (equivalence classes of) irreducible tempered representations of G(F). It 
is convenient to think of I G ( ~ ,  f )  as a transform as well as a distribution. 
We therefore define a map 

f - f ~ ,  

from X(G) to the space of complex valued functions on I I temp(~(F)) ,  by 
setting 

An invariant distribution I on X(G) is said to be supported on characters 
if I ( f )  = 0 for every function f ? WG) such that fG = 0. Our first 
problem is a classification question, which we mention for the sake of general 
orientation. 

Problem A. Show that anyinvariant distribution I on X(G) issupported 
on characters. 

Remark 1. In the p-adic case, the problem was solved by Kazhdan [18], who 
used global methods (specifically, a simple form of the global trace formula) 

. to show that orbital integrals are supported on characters. Harish-Chandra 
had earlier given an argument based on Shalika germs which reduced the 
question to the case of orbital integrals. For real groups, the problem has 
not been solved in its present form. 

Remark 2. For tempered distributions on the Schwartz space, the analo- 
gous question can be answered for general real groups by using the char- 
acterization of C(G(F)) [l] under the full Fourier transform. On the other 
hand, for padic groups this version of the problem has been solved only 
for GL(n) [22]. 

One reason for considering the Hecke algebra is that there is a nice 
characterization 1121, [14] of the space 

of functions on IItemp(G(F)). This leads to a natural topology on T{G) in 
terms of the co-ordinates of the domain IItemp(G(F)), for which the map 
/ -+ fG is continuous. One checks that if I is supported on characters, 
there is a unique distribution I on K G )  such that 

The next problem we state informally as 
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Problem B. Given some natural invariant distribution I which is sup- 
ported on characters, deduce information about f .  
Remark 1. One does not generally expect to be able to  compute I explicitly. 
Instead, one could try to determine the qualitative properties of I. For 
example, if I is tempered, one could ask whether I is a function on the 
space IItemp(G(F)). Given Harish-Chandra's Plancherel formula one can 
construct a variety from aemp(G(F)) which is a disjoint union of Euclidean 
spaces (F-Archimedean) or compact tori (the p-adic case). For a tempered 
I, one could try to determine explicitly the singular support of I. 
Remark 2. Suppose that 

Using results of Shelstad on L-indistinguishability, R. Herb has computed 
I in the case F = R. For padic groups, the problem in this case is very 
important, but little is known. In particular, even though I is tempered, 
there is to my knowledge no general result on the singular support of I .  

The orbital integrals IG(7) are part of a larger family of invariant distri- 
butions. Suppose that M is a Levi component of some parabolic subgroup 
of G defined over F. The set 'P(Af) of all parabolic subgroups with Levi 
component M is in bijective correspondence with the chambers in the real 
vector space 

a~ = H o ~ ( X ( M ) ~ , R )  -=-* Hdm(x(AM), R), 

where X(-) stands for the module of rational characters, and AM is the 
split component of the center of M. For any group P = MNp in P(M),  
there is the usual map 

that comes from the decomposition 

Suppose x 6 G(F). Let IIM(x) be the convex hull in aM of the finite set 

We write v d x )  = v?,(x) for the volume in a ~ / a ~  of the projection of 
W x ) .  

The convex polytopes h ( x )  are nice objects whose geometric proper- 
ties are tied up with the structure of G. For example, there is a bijection 
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between the finite set f ( M )  of parabolic subgroups which contain M ,  and 
the facets of the polytope IIM (x). The facet II$(x) is equal to the convex 
hull of the set 

{HP(x) : P ? P(M),  P C Q}. 

We write vs (x )  for the volume of the projection of II$(x) onto aM/aQ. 
Another property of b ( x )  concerns the finite set C(M) of Levi subgroups 
L of G which contain M. These are in bijective correspondence with the 
vector subspaces a~ of a~ which are orthogonal complements of facets, or 
rather, orthogonal complements of affine spaces generated by facets. There 
is thus a bijection 

L L(M) - ~ L ( x )  

between the finite set of Levi subgroups which contain M,  and convex 
polytopes obtained by projecting IIM(x) onto orthogonal complements of 
facets. More precisely, IIL(x) is the projection of IIM(x) onto the orthog- 
onal complement a~ of the affine space generated by any of the facets 
{II$(x) : Q E P(L)}. The notation makes sense, for IIL(x) is just the 
convex hull of {HQ(x) : Q E P(L)}, which is the polytope associated to 
L in its own right. In particular, vL(x) is the volume of the projection of 
IIM(x) onto aL/aG. 

The usual diagram for G = SL(3) is a useful reminder of these relation- 
ships. Taking M to be minimal, we identify a~ as a Euclidean space with 
the plane. There are six chambers and six minimal parabolic subgroups 
P 6 P(M). There are three subspaces aL of dimension 1, and for each 
such L there are two maximal parabolic subgroups Q E P(L). 

Figure 1. 

In general, the function vM(x) can be used to define a noninvariant 
measure on any G-regular class in M(F). Observe first that if m is any 
point in M(F),  the polytope IIM(mx) is the translate of IIM(x) by a vector 
HM(m). Therefore, vM (mx) equals vu (x). Now, suppose that 7 belongs to 



62 JAMES ARTHUR 

M(F)nGree(F). Then G-, is contained in M ,  so that VM(X) is left invariant 
under G-,(F). One can therefore define the weighted orbital integral 

for any function f ? 'H(G). 
Although i t  is a generalization of the ordinary orbital integral, the 

weighted orbital integral JM(7, f )  is not invariant. There is in fact a rather 
explicit formula for the lack of invariance. 

It  can be shown that JM(7) is a tempered distribution, so to analyze its 
lack of invariance it suffices to look a t  JM(7, f y )  for any element y 6 G(F). 
Changing variables in the integral over x, we first write 

If P belongs to P (M) ,  set 

To sketch how to  evaluate vM(xy), we argue geometrically from the diagram 
for SL(3). For simplicity, assume that for each P ? P(M) ,  the point 
Hp(kpy) lies in the chamber of P. Then for SL(3) we have Figure 2: 
Figure 2. 



SOME PROBLEMS IN LOCAL HARMONIC ANALYSIS 63 

The inner hexagon is I l ~ f ( x ) ,  while the outer hexagon is just T l ~ ( x y ) .  
Let up(kpy) denote the area of the hatched quadrilateral. This region is 
separated from the shaded rectangle by a line segment whose length equals 
the analogous number uQ(kQy) for the maximal parabolic subgroup Q. 
The other side of the rectangle is II%(x), a line segment of length v$x), 
so the area of the shaded rectangle is the product of uQ(kQy) with v^fx). 
In this way, we can account for the area of each of the pieces that comprise 
IIM(xy). We obtain a formula 

which expresses vM(xy) as a sum of mixed volumes. Substituting this 
expansion into the integral above, we obtain the formula 

where 

. for any m G MQ(F) [2, Lemma 8.21. Here MQ is the Levi component of Q 
which contains M ,  and SQ is the modular function of Q(F). Notice that 
the summand in (1.1) with M = G equals JM(y, f).  We therefore can 
write (1.1) as 

more clearly displaying it as an obstruction to the invariance of J ~ f ( 7 ) .  
Just as the tempered characters are dual to the invariant orbital in- 

tegrals, there are dual analogues of weighted orbital integrals, which can 
be regarded as weighted (tempered) characters. If v 6 V.temp(M(F)) and 
A ? iah, the representation 

also belongs to IItemp(M(F)). We can form the (parabolically) induced 
representations 

~ ( T A ) ,  P 6 P(M), 

of G(F), and the normalized intertwining operators 
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between them [6, 51-21. Both Ip ( rA)  and RQlp('ir\) are analytic operator 
valued functions of A G G. For any P G P(M) ,  set 

where if A$ denotes the set of simple "co-roots" of Q, 

It  is a simple matter to show that the limit exists [2, Lemma 6.31. Con- 
sequently R M ( r , P )  is a well defined operator on the underlying space 
of 'Ip(v\ For example, if P is a maximal parabolic with simple root 
a , -%~(v ,P )  is a constant multiple of the logarithmic derivative 

In general, the weighted character of a function / ? X ( G )  is defined as the 
trace 

J ~ ( r , f )  = t r ( % ~ ( r , P ) X p ( r , f ) )  . 
As a spectral analogue of J M ( ~ ,  f ) ,  the distribution JM(T, f )  is not 

invariant. However, the considerations that lead to the formula (1.1) can 
be adapted to the study of J M ( r ,  fy). Observing first that 

one can then rewrite the right hand limit in a general form that is similar 
to the expression for R M ( r ,  P) .  The mixed volume expansion for ~ ~ ( x y )  
translates into a special case of an expansion that applies to certain func- 
tions of A, and in particular, to the functions of which both VM(X) and 
R M ( r ,  P )  are the limits. This provides an expansion for 

as a sum over groups Q ? 3 ( M ) .  The result is a formula 

which is parallel to  (1.1) [2, Lemma 8.31. 
Because the distributions {JM(7)} and {JM(r)} have similar behaviour 

(1.1) and (1.2) under conjugation, we might suspect that they are related 
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to each other by invariant distributions. This is indeed the case. One must 
first interpret JM(ir) as a transform 

that maps functions on G(F) to  functions on IItemp(M(F)). There is a 
technical problem that the function < S > M ( ~ )  does not belong to K M ) .  For 
example, in the case of maximal parabolic P, the logarithmic derivative 

will have poles when the variable z is extended to the whole complex 
plane. This means that JM(ir, f )  is not a Paley-Wiener function in the 
co-ordinates of ir. However, the problem is not serious. Let 'Hac(G) be 
the space of smooth, K-finite functions on G(F)  whose restrictions to  the 
fibres of the map HG : G ( F )  Ã‘ UG all have compact support. One can 
define a version of the map f Ã‘* fa for f 6 'Hac(G), and a variant of the 
main theorem in [12] and [14] provides a characterization of the image 

(See [5, Appendix].) It  can then be shown that dM maps 'Hac(G) continu- 
ously to Iac(M) [6, Theorem 12.11. 

Theorem. [4, $21 There are unique invariant distributions 

on Xac(G) which are supported on characters, and such that 

Proof sketch. We shall sketch the formal part of the proof. We assume 
inductively that 1&(7) has been defined, and has the required properties, 
for any L 6 L(M) with L # G. The required distribution can then be 
defined uniquely by the formula 

We shall show that b ( 7 )  is invariant. 
The formulas (1.1) and (1.2) cannot actually be applied as they stand, 

for f y  is not a I{-finite function. However, since the formulas have simple 
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variants which pertain to  K-finite functions [4, $21, we shall ignore this 
difficulty. In particular, we shall interpret (1.2) as as formula 

for the map dM. Together with (1.1) this yields 

Applying the induction hypothesis to MQ, we see that the last expression 
vanishes. Therefore IM(?) is invariant. 

Since the distributions satisfy the required formula by definition, it re- 
mains only to show that IM(7) is supported on characters. This was done 
by global means in [5, Theorem 5.11. We shall later sketch how it can also 
be established by purely local means. 

We thus obtain a family {IM(7)} of invariant distributions on W G )  
which are parame-trized by Levi subgroups M and G-regular conjugacy 
classes 7 in M(F).  These distributions should be regarded as the true 
generalizations of the orbital integrals {/<?(7)}. They are important in the 
theory of automorphic forms, for they are the terms on the geometric side of 
the global trace formula when the quotient is assumed only to  have finite 
volume. They are also intimately tied up with local harmonic analysis, 
as we shall presently see. Thus, the distributions are natural objects for 
which it is appropriate to ask questions as in Problem B. What is the 
"discrete part" of / M ( ~ ) ?  That  is, what are the values taken by IM(?) on 
the discrete components of IItemp(G(F))? (Actually, we mean the discrete 
components of the variety attached to IItemp (G(F)) by taking into account 
the reducibility of induced representations.) What is the singular support 
of IM(?) on the continuous components? More generally, can one compute 
IM(7) explicitly, modulo smooth functions on the continuous components? 

We should remark that there are twisted versions of the various objects 
discussed above. One can account for this generalization by taking G to 
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be a connected component of a nonconnected reductive group. The only 
ingredient that is lacking is a characterization of the analogous space I ( G )  
when F  = R. (The p-adic twisted trace Paley-Wiener theorem has been 
established by Rogawski [23].) 

The third problem we mention is to relate the distributions to the theory 
of endoscopy. 

Problem C. 
(a) If G is a connected, quasi-split group, construct stable invariant 

distributions SI?,̂ ) on W G )  from the distributions I%). 
(b) If G is any connected group, or a component of a nonconnected 

group, establish identities between the distributions {IZ (7)} and 
{Slj^ ( tH,  f H)}, where H ranges over endoscopic data for G, and 

f Ã‘* f is the conjectured Langlands-Shelstad transfer mapping. 

Remark 1. The problem is very difficult. For example, when F is p-adic, 
the important special case that M = G includes the "fundamental lemma", 
which is far from being solved. This problem is certainly the most impor- 
tant of the three for automorphic forms. A solution could be combined with 
the global trace formula to yield a general theory of endoscopy for automor- 
phic forms, and in particular, many reciprocity laws between automorphic 
representations on different groups. 

Remark 2. The endoscopic side of each identity would be a certain finite 
linear combination of distributions { ~ l j ^ ( ~ ~ ,  fH)}. It should not be dif- 
ficult to  describe the coefficients of each such linear combination explicitly, 
but this has not been done. We refer the reader to the original article 
[21], and perhaps also [8, $31, for a discussion of the undefined terms in the 
statement of the problem. 

Remark 3. For groups of general rank, there are only two cases of the 
problem that have been solved. 

(i) G the multiplicative group of a central simple algebra. 
(ii) G a connected component of the semi-direct product 

where E / F  is a finite cyclic extension. 

The solution in each case is contained Theorem A of [ l l ,  $11.51, a result 
which was proved by global methods. 

The connection of the distributions {IM )̂l with harmonic analysis is 
through a local version of the trace formula. The distributions occur on 
the geometric side, in much the same way that they occur in the global 
trace formula. We shall describe the local trace formula in this section. 
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In the next section we shall sketch how it can be used to give information 
about each of the three problems. The noninvariant version of the local 
trace formula is proved in the preprint [lo]. The details of the invariant 
version described here, as well as the applications, will be given elsewhere. 

The formula begins with a problem suggested by Kazhdan. Consider 
the regular representation 

of G(F) x G(F) on the Hilbert space L~(G(F)). Consider also a function 
in 7f(G x G) of the form 

(From now on, f will denote a function of G(F) x G(F), rather than on 
G(F) as before.) Then R(f) is an operator on L 2 ( ~ ( F ) ) ,  which maps a 
function <f> to the function 

Thus R(f) is an integral operator with smooth kernel K(x, y). Now by the 
Plancherel formula we know that 

where Rdisc is a direct sum of square integrable representations of G(F) x 
G(F), and Rcont is a subrepresentation of R which decomposes continu- 
ously. The problem is to find an explicit formula for the trace of Rdisc(f). 

Suppose for a moment that G is semisimple. On the one hand, 

where a is summed over the discrete series G(F), and uv denotes the 
contragredient of u. Since there are only finitely many discrete series that 
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contain a given I<-type, the sum can be taken over a finite set. On the 
other hand, if Kcont(x, y) is the kernel of &ont(f), Rdisc(f) is an integral 
operator whose kernel is given by the difference of K(x, y) and Kco&, y). 
In particular, 

formula for 
to get a sec- 

The idea is to use the formula above for K(x,x), and the 
Kcont(x, y) provided by Harish-Chandra's Plancherel theorem, 
ond expression for tr ( h i S c (  f )) . 

Returning to the case of reductive G, we fix a suitable minimal Levi 
subgroup Mo of G. Consider first the formula for K(x,x), which after a 
change of variables becomes 

The Weyl integration formula gives an expansion of this into integrals 
over conjugacy classes. Let T ~ ~ ~ ( G ( F ) )  be the set of conjugacy classes 
{7} in G(F) such that the centralizer of 7 in G(F) is compact modulo 
AG(F). Any G-regular conjugacy class in G(F) is the image of a class {7} 
in r e l 1 ( ~ ( ~ ) )  for some Levi subgroup M which contains My. The pair 
.(At, {7}) is uniquely determined only modulo the action of the Weyl group 
W? of (G, Anfo}, so the number of such pairs equals 1 Wf 1 1 woM 1"'. The 
Weyl integration formula can therefore be interpreted as an expansion 

for K(x,x). The sum here is over the groups M C(Mo). The measure 
d-y is supported on the G-regular classes in ( M ( F ) ) ,  and is determined 
in the usual way by a Haar measure on the torus that centralizes 7. 

The contribution from Kcont(x, x) can be regarded as a second expansion 
for K(x, x) in terms of spectral data. Let 1 1 2 ( ~ ( ~ ) )  be the set of (equiv- 
alence classes of) irreducible unitary representations of G(F) which are 
square integrable modulo AG(F). We obtain a measure du on &(G(F)) 
by transferring a suitable measure on ia; by means of the action u -A. 

(See [16,$2].) Harish-Chandra's Plancherel theorem [15], [16] is easily seen 
to yield an expansion 
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where m(u) is the Plancherel density and 

the function f̂  being defined by f ~ ( x l )  = f1(x;). The outer sum is over 
M ? C(Mo) as in (2.1), and for a given At, P stands for any group P(M).  
The inner sum is over S ? Kpt f f ) ,  a fixed K-finite, orthonormal basis of 
the space of Hilbert-Schmidt operators on the underlying space of Zp(u). 

Notice the formal similarity of the two expansions (2.1) and (2.2). The 
terms with M = G are'simplest in each case, and are easily seen to be 
integrable functions of a; in AG(F)\G(F). Their integrals are equal to 

and 

(2.4) 

ns(G(F)) 

respectively. In particular, if G is semisimple, the trace of Rdisc(f) equals 
(2.4), and can consequently be expressed as the sum of (2.3) with a "par- 
abolic term", consisting of the remaining contributions to (2.1) and (2.2). 
The parabolic term is of course much harder t o  compute. It  equals the in- 
tegral over x ? AG(F)\G(F) of the difference of the expressions obtained 
from (2.1) and (2.2) by taking the sums only over M # G. None of the 
terms in (2.1) and (2.2) with M # G is integrable. How then can the differ- 
ence of the expressions yield a function whose integral is computable? The 
answer lies in a truncation process, which in the end works out surprisingly 
well. 

Let PO ? 'P(M0) be fixed minimal parabolic subgroup. The truncation 
depends on a point T in the chamber a: which is very regular, in the sense 
that the number 

d(T) = max a(T) 
a? A p0 

is large. According to the polar decomposition, G(F) equals KMo(F)K. 
Let u(x, T) be the characteristic function of the set of points 

in AG(F)\G(F) such that H d m )  lies in the convex hull of 

taken modulo aG. Then u(x, T) is the characteristic function of a large 
compact subset of AG(F)\G(F). In particular, the integral 
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converges. We shall outline the three steps by which one obtains an explicit 
formula from KT (f ). 

The first step is tostudy the geometric and spectral expansions of KT(f)  
as functions of T. These are obtained from (2.1) and (2.2) by multiplying 
each expression with u(2, T), and then integrating over 2 in AG(,F)\G(F). 
If F = R, one shows that KT(f)  is asymptotic to a polynomial po(T, f )  in 
T as d(T) approaches infinity. If F is padic, we take T to be in the lattice 

in a M o .  In this case it turns out that KT(f)  is asymptotic to a function 

where Ci = 0, (1, . . . , (N are distinct points in the the compact torus 

and each pk(T, f )  is a polynomial in T. In each case, the "constant term" 

of Î ( f )  is well defined. 
The second step is to calculate J ( f )  explicitly. More precisely, one must 

evaluate the terms in the geometric and spectral expansions of J ( f ) .  The 
calculations on the spectral side are the more difficult, and were suggested 
by work of Waldspurger [24], who carried out the process for p-adic spheri- 
cal functions on GL(n). The contributions to the final formula of the terms 
with M = G in (2.1) and (2.2) remain as before, the expressions (2.3) 
and (2.4). However, the contributions from M # G are more elaborate. 
Their principal ingredients are essentially the weighted orbital integrals and 
weighted characters discussed above. It  is of course the identity of the two 
expansions of J (  f )  that yields the noninvariant trace formula. The final 
result is stated and proved in [lo, Theorem 12.11. 

The third step is to convert the noninvariant formula into an invariant 
local trace formula. This is a relatively simple matter, which follows the 
analogous procedure used in the global trace formula [5, $21. The final 
result is an identity between two expansions 

and 

E 
M  
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whose terms we describe as follows. 
In the geometric expansion (2.5), Fell(M) stands for the set of conjugacy 

classes in M(F)  x M(F) of the form (7, y), where 7 is a conjugacy class in 
Ljj (M(F)) . The integrand lM (7, f )  is the invariant distribution discussed 
above, but defined for the function f on G(F) x G(F), and with the weight 
function taken relative to the diagonal image of OM in aw @ a ~ ,  rather 
than the full space OM @ OM. This distribution can in fact be decomposed 
in terms of the original distributions on G(F). For the splitting formula 
[4, Proposition 9.11 asserts that 

where d m ,  M2) is a constant, and 

for any group Pi ? P(Mi). We point out that this constant dM( M ,M2) 
also reflects the geometry of the polytopes IIM(x). It equals 0 unless the 
canonical map 

 MI /aG) @ (OM, 1%') - aM/aG 

between Euclidean spaces in an isomorphism, in which case it is the Jaco- 
bian determinant of the map. In other words d m ,  M2) is the volume of 
the parallelepiped determined by orthonormal bases of the complementary 
subspaces of aM/aG attached to MI and Ma. 

The constituents of the spectral expansion (2.6) are defined in terms of 
the decomposition of a certain distribution Idigc into irreducible characters. 
By definition, Idisc( f )  equals 

M s a  

where M is summed over C(Mo), s is summed over the regular elements 

in the Weyl group of (G, AM), and u is summed over the set 

of orbits of ia*g in 112 (M(F)). For each orbit a, Ip(uv @u) is a well defined 
induced representation of the subgroup 
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of G(F) x G(F). It  can therefore be evaluated at  the restriction f of f 
to (G(F) x G(F)) .  The only other constituent of IdiSc(f) that requires 
comment is the function eo(s). By definition, eo is the sign character on 
the group 

W, = W'y ~l By = {s â W(aM) : su u} 
which is 1 on the R-group R, and is the usual sign character on the com- 
plementary subgroup W'g. Having thus defined Idisc(f), we take ndisc(G) 
to be a union of orbits of 10; in IItemp(G(F) x G(F)) and {aLc(v)} to be 
a corresponding set of coefficients, such that 

This accounts for all the terms in (2.6) except for the distribution i ~ ( v ,  f). 
By definition, 

~ M ( T ,  f) = ~ M ( ~ ) ~ ~ ( Z P ( X ,  f 1) 7 

where 

for any representation v = ?rl 8 7r2 in IIdisc(M). Here, 

is the local normalizing factor for either of the intertwining operators 
R Q , ~ ( ~ 1  1 or 
RQi0(v2). (Since TI and v2 are implicitly constituents of the same induced, 
tempered representation, it is immaterial whether we take v\ or 7r2.) One 
shows that the limit rM(v) exists and is a nonsingular function of v. 

The local trace formula, then, is the identity of (2.5) with (2.6). To get 
some feeling for it, one could experiment with the simple case of G = GL(2). 
Take fl  and fa to be padic spherical functions, and consider (2.5) and (2.6) 
as bilinear forms in the Satake transforms 

of fl and fa. The spectral side (2.6) consists of two innocuous terms, but 
the geometric side (2.5) is more interesting. The term with M = G in (2.5) 
is a bilinear form in the elliptic orbital integrals of fl and fa, while the term 
with M = Mo reduces to an expression involving weighted orbital integrals. 
In [20, $51, the orbital integrals and weighted orbital integrals on GL(2) 
were computed explicitly in terms of Satake transforms. The identity of 
(2.5) and (2.6) provides a new relationship between these objects. 
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The local trace formula is capable of yielding nontrivial information on 
local harmonic analysis, although it is not clear at this point how far it 
will lead. We shall conclude by describing three applications to the three 
general problems of $1. These applications are only modest advances on 
what is presently known, but they give some idea of how the local trace 
formula can be used. 

We begin by sketching a local proof of the following result, which com- 
pletes the induction argument of $1. 

Theorem A. The distributions 

are supported on characters. 

Proof. Let f1 ? X(G) be a function such that tr(rl(fi)) = 0 for every 
rl 6 bemp(G(^)). We must show that I M ( x ,  f l )  vanishes for every M E 
Â£(Mo and 71 6 M(F)  D Greg(^). We have been carrying the induction 
hypothesis of !j 1, which asserts that the theorem holds if G is replaced by 
a proper Levi subgroup. Combined with a descent formula [4, Corollary 
8.31, it tells us that I ~ ( 7 1 ,  f l )  = 0 if 71 belongs to a proper Levi subgroup 
of M. We may therefore assume that 71 belongs to  fell(^(^)). 

Apply the local trace formula, with fl as given and fa an arbitrary 
function in X(G). The spectral side (2.6) vanishes, in view of the condition 
on fl. On the geometric side (2.5), we use the splitting formula (2.7) for 
IM(% f) .  Our induction hypothesis insures the vanishing of all terms in 
(2.7) with Mi # G. Since ~G{G, M2) equals 0 unless M2 = M ,  we obtain 

The geometric side therefore equals 

NOW fix M and 71 ? Mei,(F). Choose f2 to be supported on the set 
of G(F)-conjugates of reti (M(F)), and such that, as a function of 7 6 
Teit(M(F)), I^(J, f2,p) approaches the sum of Dirac measures at the 
W(OM)-translates of 71. The geometric side then approaches 

It follows that IM(711 f l )  = 0, as required. 

The theorem was proved by global means in [5, Theorem 5.11. The idea 
of using the global trace formula goes back to Kazhdan, who established [18] 



SOME PROBLEMS IN LOCAL HARMONIC ANALYSIS 75 

the special case that M = G. The local argument we have given here applies 
equally well to the twisted case, in which G is an arbitrary component. In 
particular, it could be used to prove that twisted p-adic orbital integrals are 
supported on (twisted) characters. This has been proved by global means 
in [19]. 

The next application concerns the "discrete part" of /M(71). Assume for 
simplicity that G is sernisimple and that 71-1 ? 112 (G(F)) is a fixed square 
integrable representation. Let fl 6 N(G) be a pseudo-coefficient for q, in 
the sense that 

if 71-; S T: 

otherwise. 

Theorem B. Suppose that 71 ? F~~J(M(F) )  is G-regular. Then 

where Or,  is the character o h 1 .  

Proof. This result was discussed in [9, $91, so we shall be brief. Choose a 
function f2 ?N(G), supported on the set of G(F)-conjugates of Fel1(M(F)), 
such that, as a function of 7 ? rel1(M(F)), \ D ( ~ I ) I ~  f z p )  approaches 
the sum of Dirac measures at the W(aM)-translates of 71. One checks that 
tr(q(f2)) approaches (71). The theorem then follows from the identity 
of (7.5) and (7.6), and the splitting formula (7.7). 

Theorem B is already known if F = R [7, Theorem 6.41, or if 71-1 is 
supercuspidal [3]. It is new if F is p-adic and v\ is not supercuspidal. 

The final application is a small contribution to the third problem which 
is motivated by a comparison of trace formulas. The theory of endoscopy 
is likely to lead to a parallel family of distributions 

obtained from stable distributions { S & ( ~ ~ , J ~ ,  fff)} on endoscopic groups. 
We would expect that the distributions 

defined for 7 ? Tell(M(F}} and f ? 'H{G x G) by the analogue of (2.7), 
should satisfy their own version of the local trace formula. That is, the 
geometric expansion 
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equals some form of spectral expansion (2.6). This is what happens in the 
comparison of global trace formulas that is required for base change for 
GL(n) [ l l ,  Chapter 111. In general, one would like to show that the two 
families are in fact the same. In the special case of GL(n) (and with F 
replaced by a certain finite product of local fields), it is shown that the 
two distributions differ by a multiple of the invariant orbital integral [ l l ,  
(11.17.5)l. An argument that is special to GL(n) [ l l ,  p. 195-1961 then 
establishes that this multiple is actually 0. The local trace formula can be 
applied to this point in the general situation. 

Theorem C. Suppose that we are given a family fl)} of distri- 
butions with the property that (2.5)' equals (2.6). Assume also that there 
are functions 

ct/(71), L L(M), 71 re11 (M(F)), 
with cE(71) = 0, such that 

12'(7l,gi) - 1k(7l,gl) = ct/(71)1$(7l,gl,P) 

for all M ,  L,71, and all gl ? %(L). Then = 0 for all L ? L(M). In 
other words, the two families of distributions are the same. 

Proof. Assume inductively that = 0 whenever L # G. The expres- 
sions (2.5) and (2.5)^ are both equal to (2.6), so they are equal to each 
other. Therefore x lwfl [wf[- l ( - l )d im(A~/A~)  / (I&(?', /)-IM(T, f))d7 = 0 . 
M 

rett(M(F)) 

Combining the splitting formulas (2.7) and (2.7)' with the induction as- 
sumption, we obtain 

^f(7f) - IM(7, f )  = 2~%(7)1$(7, fl,P)1$(7, f2,P) . 
Since fl  and fz are arbitrary functions in X(G), we see without difficulty 
that cg(71) = 0 for every 71 ? r e i t ( ~ ( ~ ) ) .  0 

Something akin to Theorem C might be required as a replacement for 
the argument in [ l l ,  p. 195-1961, if the techniques of [ll] are to be extended 
to general groups. One can also use the theorem, or rather its version for 
G a component in the nonconnected group R ~ s ~ / ~  ( G L ( ~ ) )  x Gal(E/F), 
to strengthen one of the peripheral results of [ll]. For in this case it was 
possible only to determine the distributions f l)  as a linear combi- 
nation of distributions 12 (yl, f lp,)  [ l l ,  Theorem 6.11. If one combines 
Theorem C with the results obtained in [ll] by global methods, one can 
prove that the distributions and IM(y1) in [ l l ,  Theorem 6.11 are 
actually equal. 

The local trace formula has other possible applications. For example, it 
seems to be a natural tool for investigating questions posed in $1 on the 
singular support of IM̂ }. However, I think that it will be necessary to 
work with the Schwartz space rather than the Hecke algebra. 
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Problem D. Show that identity of expansions (2.5) and (2.6) remains 
valid if fl and ft are Schwartz functions on G(F). 

We are of course especially interested in the padic case. The tool for 
handling padic orbital integrals of Schwartz functions is the Howe conjec- 
ture, which has been proved by Clozel [13]. Recall that if 

is the Hecke algebra of bi-invariant functions under an open compact sub- 
group KO of G(F), the Howe conjecture asserts that the vector space of 
linear functionals on ~{(G(F) / /K~) ,  obtained by restricting all invariant 
distributions with support on the G(F)-conjugates of a given compact set, 
is finite dimensional. In particular, if w is a compact subset of G(F), the 
space 

{1~(71, f i )  : 71 â w n Greg(^), f â E(G(f')//Ko) } 7 

of linear functionals on 7{(G(F)//Ko), is finite dimensional. However, if 
M # G, the invariant distribution IM(yi, fl) is not supported on the G(F)- 
conjugates of a compact set. One would need the following analogue of the 
Howe conjecture. 

Problem E. Suppose that KO is an open compact subgroup of G(F) and 
that w is a compact subset of M(F). Show that the space 

of linear functionals on 7i(G(F)//Ko) is finite dimensional. 
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