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PREFACE 
This article follows the format of five lectures that we gave on automorphic L- 
functions. The lectures were intended to be a brief introduction for number 
theorists to some of the main ideas in the subject. Three of the lectures 
concerned the general properties of automorphic L-functions, with particular 
reference to questions of spectral decomposition. We have grouped these 
together as Part I. While many of the expected properties of automorphic L- 
functions remain conjectural, a significant number have now been established. 
The remaining two lectures were focused on the techniques which have been 
used to establish such properties. These lectures form Part I1 of the article. 

The first lecture (51.1) is on the standard L-functions for GLn. Much of this 
material is familiar and can be used to motivate what follows. In $1.2 we 
discuss general automorphic L-functions, and various questions that center 
around the fundamental principle of functoriality. The third lecture ($1.3) is 
devoted to the spectral decomposition of L2(G(F) \ G(A)). Here we describe 
a conjectural classification of the spectrum in terms of tempered represen- 
tations. This amounts to a quantitative explanation for the failure of the 
general analogue of Ramanujan's conjecture. 

There are three principal techniques that we discuss in Part 11. The lec- 
ture 311.1 is concerned with the trace formula approach and the method of 
zeta-integrals; it gives only a skeletal treatment of the subject. The lecture 
511.2, on the other hand, gives a much more detailed account of the theory of 
theta-series liftings, including a discussion of counterexamples to the general 
analogue of Ramanujan7s conjecture. We have not tried to relate the coun- 
terexamples given by theta-series liftings with the conjectural classification 
of $1.3. It would be interesting to do so. 

These lectures are really too brief to be considered a survey of the subject. 
There are other introductory articles (references [A.11, [GI, fB.11 for Part I) 
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in which the reader can find further information. More detailed discussion is 
given in various parts of the Corvallis Proceedings and in many of the other 
references we have cited. 

PART I 

1 STANDARD L-FUNCTIONS FOR GLn 
Let F be a fixed number field. As usual, Fv denotes the completion of F with 
respect to a (normalized) valuation v. If v is discrete, oV stands for the ring 
of integers in Fv, and qv is the order of the corresponding residue class field. 
We shall write A = AF for the ad&le ring of F. 

In this lecture, G will stand for the general linear group GLn. Then G(A) 
is the restricted direct product, over all v, of the groups G(Fv) = GLn(Fv). 
Thus, G(A) is the topological direct limit of the groups 

in which S ranges over all finite sets of valuations of F containing the set Soo 
of Archimedean valuations. 

One is interested in the set II(G(A)) of equivalence classes of irreducible, 
admissible representations of G(A). (Recall that a representation of G(A) is 
admissible if its restriction to the maximal compact subgroup 

contains each irreducible representation of K with only finite multiplicity.) 
Similarly, one has the set II(G(Fv)) of equivalence classes of irreducible ad- 
missible representations of G(Fv). It is known [F] that any TT 6 II(G(A)) can 
be decomposed into a restricted tensor product 

of irreducible, admissible representations of the local groups. 

The unramified principal series is a particularly simple subset of II(G(Fv)) 
to describe. Suppose that the valuation v is discrete. One has the Bore1 
subgroup 

B(Fv) = {b = 
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of G(Fv), and for any n-tuple z = (zl,. . . , zn) ? Cn, 

b --+ xz(b) = lbll:l \bn\Zn 

gives a quasi-character on B(Fv). Let 
obtained by inducing xz from B(Fv) to 
space of locally constant functions <)> on 

TTv,z be the representation of G(Fv) 
G(F,,). (Recall that V v z  acts on the 
G(Fv) such that 

for any such 4.) We shall assume that 

It is then a very special case of the Langlands classification [B-W, XI, $21 
that TT,,,z has a unique irreducible quotient ~ y s .  The representations {TI-v,z} 
obtained in this way are the unramified principal series. They are precisely 
the representations in II(G(F,,)) whose restrictions to G(o,,) contain the trivial 
representation. If TI-,, is any representation in II(G(Fv)) which is equivalent to 
some qz ,  it makes sense to define a semisimple conjugacy class 

in GLn(C). For  TI-,,) does depend only on the equivalence class of TI-,,; con- 
versely, if two such representations are inequivalent, the corresponding con- 
jugacy classes are easily seen to be distinct. 

Suppose that TT = (g),, TT,, is a representation in II(G(A)). Since TT is admissible, 
almost all the local constituents T,, belong to the unramified principal series. 
Thus, TI- gives rise to a family 

of semisimple conjugacy classes in GLn(C), which are parametrized by the 
valuations outside of some finite set S 2 SW. Bearing in mind that a semisim- 
pie conjugacy class in GLn(c) is determined by its characteristic polynomial, 
one defines the local L-functions 
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The global L-function is then given as a formal product 

If the global L-function is to have interesting arithmetic properties, one needs 
to assume that v is automorphic. We shall first review the notion of an auto- 
morphic representation, and then describe the properties of the corresponding 
automorphic L-functions. 

The group G(F) embeds diagonally as a discrete subgroup of 

The space of cusp forms on G ( A ) ~  consists of the functions 4 E L2(G(F) \ 
G(A)~)  such that 

<f>(nx)dn = 0 

for almost all x ? G ( A ) ~ ,  and for the unipotent radical N p  of any proper, 
standard parabolic subgroup P. (Recall that standard parabolic subgroups 
are subgroups of the form 

where (nI, . . . , nr) is a partition of n.) The space of cusp forms is a closed, 
right G(A)'-invariant subspace of L2(G(F) \ G(A)~) ,  which is known to de- 
compose into a discrete direct sum of irreducible representations of G(A)~ .  A 
representation a" 6 II(G(A)) is said to be cuspidal if its restriction to G ( A ) ~  is 
equivalent to an irreducible constituent of the space of cusp forms. We note 
that such a representation need not be unitary; indeed, if v is cuspidal, so are 
all the representations {v 8 1 det 1' : z 6 c}. Now, suppose that p 6 P(A) is 
as above, with P a given standard parabolic subgroup, and that for each i, 
1 <: i <: r, v, is a cuspidal automorphic representation of GLni(A). Then 

is a representation of P(A), which we can induce to G(A). The automorphic 
representations of G(A) are the irreducible constituents of induced repre- 
sentations of this form [L.4]. We shall denote the subset of automorphic 
representations in II(G(A)) by L ( G ) .  

Suppose that v ? IIaut(G). It is easily seen that the infinite product for 
Ls(s, a") converges in some right half plane. Moreover, Godement and Jacquet 
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[G-J] have shown that Ls(s, v) has analytic continuation to a meromorphic 
function of s c C which satisfies a functional equation. Their method is a 
generalization from GLl of the method of Tate's thesis [T.I], and will be 
described in 511.1. 

It is useful to consider certain subsets of IIaut(G). Let IIdisc(G) denote the 
set of irreducible, unitary representations of G(A) whose restriction to G(A)' 
occurs discretely in L2(G(F) \ G(A)~).  This contains the set IIcusp(G) of 
irreducible, unitary cuspidal representations of G(A). We shall then write 
II(G) simply for the set of irreducible representations of G(A) obtained by 
inducing representations 

from standard parabolic subgroups. (It is a peculiarity of GL,, that such 
unitary induced representations are already irreducible. In general, one must 
define H(G) to be the set of irreducible constituents of these induced represen- 
tations.) The representations II(G) are precisely the ones which occur in the 
spectral decomposition of L2(G(F) \ G(A)). This deep fact is a consequence 
of the theory of Eisenstein series, initiated by Selberg [S], and established for 
general groups by Langlands [L.3]. A second major consequence of the the- 
ory of Eisenstein series is that the representations in IIdisc(G) and II(G) are 
autvmorphic. Taking this fact for granted, we obtain an embedded sequence 

of families of irreducible representations of G(A). 

The representations in II(G) have a striking rigidity property. 

Theorem The map 

7r - u(7r) = {uc(7r) : v ^ S} ,  ? n(G), 

from II(G) to families of semisimple conjugacy classes in GLn(c), is injective. 
In other words, a representation in II(G) is completely determined by the 
associated family of conjugacy classes. 

For cuspidal representations, this theorem is closely related to the original 
multiplicity one theorem [Sh]. The extension to II(G) follows from analytic 
properties of the corresponding L-functions [J-S, Theorem 4.41 and the recent 
classification [M-W] by Moeglin and Waldspurger of the discrete spectrum of 
GL,, . 
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The theorem is reminiscent of a similar rigidity property of representations 
of Galois groups. Suppose that 

is a continuous representation of the Galois group of the algebraic closure F 
of F. For every valuation v outside a finite set S 2 Sm, there is an associated 
Frobenius conjugacy class in the image of the Galois group. This gives a 
semisimple conjugacy class o,,(r) in GLn(c). It is an immediate consequence 
of the Tchebotarev density theorem that r is completely determined by the 
family 

~ ( r )  = {uv(r) : v 6 S}. 

We should also recall the local and global Artin L-functions 

and 

attached to r. 

Some years ago, Langlands conjectured [L.I] that the similarity between the 
two types of L-function was more than just formal. 

Conjecture (Langlands) For any continuous representation 

of the Galois group there is an automorphic representation TT 6 II(G), neces- 
sarily unique, such that oV(a-) = cr,,(r) for all v outside some finite set S 2 Sm. 
In particular 

Ls(s, r )  = Ls(s, r). 

The conjecture represents a fundamental problem in number theory. The 
case n = 1 is just the Artin reciprocity law, which is of course known, but 
highly nontrivial. There has also been significant progress in the case n = 2. 
If the image of r in GL,(C) is a dihedral group, the conjecture follows from 
the converse theorem of Hecke theory [J-L] or from the properties of the 
Weil representation [S-TI. (See 511.1.) If r is an irreducible 2-dimensional 
representation which is not dihedral, its image in PGL2(c) SO(3, C) will 
be either tetrahedral, octahedral or icosohedral. These cases are much deeper, 
but the first two have been solved [L.6], [Tu]. The essential new ingredient was 
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Langlands' solution of the (cyclic) base change problem for GL2. For general 
n, the base change problem was solved recently by Arthur and Clozel [A-C]. 
This leads to an affirmative answer to the conjecture for any representation 
r whose image is nilpotent. 

We shall describe the base change theorem in more detail. Suppose that E / F  
is a Galois extension, with cyclic Galois group 

of prime order t. Then there is a short exact sequence 

of Galois groups. If r is a representation of Gal(F/F), let rE be the restriction 
of r to the subgroup G~~(E/E\ Suppose that v (f. S is a valuation which is 
unramified for both r and E /F ,  and that vg = v o NormElf is the associated 
function on E. It is easy to check that the conjugacy classes in GLn(C) are 
related by 

UV, (rE) = (r  ) 

if VE = Vi - - . & splits completely in E,  and 

if VE = V remains prime in E.  Another way to say this is that 

where SE is the set of valuations of E over S, and e is the one dimensional 
representation 

2Ui.k 
- y k - + e t ,  = 1, ..., e, 

of Gal(E/F). Thus, the map r + TE from n-dimensional representations of 
GaZ(F/F) to n-dimensional representations of GuZ(E/E) is determined in a 
simple way by its behaviour on Frobenius conjugacy classes. Moreover, it is 
easy to check that an arbitrary n-dimensional representation R of G U Z ( ~ / E )  
is of the form rE if and only if the conjugate R^ of R by 7 is equivalent to R. 

Langlands' conjecture suggests that there should be a parallel operation on 
automorphic representations. Let GE = GLnE denote the general linear 
group, regarded as an algebraic group over E. 
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Theorem [A-C] There is a canonical map v + from II(G) to II(GE) such 
that 

OV;(^E) = o-^(a-) 

if VE = - - - splits completely in E and 

if VE = V remains prime'in E. In particular 

where q is the Grossencharacter of F associated to e by class field theory. 
Moreover, an automorphic representation II 6 II(GE) is of the form TTE if and 
only if IP Z II. 

We have already mentioned that the theorem was proved for n = 2 by Lang- 
lands [L.6], who built on earlier work of Saito and Shintani. The proof for 
general n in [A-C] actually applies only to a subset of II(G), namely repre- 
sentations 'induced from cuspidal'. However, the general case follows easily 
from this and the classification [M-W] of the discrete spectrum of GLW The 
proof of base change relies in an essential way on the trace formula for GL,,. 

We have so far treated the simplest case of unramified primes. We should 
say a few words about the ramified places before we go on to more general L- 
functions. In [G-J], Godement and Jacquet define a local L-function L(s, vv) 
and e-factor e(s, vv, A) for any admissible representation vv E II(G(Fv)) and 
any nontrivial additive character $,, of Fv. They then define the global L- 
function 

and e-factor 

as products over all places v. Here v E IIwt(G) is any automorphic represen- 
tation, and $ = ( 3 >  &, is a nontrivial additive character on A / F .  Since the 
local root numbers are trivial at unramified places, the global root number is 
defined as a finite product. It is independent of ^>. The main result of [G-J] 
is 
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Theorem [G-J] Suppose that ir G IIcusp(G) is a cuspidal representation with 
contragradient %. Then L(s, ir) can be analytically continued as a meromor- 
phic function of s G C which satisfies the functional equation 

The function L(s, a") is entire unless n = 1 and a" is an unramified character. 

2 G E N E R A L  A U T O M O R P H I C  L-FUNCTIONS. 
From now on, G will be an arbitrary reductive algebraic matrix group defined 
over F. The objects G(A), G(A)~ ,  Il(G(Fv)), II(G(A)), etc., are defined 
essentially as above. Using the standard parabolic subgroups of G as we did 
for GLni we can also define the families 

of irreducible representations of G(A). By the general theory of Eisenstein 
series [L.3], II(G) is precisely the set of irreducible representations which occur 
in the spectral decomposition of L2(G(F) \ G(A)). 

If a" = @,, T,, is any representation in H(G(A)), it can be shown that is 
unramified for all v outside a finite set S 3 Sm. (This means that G is quasi- 
split over F,, and split over an unramified extension, and that T,, has a fixed 
vector under a hyperspecial maximal compact subgroup of G(Fv). As with 
GLn, any unramified representation is a constituent of the representation 
induced from an unramified quasi-character, essentially uniquely determined, 
on a Borel subgroup defined over F,,. See [B, Â§10.4]. What plays the role for 
general G of the conjugacy classes <r(7rV) in GLn(C)7 

To take the place of GLn(C), Langlands [L.l] introduced a certain complex, 
nonconnected group. In its simplest form, this L-group is a semi-direct prod- 
uct 

'G = G  ̂Gal(E/F), 

where G is a complex reductive group which is 'dual7 to G, and E/F is any 
finite Galois extension over which G splits. The action of Gal(E/F) on G is 
determined in a canonical way, up to inner automorphism, from the action 
of the Galois group on the Dynkin diagram of G. Rather than define the 
L-group precisely, we shall simply note that it comes with some extra struc- 
ture, which in essence determines it uniquely. Suppose that T c B c G and 
?' c B c &' are maximal tori, embedded in Borel subgroups of G and G. 
The L-group is then equipped with an isomorphism from ? onto the complex 
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dual torus X*(T) (g) C* of T, which maps the simple roots A of (B,?) onto 
the simple co-roots A" of (G, T), and which is compatible with the canonical 
actions of GaZ(E/F). (See [K.l, $11.) The simplest examples of pairs (G, G) 
are (GLn 7 GLn (C)) (SLn , PGLn (C-)Y (PGLn 7 SLn (c)) ( s o ~ n + i , S ~ ~ n  (C)), 
(Sp~n, S 0 2 n + 1  (c)), (So~n, 5% (c)). In each of these 
cases, G is already split, and the field E may be taken to be F. 

The unramified representations have the following striking characterization in 
terms of the L-group [B, Â§10.4] For almost all places v, G is quasi-split over 
Fv and split over an unramified extension, and G(ov) is a hyperspecial max- 
imal compact subgroup. For any such v, the representations rv 6 II(G(Fv)) 
which have a G(ov)-fixed vector are in one-to-one correspondence with the 
semisimple conjugacy classes u(vv) in LG whose projection onto the factor 
Gal(E/F) equals the Frobenius class at v. Thus, a representation TT = QV rV 
in II(G(A)) gives rise to a family 

of semisimple conjugacy classes in ^G. 

In order to define an autbmorphic L-function, one needs to take a finite 
dimensional representation 

of the L-group as well as an automorphic representation v E IIaut(G). This 
gives rise to a family 

{r(cv(r)) : v d S} 

of semisimple conjugacy classes in GLn(c). The general automorphic L- 
function is then defined as the product 

It is not hard to verify that the product converges in some right half plane. 
Again, one expects the L-functions to have analytic continuation and func- 
tional equation, although this is still far from known in general. Bear in mind 
that we are free to  let the extension E/F be arbitrarily large. Therefore, the 
general automorphic L-functions include both the Artin L-functions and the 
standard L-functions for GLn discussed in $1. 
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Examples 

1. Suppose that E/F is a cyclic extension of prime order i. Take G to be 
R ~ S ~ , ~ ( G L ~ , ~ ) ,  the group obtained from the general linear group over 
E by restriction of scalars. This is perhaps the simplest example after 
GLn itself. The L-group is given by 

t 

where the cyclic Galois group acts by permuting the factors. There is a 
canonical representation 

in which & is embedded diagonally, and Gal(E/F) is mapped into the 
obvious group of permutation matrices. Since G(A) G L n ( ~ a ) ,  an 
automorphic representation TT G IIaut(G) can be identified with an auto- 
morphic representation I1 6 IIaut(GLnE) of the general linear group over 
E. One can check that 

2. Suppose that G = GLn x GL,,,. There is a canonical representation 

r : GLn (C) x GLm(c) + GLnm (c). 

An automorphic representation a- 6 IIaut(G) is a tensor product of au- 
tomorphic representations a-1 6 IIaut(GLn) and a-2 6 IIaut(GLm). The 
corresponding L-function Ls(s, a-, r )  equals the general Rankin-Selberg 
product Ls(s, v1 x V2). Its analytic continuation and functional equa- 
tion have been established by Jacquet, Piatetskii-Shapiro, and Shalika 
[J-P-S], and will be discussed in $11.1. 

3. Suppose that G is one of the classical groups S02n+1, SpZn or SO2n. 
Then G equals S p 2 n ( ~ ) , S 0 2 n + l ( ~ ) ,  or SOZn(c) respectively. In each 
case, there is a standard embedding r of G into a complex general linear 
group. The corresponding L-functions Ls(s, a-, r )  have been studied by 
Piatetskii-Shapiro and Rallis [P-R], and will also be discussed in $11.1. 

Underlying everything is the fundamental problem of establishing Langlands' 
functoriality principle [L.l], [B]. This pertains to maps p : LG + LG' be- 
tween two L-groups. We shall say that such a map is an L-homomorphism if 
E' is a subfield of E, and if the composition of p with the projection of LG' 
onto Gal(E'/F) equals the canonical map of Gal(E/ F )  onto Gal(E'/F). 
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Conjecture (Langlands) Suppose that G and G' are reductive groups over F, 
that G' is quasi-split, and that p : LG Ã‘ LG' is an L-homomorphism between 
their L-groups. Then for any automorphic representation w E IIaut(G), there 
is an automorphic representation w' E ILt(G1) such that p(u,,(w)) = uV(w1) 
for all v outside a finite set S 3 Soo. In particular, 

for any finite dimensional representation r of LG'. 

Remarks 

1. Suppose that w belongs to the subset II(G) of Tlaut(G'). Then one should 
be able to choose v' in II(G1). This question is related to the discussion 
in $3. 

2. Suppose that G = {I} and GI = GLn. Then an L-homomorphism be- 
tween their L-groups is an n-dimensional representation of Gai(E/F). 
The functoriality principle becomes the conjecture stated in $1, relating 
Artin L-functions to the automorphic L-functions of GLn. We have al- 
ready discussed the limited number of cases in which it has been solved. 
This apparently simple case illustrates the depth of the general functo- 
riality principle. - 

Examples 

1. (a) (Base change). Let E/F be a cyclic extension of prime degree t .  
Set G = GLn and G' = ResEIF(GLnE). Define an L-homomorphism 
p : LG Ã‘ LG' by taking the diagonal embedding 

Functoriality in this case asks for a correspondence from Kut(G) to 

This follows easily from the base change theorem stated in $1. 

(b) (Automorphic induction). Let G' be as above and take GI' to be 
GLni. Let 

p' : LG' -+ GLnI(c) = LG" 

be the representation defined in the previous set of examples. This case 
of functoriality is also known. It was proved (in a slightly different form) 
in [A-C], as a consequence of base change. 
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2. Set G = GLn x GLm, G' = GLnm and 

It would be extremely valuable to have functoriality for this example. 
However, it is very deep, and is far from being proved. 

3. Suppose that LG is one of the complex classical groups Sp&), 
S 0 2 n + i ( ~ )  or SOtn(c), and that p is the standard representation. Func- 
tonality is not known in this case, but one hopes that it will eventually 
follow from the twisted trace formula for the general linear group, and 
the developing theory of endoscopy. There is also another approach, 
using L-functions, which will be discussed briefly in $11.1. 

We have continued to emphasize mainly the unramified places and the asso- 
ciated conjugacy classes. This is the simplest way to describe things, at least 
initially. However, it eventually becomes necessary to deal with the ramified 
places as well. 

To this end, we first recall that the local Weil group WFv is defined for any 
valuation v. It fits into the commutative diagram 

of locally compact groups, in which Wp denotes the global Weil group. The 
vertical embeddings are determined only up to conjugacy. One can also define 
the (local) Weil-Deligne group [K. I, $121 in the form 

if v is Archimedean, 
LF" = 

W p  x SU(2, R), if v is discrete. 

Langlands and Deligne have defined local L-functions L(s, rv) and root num- 
bers ~ ( s ,  r,,, $,,) for any finite dimensional representation rv of either WF,, or 
LF;, and for any nontrivial additive character &, on F,,. (See [T.2].) 

It is actually best to define the L-group of G as 
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where WF acts on G through its projection onto Gal(E/F). One can also 
define local L-groups 

LGv = G x WF,. 

These come equipped with embeddings 

which are determined up to conjugacy in LG. The notion of L-homomorphism 
can be extended in the obvious way to maps between local or global L-groups, 
or indeed to any maps between locally compact groups which both fibre over 
Wp, or WF. 

The local Langlands conjecture can be stated informally as follows. 

Conjecture (Langlands [L.I], [B]) There is a partition of the admissible rep- 
resentations II(G(Fv)) into finite disjoint subsets II+ which are parametrized 
by the G-orbits of admissible L-homomorphisms 

The definition of an admissible L-homomorphism 4,,, which we have omit- 
ted, is straightforward. One simply imposes several natural conditions, the 
most significant one being that if the image of A, is contained in a parabolic 
subgroup of LG, then the corresponding parabolic subgroup of G must be 
defined over F [B, 38.21. The conjectured partition should have a number of 
natural properties [B, Â§lo] For example, if 4,, is unramified in the obvious 
sense, and corresponds to a semisimple conjugacy class @ in LGv, then Q., 
should consist of the set of unramified representations TT., ? II(G(Fv)) such 
that cr(wv) = <&. However, the expected properties as they are presently con- 
ceived are not strong enough to determine the partition uniquely. The local 
Langlands conjecture has been established in the following cases. 

(i) G is a torus [L.2]. 
(ii) F is Archimedean [L.7]. 

(iii) G = GLn, and n is prime to q,, [My]. 
(iv) G = GLp, with p prime [K-MI. 

Assume for the moment that the local conjecture has been established. Then 
any representation E II(G(Fv)) belongs to a unique packet I&,. In this 
context, the functoriality principle can be described as follows. Suppose that 
G' is quasi-split, and that 
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is an L-homomorphism. For each v this determines a commutative diagram 

^ G  -4 ^G., 

^G 4 ̂GI. 

Suppose that I" = @,, I",, is a representation in IIaut(G). We are assuming that 
each T,, belongs to a uniquely determined packet IIh. For each v, pvo$v is then 
an admissible homomorphism from Lpv to ̂ G:. The functoriality principle is 
that there is an automorphic representation I"' = @., I"',, in IIaut(G') such that 
for each v, I"; belongs to the packet 

Suppose that 
r : ̂ G - GLn(c) 

is a finite dimensional representation of the global L-group, and that 

I" = @^, r v  D,*", 
v 

belongs to IIaut(G). If ru is the composition of the embedding ^Gv -+ LG 
with r ,  rv o $,, is an n-dimensional representation of LFv. One can thus define 
the local L-functions 

for all places v. The global L-functions 

and e-factors 
= nE(s,rv,rv,+v) 

v 

can then be defined as products over all v. As before, ~+5 = @,, ib., is a nontrivial 
additive character on A / F .  The global automorphic L-functions are expected 
to have analytic continuation, and to satisfy the functional equation 

L(s,I", r )  = ~ ( s , r , r ) L ( l  - s , ~ " ,  F ) .  

When he first defined these objects [L.l], Langlands pointed out that the 
analytic continuation and functional equation would follow from the general 
functoriality principle and the theorem for GLn that was later proved by 
Godement and Jacquet. One would just apply functoriality with G' = GLn, 
and with 
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3 UNIPOTENT AUTOMORPHIC REPRESENTATIONS 
We shall conclude with a conjectural explanation for the failure of the ana- 
logue of Rarnanujan's conjecture for general G. This amounts to a classifica- 
tion of the representations in II(G) in terms of tempered representations. 

The problem can be motivated from a different point of view. For general G, 
the strong multiplicity one theorem fails. In other words, the map 

a :  it 4 o-(v) = {o-v(7r) : v ^ S } ,  

from II(G) to families of semisimple conjugacy classes in ^G, is not injective. 
(Let us agree to identify two elements u(v) and u(vi) in the image if uv (v) = 
uV(v1) for almost all v.) One could look for some equivalence relation on II(G), 
defined without reference to a ,  whose classes are contained in the fibres of a. 
The original idea for such an equivalence relation is due to Langlands, and is 
now part of the theory of endoscopy. 

Suppose that 
4 : W F  Ã‘ ^G 

is an L-homomorphism from the global Weil group into ^G which is admissi- 
ble; that is, each of the corresponding local maps 

is admissible. Then according to the local Langlands conjecture, there are 
finite packets I& in II(G(Fv)), and from these one can form a global packet 

It would be a consequence of the general functoriality principle that l& ac- 
tually contains a representation in IIaut(G). However, one would ultimately 
like to have more precise information. Suppose that the image of in & is 
bounded. (If G = GLW this means that 4 corresponds to a unitary repre- 
sentation of WF.) Then there is a conjectural formula, which is implicit in 
the paper [L-L] of Labesse and Langlands, for the multiplicity with which 
any representation v G I& occurs in L2(G(F) \ G(A)). Observe that the 
admissibility of the representations a- G is built into the definition. This 
implies that for almost all v, TI\, is the unique representation in HA, which has 
a G(ov)-fixed vector. It follows that the map a is constant on q. 

We shall not recall the definition of a tempered representation, beyond noting 
that a global packet l& should consist of tempered representations precisely 
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when the image of d> in G is bounded. This is one of the required properties of 
the conjectural local correspondence. The classical Ramanujan conjecture can 
be regarded as an assertion that certain representations of GL2 are tempered. 
Now the multiplicity formulas in [L-L] were intended only for tempered repre- 
sentations. But it is known that for general G there are many representations 
in IIcusp(G) which are not tempered. Such examples were first discovered for 
Sp4, by Kurokawa [Ku] and Howe and Piatetskii-Shapiro [H-PI. How can one 
account for these objects? 

We shall begin by describing the theorem of Moeglin and Waldspurger, which 
gives a classification of the discrete spectrum of GLn in terms of cuspidal 
representations. 

Theorem [M-W] There is a bijection between the set of representations 
v 6 L c ( G L n )  and the set of pairs ( d , ~ ) ,  in which d is a divisor of n and T 
is a representation in IIcusp(GLd). 

For a given pair (d,r), the corresponding v 6 IIdisc(GLn) is constructed as 
follows. Set 

where n = dm, and let TT be the representation obtained by inducing the 
representation 

from P(A) to G(A). Then v is the unique irreducible quotient of TT. In 
particular, 

Notice that this formula provides an extension of the analyticity assertion 
of Godement-Jacquet to representations in the discrete spectrum of GLn; 
L(s, v) will be entire unless d = 1 and r is an unramified character. Now, it 
is not hard to see that TT is nontempered if m > 1. Conversely if m = 1, so 
that TT belongs to Hcwp(GLn), then TT is expected to be tempered. This is the 
,generalized Ramanujan conjecture, which is believed to hold for GLn. The 
theorem can therefore be interpreted as a description of Hdisc(GLn) in terms 
of tempered representations. It is this interpretation which should carry over 
to other groups. 
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The classification of IIdisc(GLn) has a description in terms of the global param- 
eters 4 : WF + LG. In the case of GLn, a packet 11+ should contain only 
one representation, and this in turn should belong to IIcusp(GLn) precisely 
when the parameter 4, regarded as an n-dimensional representation of WF, is 
irreducible and unitary. However, the map 4 4 TT is not surjective. There 
are many representations TT G IIcmr,(GLn) which do not correspond to any 
n-dimensional representation of the global Weil group. With this difficulty 
in mind, Langlands [L.5, $21 suggested that the tempered representations in 
the sets 

n(GLn), n = 1 ,2 , . - . ,  
might possibly form a tannakian category. This (together with the generalized 
Ramanujan conjecture) would imply the existence of a locally compact group 
LF, whose irreducible, unitary n-dimensional representations parametrize all 
of IIcuSp(G Ln). We shall assume that LF exists in what follows. We shall also 
assume that there are injections L F  'Ã‘> LF, determined up to conjugacy, as 
well as a canonical surjective map LF WF with compact connected 
kernel. (See [K.I, 5121.) For us, the introduction of LF is primarily for book- 
keeping. The reader can pretend that Lp is the Weil group, or even the Galois 
group of a finite Galois extension E. 

In [L.5, $21, Langlands also introduced the collection of isobaric representa- 
tions, a subset of IIaut(GLn) which in turn contains II(GLn). The significance 
of the isobaric representations is that they are in bijective correspondence 
with the (equivalence classes of) all semisimple representations of LF of di- 
mension n. In other words, they are parametrized by maps 

where each ri ? R, 4; is an irreducible unitary representation of LF of 
dimension d,, and dl + - - - + dm = n. What are the maps that correspond to 
the subset L ( G L n )  of all the isobaric representations? They are just the 
maps with <f>  ̂ = 4^ = . . - = dm = 4, and rl = v, r2 = 2  ̂ m-1 ,..., rm = -- 2 

Now there is a nice way to characterize these particular maps within the 
set of all n-dimensional representations of LF. Given an irreducible unitary 
representation of LF of dimension d, with n = md, let pm be the unique 
irreducible representation of SL(2, C) of dimension m. Then 

is an irreducible n-dimensional representation of LF x SL(2, c). Having con- 
structed $, we can define 
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In other words, 

The maps corresponding to GsC(GLn) are thus obtained from irreducible 
representations of LF x SL(2,C} whose restriction to Lp is unitary. In a 
similar vein, one sees that the maps corresponding to II(GLn) are obtained 
by allowing the representations $ to be reducible. 

We return now to the case that G is arbitrary. Let @(G) denote the set of 
G-orbits of admissible L-homomorphisms 

such that the projection of $(LF) onto G is bounded. To any such $ one 
can associate a finite group S+ [A.2, $81. We will not reproduce the definition 
in general. However, if G is split over F, S+ equals TT~(s+/z(&)), where 
ro( ) denotes the group of connected components, S+ is the centralizer of 
$(Lp x s L ( 2 , ~ ) )  in G, and ~ ( 6 )  is the center of G. One can also attach to 
$ a certain sign character 

Conjecture [A.2, $6, $81, [A.3, $41 For every $ e @(G) there exist 
(i) finite local packets It+,, c II(G(F,,)), which for almost all v contain pre- 

cisely one representation with a G(o,,)-fixed vector; and 
(ii) finite dimensional characters 

defined for each representation in the global packet 

such that the multiplicity in L2(G(F) \ G(A)) of any representation TT E 
II(G(A)) equals 
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Remarks 

1. The multiplicity formula implies that any representation TT Â II(G) be- 
longs to one of the packets II+ . The nature of the parameters $ then 
suggests that there is a Jordan decomposition for the elements in II(G) 
which is parallel to the Jordan decomposition for conjugacy classes in 
G(F) .  For example, a parameter $ can be called unipotent if the pro- 
jection of $(LF) onto G equals {I}. The unipotent automorphic repre- 

, sentations are then the constituents of sets II(G) fl IL,, in which ^> is a 
unipotent parameter. The trivial one dimensional representation of G(A) 
is the simplest example of such a representation. It corresponds to the 
principal unipotent class in G. More interesting examples of unipotent 
automorphic representations have been constructed for (split) classical 
groups by Moeglin [Mg] . 

2. There are two conditions, which often hold for a given ib. under which 
the multiplicity formula simplifies. Suppose that IL, is disjoint from all 
the other packets I&;, $' # $, and that each of the functions 

is a one dimensional abelian character. Then the multiplicity for any 
7r = <8>,, 7rv â II* is 1 if the product < s,7rv > equals the sign 
character e^,, and is 0 otherwise. 

3. Suppose that G is quasi-split. Then 

is an admissible L-homomorphism of LF into LG. The global packet II+ 
should then contain the global Langlands packet I Ib .  

4. For maps $ which are trivial on SL(2, c), the conjecture contains nothing 
which is not already implicit in [L-L]. In this case the sign character e^, 
is trivial. In general, however, e+ is defined in terms of symplectic root 
numbers. Suppose that G is split. A parameter $ determines a finite 
dimensional representation 

R(s, w, u) = Ad(s$(w, u}), s ? s+/z(G), w ? Lp, u ? SL(2, C), 

of (s+/Z(&)) x LF x SL(2,c) on the Lie algebra of G. Let 



1 The trace formula, and the method of zeta-integrals 2 1 

be the decomposition of R into irreducible representations. Observe that 
the determinant of an irreducible representation A, of ŝ/z(&) can be 
regarded as a function on S ,̂ = 7ro(S+/~(&)). Observe also that for an 
irreducible representation pi of Lp, one can define the L-function L(s, pi) 
and root number e(s, pi) from the embeddings L p  - LF. Let J be the 
subset of indices i G I such that the representation pi is symplectic, and 
such that e(4, pi) = -1. Then 

s â s*. 

This formula for the sign character is strongly suggested by the spectral 
side of the trace formula. (See [A.3, especially $61.) 

The parameters i f )  6 Q(G) have a direct bearing on our principal theme, 
automorphic L-functions, through the theory of Shimura varieties. They 
come up in the important problem of expressing the zeta function of a 
Shimura variety in terms of automorphic L-functions. Roughly speak- 
ing, the SL(2, C) factor in a parameter $ is the same object as the group 
SL(2, C) that comes from the Lefschetz hyperplane section in cohomol- 
ogy. This allows one to determine the various degrees of cohomology to 
which a given $ will contribute. (See [A.2, $91, [K.2, 58-10].) At the end 
of $10 of [K.2], Kottwitz states a conjectural decomposition of the A-adic 
cohomology which implies a formula for the zeta function of a Shimura 
variety in terms of automorphic L-functions. 

PART I1 

1 THE TRACE FORMULA, AND THE METHOD OF 
ZETA-INTEGRALS 
We begin by taking a closer look at the two fundamental problems of Lang- 
lands' theory of automorphic L-functions. 

Conjecture A Every general automorphic L-function 

initially defined as an Euler product convergent in some half-plane, continues 
to a meromorphic function in all of C, with only finitely many poles, and 
a functional equation relating its values at s and 1 - s. (As remarked in 
Part I, a precise functional equation can be expected only after local factors 
L(s, 7rv, r) have been defined at the 'bad primes' v in S as well.) 
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Conjecture B Functoriality with respect to the L-group Suppose we are given 
reductive algebraic groups G and GI as in Section 1.2, and a homomorphism 

Then for each TT in IIaut(G) there is a TT' in IIaut(G) such that 

for all v outside some finite set S Z) Sm. In particular, for any r : LG' + 
GLd(c), this transfer of 'L-packets' is such that 

(*) Ls(s, T', r) = Ls(s,a-, rop). 

Remarks 

1. Suppose we take G arbitrary, G' = GLd, p any L-group representation 
p : LG + GLd(c), and r : + GLd(Q the standard representation 
(taking g to itself). Then (*) above reads 

with the left-hand side L-function a standard Godement-Jacquet L- 
function on G L .  Thus Conjecture B indeed implies Conjecture A, and 
the immediate impression is that work on Conjecture A might be su- 
perfluous. This impression is misleading, however, since in practice it is 
often easier to establish Conjecture A directly, rather than appeal to the 
relevant form of Conjecture B. 

2. Conjecture A has been successfully attacked in general using two different 
methods - the explicit construction of zeta-integrals, and the Langlands- 
Shahidi method using Eisenstein series (and their Fourier coefficients). 
A detailed survey of these methods - and their range of applicability - is 
the subject matter of [GeSh]. Our present state of knowledge concerning 
Conjecture A is roughly the following. 
(a) The existence of a meromorphic continuation is known for the L- 

function of almost any reductive quasi-split group and the 'standard' 
representation of its L-group; 

(b) except for GL(n) (and its standard L-function), there are almost 
always non-trivial problems encountered in establishing an exact 
functional equation for L(s, 7i-, r), or the finiteness of the number of 
its poles; and 

(c) the best results have recently been obtained via the method of ex- 
plicit zeta-integral representations - in fact, this method should ul- 
timately prove most useful in number theory, since it makes possible 
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an analysis of the location (and possible arithmetic significance) of 
the poles of L(s, T ,  r). 

Examples illustrating (a)-(c) will be discussed at end of this lecture 
(Concluding Remarks and Theorems). 

3. As we shall soon see, attempts to prove Conjecture A or B have drawn 
freely from three principal tools of the theory of automorphic forms: the 
trace formula, explicit zeta-integral representations of L-functions, and 
the theory of @-series liftings. We now proceed to discuss these topics 
in earnest. 

Trace formula methods The prototype example here is the theory of base 
change already discussed in Part I. This example is also the most general to 
date, in that functorial lifting is proved for two quasi-split groups of rank 
n. Other examples involve either a 'compact' form of the trace formula (see 
[BDKV] and [Ro.~], which concern liftings between division algebras and 
GL,,), or else lower rank groups. See [La.3] for further discussion and refer- 
ences. 

Unitary group examples ([Ro.~]) These examples concern functorial lift- 
ing from U(2) to U(3)) and 'base change for U(3)'. Unlike the example of 
base change for GL(n), one obtains here genuinely new information on the 
automorphic L-functions in question, as we now explain. 

Let E denote a quadratic extension of the global field F, and V a three- 
dimensional Hermitian space which is defined over E and possesses an isotropic 
vector. Then set G equal to the unitary group U(V) ('the' quasi-split unitary 
group in three variables), H the 'endoscopic' subgroup 

and G the group Res:G. The corresponding L-groups are LG = GL3(c) x 

WF, where w acts via g + -1 ) (, -1 l )  if its image in 

Gal(E/F) is non-trivial, L H  = (GLf(C) x GLi(C)) x WF, with a similar ac- 
tion, and LG = (GL3(c) x GL3(C))x Wp, where w permutes the coordinates 
of 'Go (if the image of w in Gal(E/F) is nontrivial). Finally, we consider the 
following L-group homomorphisms: let if^G : LG + LG denote the standard 
base-change imbedding if^G (g, w) = (g ,g, w), and let Â¥̂ > = L H  + '"G extend 
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the natural embedding of L ~ o  into LGo via the formula 

if the image of w in GaZ(E/F) is nontrivial, and otherwise, 

with p a character of CE whose restriction to CF is WE/F (the quadratic 
character determined by E via class field theory). 

Theorem ([Ro.~]) 
(a) There exist functorial transfers of L-packets corresponding to & and 

^G . 
(b) If TT is cuspidal automorphic on U(3), then its lift (through y5G) is again 

cuspidal (on GL(3) over E) if and only if TT is not the lift (through +H) 
of any r in IIaut(H). 

Corollary For TT any automorphic cuspidal representation of U(V), and f any 
unitary idele-class character of E,  set 

the L-function on the right being the standard Godement-Jacquet L-function 
for GL(3) over E of the lift of TT. Then L(S,TT @ ^) is always entire (for any 
^) if and only if TT is not a &-transfer of some T on H. Moreover, if TT is of 
the form &(r), then for some 'twist' ^, L(s, TT 63 ̂ ) has a pole on the line 
Re(s) = 1 if T is cuspidal, and on Re(s) = 312 if T is one-dimensional. 

Remarks 

1. The L-function L(s, TT @I f )  may be interpreted as the 'standard' degree 
six L-function on U(3). More precisely, let G ' =  U(3) x ResfGL(l), so 
that 

LG' = (GLs(c) x Cx x Cz) xi Wp 

with the obvious action of WF on the connected component of ^G< Let 
p denote the 6 dimensional representation of LG' induced from the 'stan- 
dard' representation Sty @ S& 63 1 of the (index two) normal subgroup 



1 The trace formula, and the method of zeta-integrals 25 

GLs(C) x C* x Cx. Given v and t as above, we obtain the following 
conjugacy classes in for each unramified v: 

u , , (~ )  x tw(Gw) x tw:(Gw:) x o", if w, wr[v; and 

uv(v) x tW(Gw) x 1 x u, if v is inert. 

Thus the L-function L(s, v (g) e )  introduced above is precisely the 'stan- 
dard' L-function L(s, v (g) t, p) on G', all of whose analytic properties, 
as predicted by Conjecture A (including finiteness of poles and an exact 
functional equation), now follow directly from the Godement-Jacquet 
theory for GL(n). 

2. Our experience with GL(n) does not prepare us for the existence of poles 
of automorphic L-functions to the right of the line Re(s) = 1 (the right- 
hand boundary of the critical strip). Indeed, it is a (non-trivial) fact 
that for v (resp. v') any automorphic cuspidal unitary representation of 
GL*) (resp. G L m ( ~ ) ) ,  even the Euler product 

T[L(s, T T ~  x ~ ' v )  

defining Ls(s,v x v') converges absolutely for Re(s) > 1 (see [J-S], I). 
In particular Ls{s, v x v') has neither zeros nor poles in this half-plane, 
generalizing a classical result for Dirichlet's L-functions. 

On the other hand, for groups other than GL(n) - typically Sp(n), we 
encounter a quite new phenomenon, namely the existence of cuspidal v 
whose standard L-functions can have poles at 3/2, 2, etc. The expla- 
nation for this fact is intimately tied up with the theory of theta-series 
liftings. This phenomenon is also related to the existence of counterex- 
amples to the generalized Ramanujan conjecture, and the fact that many 
cuspidal v (outside GL(n)) fail to possess Whittaker models. In partic- 
ular, for U(3), those cuspidal v such that L(s, v <S) t )  can have a pole to 
the right of Re(s) = 1 are non-tempered almost everywhere, possess no 
Whittaker model, and have the same L-function as an Eisenstein series 
(i.e., are CAP representations in the sense of [P-S.31). All these matters 
will be discussed in detail at  the end of the next section. 

3. The discussion above suggests a question about L(s, v <S) t )  on U(3) left 
unanswered by the trace formula analysis of [Ro.~]. If TT is such that 
its L-function can have a pole, can we characterize v by the peculiarity 
of its Fourier expansion? This question we shall discuss in earnest in 
$11.2 after first reviewing the use of explicit zeta-integrals in the theory 
of L-functions. 



26 Arthur & Gelbart - Lectures on automorphic L-functions: Part 11 

Zeta-integral methods Once again, the basic game plan is simple: it follows 
the lines introduced in Tate's analysis of the Dirichlet L-functions L(s, x), 
and generalized by Godement-Jacquet for the standard GL(n) L-functions 

L(s, 4. 

For simplicity, we review the program for GL(1) only. Given a grossen- 
character x (an automorphic representation of GL(l)), we consider the global 
zeta-integral 

~ ( s ,  S, XI = J ~ ( X ) X ( X ) I X I V X ,  
A$ 

where f is a Schwartz-Bruhat function on A. The program we have in mind 
consists of the following five steps: 

(1) Express the global zeta-integral as an Euler product of local zeta-integrals 
(in this case 2 ( s ,  f,,, xu)); 

(2) Analyse the meromorphic behavior and functional equation of the global 
zeta-integrals; 

(3) Do Step (2) for the local zeta-integrals as well; 
(4) Interpret the unrami fied local zeta-integrals (in this case, meaning fv 

is the characteristic function of the ring of u-adic integers, and xu is 
unramified) as an appropriate Langlands factor [det(I - r ( a ' , , ( ~ ) ) ~ ' ) ] - ~  
(in this case 1 - x(v)qiS); and 

(5) Establish additional basic properties of the local zeta-integrals, if possible 
introducing L(s, xu) at the ramified primes as a g.c.d. of the local zeta- 
integrals. 

Because of Step (4)' we say that Z(s, f ,  x) 'interpolates' L(s, x), and we use 
all five steps of this 'L-function machine' to deduce the expected analytic 
properties of L(s, X) from those of Z(s,  f , ~ ) .  For general groups, an account 
of how this method is carried out for L(s, T, p )  is found in [GeSh]; we content 
ourselves here only with some important examples which either motivate or 
are required in the discussion of @-series liftings in 511.2. 

Hecke theory for GL(n) Fix T = @T,, an irreducible unitary (not necessarily 
automorphic) representation of GL(n, A~). For GL(2), the fact that the L- 
function 

L(s, r )  = T[ L(s, vv) 
v 

is 'nice' characterizes TT as an automorphic cuspidal representation; more pre- 
cisely the 'converse theorem' states that if every L(s, T @ x) continues to an 
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entire function in C which is bounded in vertical strips and satisfies the ex- 
pected functional equation, then v is automorphic cuspidal. This result is 
proved using not a Godement-Jacquet zeta-integral, but rather a Hecke-type 
zeta-integral 

where tp, belongs to the space of v .  As is well-known, this result is useful 
in proving examples of Langlands functoriality. In particular, it implies that 
the Langlands reciprocity conjecture mentioned in Lecture 51.1 is true for 
two-dimensional Galois representations provided Artin's conjecture is true. 

Throughout the 1970s, much effort was expended in obtaining converse the- 
orems for GL(n), n > 2. For GL(3), it was found that a GL(2)-type result 
remains valid, and that it once again implies many interesting instances of 
Langlands functoriality. One such application is base change 'induction' for 
non-normal cubic extensions, proved in [J-P-S.21 and used by Tunnel1 in his 
proof of Artin's conjecture for arbitrary two-dimensional octahedral Galois 
representations. Another application of this theorem is (the proof of) Con- 
jecture B for the symmetric square map Ad : GL(2) + GL(3). Complete 
trace formula proofs of these particular liftings have yet to be published. 

For n > 3, converse theorems for GL(n) apparently require twistings by 
automorphic representations of GL(m), m > 1, i.e., the theory of generalized 
Rankin-Selberg convolutions discussed below. 

The method of Rankin-Selberg, generalized The starting point is Jacquet's 
1972 analysis of the zeta-integral interpolating the standard L-function 
L(s,7rl x % p) on GL(2) x GL(2) (i.e., p : GL2(C) x GL2(c) -+ GL4(0) 
is just the outer tensor product). His Rankin-Selberg type integral looks like 

where H = GL2 diagonally embedded in G = GL2 x GL2, pi is in the 
space of xi, and E(g, s)  is an Eisenstein series on GL2. Subsequently, similar 
zeta-integrals were introduced by Jacquet, Piatetski-Shapiro and Shalika to 
interpolate the automorphic L-functions L(s, v\ x 7r2) on GL(n) x GL(m). As 
mentioned already in the first lecture, the results thus obtained for L(s, 7r1 x 
7r2) yield a strong multiplicity one result for automorphic representations 
II(G) of GL(n), and are used in the theory of base change for GL(n). To be 
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more precise, the results required are those describing if and when L(s, 71-1 X T T ~ )  

has a pole on the line Re(s) = 1. Whereas explicit zeta-integrals are used to 
prove these results in [J-S](I), an alternate, shorter proof has recently been 
given in [W.I], using the Langlands-Shahidi theory of Eisenstein series. 

Another possible application of these Rankin-Selberg convolutions is to the 
theory of converse theorems for GL(n). The simplest type of theorem to 
state is the following: suppose 11 is an irreducible unitary representation 
of GLn(^F) with the property that for any automorphic generic irreducible 
unitary representation r of G L n _ i ( ~ f ) ,  the L-function L(s, 11 x r )  is 'nice', 
i.e., entire, bounded in vertical strips, and satisfies a functional equation of 
the form 

L(s, 7r x 7) = Â£(s 7r x r )L( l  - S, 'JT x +). 

Then 11 itself is automorphic cuspidal. In practice, one usually needs a con- 
verse theorem with weaker hypotheses, for example, L(s, 7r x r )  need be 'nice' 
only for a restricted class of 7's (but then, as is well-known for the case n = 2, 
the conclusion is also weaker). These (and related) results are presently being 
developed by Piatetski-Shapiro and co-workers; see [P-S.l] and the discussion 
of functorial lifting below. 

The general L-functions of Piatetski-Shapiro, Rallis, et al. In 1983-4, 
Piatetski-Shapiro and Rallis discovered a general type of zeta-integral which 
in one fell swoop generalized the Godement-Jacquet zeta-integral from GL(n) 
to an arbitrary simple classical group, and paved the way for a vast general- 
ization of the Rankin-Selberg method as well. 

The idea is to consider zeta-integrals of the form 

where y is a cusp form on some group G (belonging to an automorphic cus- 
pidal representation TT whose L-function we are trying to interpolate), and E 
is an Eisenstein series on some group H closely related to G. In both cases, 
the analytic properties of the relevant Eisenstein series must be established 
in order to obtain the meromorphic continuation of the corresponding auto- 
morphic L-functions. The key difference between Case I and I1 is that in the 
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first case, G 3 H (so that y(h) represents the restriction of y to H),  whereas 
in Case 11, G C H ;  as we shall see in the few examples below, this distinction 
leads to different obstacles in trying to apply the L-function machine to these 
zeta-integrals. 

Case I examples H = split SO2,, (with an n-dimensional isotropic subspace), 
G = S02,,+1 3 H ,  v is a generic cuspidal representation of G(A) (i.e., each y? 

in v has nontrivial Fourier coefficients with respect to the standard maximal 
unipotent subgroup of G), and r is a (generic) cuspidal representation of GLn 
(regarded as a representation of the Levi component of the maximal parabolic 
subgroup P of H). Gelbart and Piatetski-Shapiro have applied several steps 
of the L-function machine to the zeta-integrals 

where ET(h, s )  is an Eisenstein series on H(A) attached to the parabolically 
induced representation z~ ;# r~de t ] ' ,  and L(s, TT x T, r)  is the automorphic L- 
function on G X  GL,, attached to the standard (tensor product) representation 
r of LG x GLn(C) = Spn(C) x GLn(c); see 111.1.5 of [GeSh] 

In a very interesting recent development, D. Ginsburg, Piatetski-Shapiro, D. 
Soudry,'et al. have modified this method in order to cover the case of G X  GLk, 
with k arbitrary relative to n; see [Gi] for the case 1 <, k <, n. The significance 
of this general case is that it should eventually yield a functorial lifting from 
G = S02n+1 to GL2n corresponding to the L-group homomorphism p : LG + 
Spn(c) c GL2,,(c); indeed, the converse theorem for GLyn requires twistings 
L(s, v x r )  with r on GL2n-i. Such an application of the theory of zeta- 
integrals to prove Conjecture B would be very exciting and should generalize 
to other classical groups. However, at present this work represents mostly a 
program for future research; much remains to be done, especially concerning 
the archimedean analysis in Steps 3 and 5 of the L-function machine, and 
the precise analytic properties of the global Eisenstein series. Moreover, even 
when complete, this work will give functoriality only for generic automorphic 
representations. 

Case 11 examples: Rankin triple L-functions ([Gal and [P-R.21) Here G = 
GL2 x GL2 x GL2 c H = Sps, so we are in Case 11. Given a triplet of 
cuspidal representations of GL(2), which we regard as a single representation 
of GL(2) x GL(2) x GL(2), we derive the analytic properties of L(s, vl x v2 x 
r3, p), where p : LG + GL&) is given by an outer tensor product, through 
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the zeta-integrals 

Here EH(h, s)  is an Eisenstein series on H induced from the character jdetj' of 
the maximal parabolic subgroup P of H (whose Levi component is isomorphic 
to GL3, and whose unipotent radical is abelian). The crucial point is that 
P\H has only one open orbit under the (right) action of G C H; this is the 
'orbit yoga' which makes possible the appropriate factorization of these global 
zeta-integrals into local ones. 

Other examples of zeta-integrals of type I1 (where G c H) also require an 
analysis of the orbit structure of P\H/G in order to obtain the necessary 
Euler product factorization (Step 1 of the L-function-machine). Two of the 
most striking applications of this method are the following: 

Theorem [P-R.l] Given a simple classical group (such as SOn, Spn), its stan- 
dard L-function Ls(s, v ,  St) has a meromorphic continuation and functional 
equation. 

Theorem [PS-R-S] Suppose G = G2 x GL(2), v (resp. r )  is an automorphic 
cuspidal generic representation of G2 (resp. GL2), and p : G~(c )  x GL~(c)  -P 

GL&) is the standard representation of LG obtained from taking the tensor 
product of the standard embedding of G2(c) C S07(c) in GL,(e) with the 
standard representation of GL2(c). Then Ls(s, v x T, p) has a meromorphic 
continuation and functional equation. 

Concluding remarks 

(a) The last example above is of special interest for the following reason. 
Groups like G2 lie outside the range of applicability of the method of 
Langlands-Shahidi, since this method works only for groups which can 
be embedded as the Levi component of a parabolic subgroup of some 
larger reductive group. Although the method of explicit zeta-integrals 
has no such a priori limitations, it was nevertheless an open problem for 
years whether L-functions attached to G2 could be analyzed via zeta- 
integrals. 

(b) One of the main problems in the general theory of zeta-integrals comes 
from the difficulty in executing Step 5 of the L-function machine - i.e., in 
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controlling the zeta-integrals at the 'bad7 places. For example, in proving 
Theorem [P-R.11, one encounters an identity of the form 

Now one does know exactly where the poles of the Eisenstein series E on 
the left side are located (see [P-R.11 and [P-R.21). In general, however, 
one does not yet have complete control of the non-vanishing of the local 
zeta-integrals on the right-hand side of this identity; thus one can not 
conclude that the (finitely many?) poles of L(s,v,p) are among those 
of the Eisenstein series. (See Lecture 511.2 for an alternate approach 
to this finiteness of poles result, at least for G = Sp2,,.) In the case 
of Rankin triple products, one does have sufficient control of the non- 
vanishing of the archimedean integrals, and hence precise information 
on the (finitely many) poles of L(s, q x v2 x vs). However, the rest of 
Step 5 - expressing the local integrals (at infinite primes) in terms of 
gamma factors - remains an open problem (except for the special case - 

of holomorphic cusp forms; see [Gal). 

(c) suppose we can prescribe exactly the location of the possible poles of a 
particular L-function. The method of zeta-integrals as described thus far 
still gives no information about characterizing those v for which these 
poles occur, nor does it give information about special values or non- 
vanishing properties of these L-functions. Such results seem to be acces- 
sible only via the theory of @-series liftings to be described in Section 
11.2 below. Typical of the results we wish to discuss are the following: 

Theorem ([P-R.31) Suppose G = Sp(4), v is an automorphic cuspidal rep- 
resentation of G, and L(s, 'K, p) is the degree 5 L-function associated to the 
standard embedding p : SOs(C) Ã‘ GLs(c). Then L(s, w, p )  is holomorphic 
for Re(s) > 2, has a meromorphic continuation to C, and a simple pole at 
s = 2 if and only if w is a certain @-series 'in two variables'. 

Theorem ([W.2-31) Suppose G = PGL2, 'K is a cuspidal representation of 
G(A) coming from a holomorphic cusp form f of even integral weight k, and 
L(s, w) is the standard Hecke-Jacquet-Langlands L-function attached to w 
(so that L(s, v) is entire in c). Then L(i ,v  8 xb) # 0 for some quadratic 
character XI, if and only if f is the Shimura correspondence image of some 
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cusp form / of weight $ + $ (in which case the non-vanishing of the %-twisted 
L-function is related to the non-vanishing of the appropriate 6th Fourier co- 
efficient of /). 

2 HOWE'S CORRESPONDENCE AND THE THEORY OF 
THETA-SERIES LIFTINGS 
In his 1964 Ada  paper, Well gives a representation-theoretic formulation of 
the Siege1 theory of theta-functions. In this theory, theta-functions comprise 
a space of functions on the so-called metaplectic group, functions which under 
right translation realize the metaplectic (oscillatory, or Weil) representation. 

In more detail, first fix a local field F (not of characteristic 2), and a non- 
trivial additive character ip of F. Let W denote a 2n-dimensional symplectic 
vector space over F (equipped with antisymmetric form < >), and let Sp(W) 
denote the symplectic group of W. Then Weil's metaplectic group Mp(W) 
may be introduced as a (certain) group of unitary operators on some space 
S,  fitting into the exact sequence 

with T = {z G C- : 121 = I}. Because the action of these operators on 
S depends on ip, we should denote the metaplectic group by Mp+(W). We 
recall that: 

(i) if W = X @ X u  with X an n-dimensional isotropic ('Lagrangian') sub- 
space of W, then S may be described as the (unitary completion of the) 
Schwartz-Bruhat space S(X); moreover, the operators of Mp+ preserve 

S(X); 

(ii) Mp+(W) determines a non-trivial central extension of Sp(W) by T, and 
hence does not produce an ordinary representation of Sp(W); on the 
other hand (see [Rao]), there is a canonical splitting of Mp^,(W) over 
the (unique) two-fold cover S p  of Sp(W). 

Similarly, given an A-field F, a non-trivial additive character i f )  = Wu of 
A/F, and a global symplectic space W, there is a metaplectic extension 

where Mp$(WA) is now a group of unitary operators which preserves S(XA) = 
@S(XU) and is compatible with the local metaplectic groups. The connection 
between this metaplectic group and the theory of automorphic forms derives 
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from the fact that Mp(WA) splits (and then again canonically) over the sub- 
group of rational points Sp(W)F in Sp(WA). This splitting rF : Sp(W)F + 

Mp(WA) is determined by the condition that for each 7 in S P ( W ) ~ ,  

In particular, we can (and shall) regard S P ( W ) ~  as a subgroup of Mpi>(WA), 
i.e., as a group of operators on S(XA). If we let 6 : S(XA) + C denote the 
functional @ + @ ( a )  = EwF @((), then (*) simply says that this 'theta- 

, functional' is Sp(W)F-invariant. 

Henceforth, we shall understand by 'Weil's metaplectic group' either 5 or , 
1 

the group of operators Mp$. This latter group of operators determines an 
ordinary representation of 5 (or Mpi> itself) in the space S. We shall de- 
note this representation by w^, and refer to it as 'Weil's representation of the 
metaplectic group'. 

I By an automorphic form on the metaplectic group we understand a 'smooth' 
; function on Sp(W)F\Mpi>(~) or s ~ ( w ) ~ \ S ~ ( W ~ ) )  satisfying the usual con- 

ditions of moderate growth, I<-finiteness, etc. We refer the reader to [B-J] 
i for the general definition of automorphic forms (which makes sense even for 
1 covering groups of algebraic groups). The theta-functional above gives an 

intertwining operator from the space of the Weil representation to the space 
I of autornorphic forms on Mp^(Wn) (or Sp), namely 

The resulting automorphic forms are called theta-functions because, when 
F = Q, Sp(W) = SLy, and @ is properly chosen, 6+(g) essentially reduces 
to the classical theta-series 

In general, 0$(9) is a genuine function of Mp+(W), in the sense that 

for all A in T. Moreover, 6+(g) still retains a basic distinguishing charac- 
, teristic of classical theta-series, namely that most of the Fourier coefficients 

of 6$ are zero. This fact plays a crucial role in the theory of L-functions 
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(by way of facilitating the Shimura type zeta-integral constructions described 
below). However, to understand the full impact of the metaplectic represen- 
tation in the theory of automorphic forms, one needs first to review Howe's 
correspondence and the theory of theta-series liftings. 

Dual reductive pairs and Howe's correspondence ([Ho]) Howe's theory is a 
refinement of Weil's theory which converts the construction of automorphic 
forms via theta-functions into a machinery for lifting automorphic forms on 
one group to automorphic forms on another. 

Definition A dual reductive pair in Sp(W) is a pair of reductive subgroups 
G, H in Sp(W) which comprise each other's centralizers in Sp(W). 

Examples 

where W = Wl @ Vl, Wl is a symplectic space, K is a quadratic space (with 
orthogonal group O(Vi)), and W is the symplectic space whose antisymmetric 
form is the tensor product of the forms on Wl and K. Analogously, there 
are the Hermitian dual pairs U(K),  U(V,) C Sp(Vl 8 Vy), where each V is a 
Hermitian space over some quadratic extension E of F, and the symplectic 
form on the Hermitian space Vl 8 V2 is obtained by viewing V\ @ Vy as an 
F-vectorspace with < , > the 'imaginary' part of the form ( , ),( , )i. 

where W = (XI â‚ X2) <S (Xi â‚ x2)* and 

Facts 

(1) These examples exhaust the set of all irreducible dual reductive pairs; 
for a precise statement of the classification, see Chapter 1 of [MVW]. 

(2) Given a dual pair G, H in Sp(W), the metaplectic extension MpQ(W) 
splits over G and H in all cases except when G = Sp(W1) is paired with 
an odd-dimensional orthogonal group H = O(V\\ in which case M p e )  
splits over H but not over G. This is a non-trivial fact whose proof is 
discussed in Chapter 3 of [MVW]. 
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Philosophy for the duality correspondence Suppose G, H is a dual reductive 
pair in Sp(W), and consider the restriction of the Weil representation w+ of 
Mp+(W) to G x H (or rather, to a subgroup of Mp+(W) which is isomor- 
phic to G x H; we ignore the fact that this might not always be possible 
if G = Sp(Wl)). Because G and H are each others' mutual centralizers in 
( W )  w+ 1 GxH should decompose into irreducible representations of the 

I 
form vl (g) v2, with 7r2 an irreducible representation of H determined by the 
irreducible representation vl of G. In other words, but still roughly speaking, 
each vl-isotypic component of w+ 1 GxH should provide an irreducible G x H- 

1 

module of the form vl 8 v2, with v2 = @+(xi) the 'Howe correspondence' 
image of vl on H; symbolically, 

where the sum is over those vi in GA which 'occur' in w*. 

More precisely, we say that 71-1 occurs in w+ if HomG(w+,vl) # {O}, in which 
case we set 

S ( q )  = 0 ker f , where f runs through Homy(~+,7rl) 

and 

S[vl] = S/S(7r1) (where S is the space of w+). 

The space S(vi) is G-stable (since each ker f is), and H-stable (since H and 
G commute). By passage to the quotient, one obtains a representation of 
G x H in S[7rl] which must be of the form vl (g) for some smooth (not 
necessarily irreducible) representation vt2 of H. Howe's conjectured duality 
correspondence amounts to the assertion that there exists a unique irreducible 
quotient of vt2, i.e., a unique invariant subspace of 6 whose quotient pro- 
duces an irreducible representation ~y of H. Assuming this quotient exists, 
we call 7r2 the Howe image of vl, and denote it by @+(vl). 

Remark The Howe correspondence just described is symmetric in G and H,  
i.e., it doesn't matter which group we take as the 'domain' group. Thus the 
correspondence v Ã‘ @+(v) goes in both directions! 

From the work of Howe (see [W.4] and [MVW]), we have the following (local) 
result: 
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Theorem 
(a) The Howe correspondence exists (at least for p # 2). 
(b) If 71-1 is unramified, so is @+(rl); in fact, whenever possible, this corm 

spondence should be functorial with respect to the L-group, in a senst 
to be explained below, and in further examples. 

Examples 

1. (On, Spn) ([Li]). 'Consider the dual pair (Spn, On) where On is tht 
orthogonal group of a non-degenerate quadratic form of dimension n 
and n is even. Then Howe's duality correspondence gives rise to a1 
injection from the unitary dual of On to the unitary dual of Spn. Assum< 
that the quadratic form defining On is split and the character ip definini 
Weil's representation is unramified. Then Howe's correspondence take 
any unramified TT in 030 an unramified representation Q+(TT) of Spn(F) 
moreover, these representations are functorially related as follows: then 
is a natural map p : + 'Spn FZ S 0 2 n + i ( ~ )  such that the conjugal 
class in LSpn parametrizing Q+(v) is just p(o(7r)); in terms of local L 
functions, this relation reads 

a very special case of Theorem 6.1 of [Ra.l]. The injection Q+ : 0" 
Sp^, is also a special case of 'explicit Howe duality in the stable range' 
see [Ho.~], [Li.2] and   SO.^] for more general results. 

2. Shalika-Tanaka Theory ([S-TI). Let F be a local field, H = SL2(F) =; 
Sp(F2), where F2 = F@ F is equipped with the form < (x, xi), (y , y') >=\ 
xy'-x'y, and G = SO(E), the (special) orthogonal group of the quadratic\ 
space E over F (so that G = E l  = the norm 1 group of E). Modulo the) 
fact that G is not the full orthogonal group, (G, H )  is a dual reductive) 
pair in Sp(W), where W = F2 (g) E = X @ X",  and X E F @ E FZ E.I 

I In this case, w+ acts in L2(E), w+ oxa is an ordinary representation,' 

and @ + I G  acts through the 'regular representation' of E1 in L2(E). Thus1 
every character x in G" 'occurs in w+' (in fact discretely). Moreover,} 
if F is nonarchimedean, it turns out that r2 = >(x) = Q+(x) is an! 
irreducible supercuspidal representation of H = SL2(F), unless x2 = 1.' 

The caveat x2 # 1 is necessary here because we are dealing with SO(2)I 
in place of O(2). Indeed, when x is the unique character of order 2, 
Q+(x) is the sum of two irreducible supercuspidal representations vt 



2 Howe's correspondence and the theory of theta-series liftings 37 

and v and when x = 1, Q+(x) is an irreducible principal series repre- 
sentation (which is class 1 whenever E and ip are unramified). Moreover, 
x2 # 1 implies Q+(x) = @ + ( x l ) ;  thus the correspondence x Ã‘Ã Q+(x) 
is two-to-one for such x. On the other hand, i f  we take O(2) in  place 
of S0(2),  we get a one-to-one correspondence px * @+(px) between 
the irreducible (two-dimensional) representations of O(2) (excluding the 
unique non-trivial character of 0(2)/SO(2)) and certain irreducible rep- 
resentations Q^(px) of SL2; namely, px + Q+(x) when x2 # 1 and 
px = in@&̂, px Ã‘ v+ or v when px is a character of O(2) non- 
trivial on S0(2), and pÃ Ã‘ @+(I) if px is the trivial character. 

Locally, the example (SL2, SO(2)) is of interest because it provides an ex- 
plicit construction of supercuspidal representations of SL2(F). Globally, 
it gives a generalization of the classical construction of cusp forms (both 
holomorphic and real-analytic) due to Hecke and Maass. More precisely, 
given a character x = IIxv of Ea trivial on Ex, we may consider the 
irreducible representation v = v(x) = @rb(xv) ofriS'L2(A). (When E,, 
remains a field, v(xv) is as described above; otherwise, v(xv) is a prin- 
cipal series representation of SL2(F,,), unramified if x,, is; in any case, 
^(xu) is class 1 for almost every v, and therefore v(x) is a well-defined 
element of n(SL2(A)). In fact, v(x) is an automorphic representation of 
SL2(A), a result which Shalika and Tanaka establish by realizing v(x) 
directly in the space of x-isotypic theta-functions 

This method generalizes, as we shall now see. 

The global Howe correspondence Suppose 71-1 = gm,, is an irreducible unitary 
representation of G(A) which occurs in w*, i.e., for each fixed v,' 
Hom(w+, v,,) # 0. Then we can form the irreducible representation 

of H(A), where for each v, Q+(vv) is the local Howe image of v,,, and for 
almost every v, T,, and Odv,,) are class 1. We call v2 the Howe lift of vl. 

Conjecture The irreducible representation v2 = O+(vl) of H(A) is (usually) 
automorphic if vl is. Moreover, the lift v -+ Q+(v) should be functorial 
whenever possible. 
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Remarks 

(1) This conjecture has deliberately been stated in a vague way, since not 
enough is known yet to justify making a more precise statement, and 
there are already some delicate counter examples, some of which will be 
described below. 

(2) Although one might one day be able to establish the automorphy of 
@+(v) in general using the trace formula, at present the best way to 
attack Howe7s conjecture is by way of the theory of @-series liftings, 
generalizing what we described already in Example 2 above. 

The theory of 0-series liftings This theory makes it possible to prove the 
automorphy of Q^(v) by directly constructing a realization of @+(v) inside 
the space of automorphic forms on H(A). To simplify the exposition, let us 
suppose that v is an automorphic cuspidal representation of G(A) and H, is 
an irreducible subspace of L;(G(F)\G(A)) realizing v. Then we can consider 
a space of functions on H(A) given by the integrals 

where y E H, and Gig, h)  is the restriction to G(A) x H(A) of any theta- 
function @* on Mp(W)A. Because @$ is known from Weil's theory to be a 
slowly-increasing continuous function on H x G(F)\H x G(A), and because v 
is cuspidal (and hence rapidly decreasing) on G(F)\G(A), it follows that each 
of these integrals converges absolutely, and defines an automorphic form on 
H(F)\H(A). Let us denote by @(v, ip) the space of functions f* so generated 
on H(F)\H(A). 

What is the relation between this new ^(A)-module @(v, ip) (the theta-series 
lifting of v), and the H(A)-module 0+(7r) (the Howe lifting of v)? The answer 
should be that @(a", ip) realizes @+(a") provided @(v, ip) is not identically zero! 
The problem is that the non-vanishing of @(v, ip) is subtle to detect. 

Prototype example ([W.2]) Fix G = SL(2), and H = SO(V), where V is the 
3-dimensional space of trace zero 2 x 2 matrices equipped with the quadratic 
form q(X) = -det(X). In this case, Howe's correspondence relates repre- 
sentations of SO(V) (which is isomorphic to PGL(2)) with representations 
of SL(2) (or rather the two-fold cover of SL(2), since M p ( F 2  8 V) does 
not split over SL(2)). In particular, the local correspondence establishes a 
bijection between the set of irreducible admissible genuine representations 
of SL(2) which possess a $-Whittaker model and the set of all irreducible 
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admissible representations of PGL(2). Globally, we are dealing with an in- 
tegral of the form (2.1), where G is SL(2); although both Q(g, h) and y(g) 
are now genuine functions on the metaplectic cover of SL(2), their product 
is naturally defined on SL(2). 

Now consider the question whether 7r automorphic on H(A), say, implies 
Qq(7r) automorphic on G(A), and if so, is @+(r) realizable in Q(T, y5)? The - 
answer (in the direction PGL2 Ã‘ SL2) is that 0+(7r) is automorphic if and 
only if e(v, $) = 1; here Â£(v s)  is the e-factor in the functional equation 

satisfied by the Hecke-Jacquet-Langlands L-function of 7r. Moreover, even 
when the condition e(7r, i) = 1 is satisfied, Qq(7r) will be realizable in Qq(r,  $) 
only if this latter space is non-zero; this happens if and only if the stronger 
condition 

1 
L(,, 4 # 0 

is satisfied. 

- 
In the reverse direction, SL2 Ã‘ PGL2, Howe's correspondence is equally 
subtle. Here it turns out that Q^(u) is always automorphic on PGL2 if u is 
automorphic, but Q(u, y5) is non-zero (and then realizes Q+(cr)) if and only if 
the y5th Fourier coefficients 

do not vanish identically for f,, in the space of u. There is also an intriguing 
characterization of the non-vanishing of these Fourier coefficients in terms of 
special values of L-functions; this we shall describe later after introducing 
some general zeta-integrals involving theta-series (zeta-integrals of Shimura 

type). 

Examples involving functoriality The construction of Shalika-Tanaka relating 
x and v{\) was independently obtained in [J-L] with E and GL(2) in place 
of E1 and SL(2). At this level, it is easy to check that the lifting x -+ v{\) 
is 'functorial' with respect to the natural L-group morphism Q : (CZ x 
c*) x WF + GL2(c) x WF. Another example involving functoriality is the 
following. 

Let G = GSp2, the group of symplectic similitudes of a 4-dimensional sym- 
plectic space Wl, and let GSO(V3,3) denote the group of orthogonal simili- 
tudes of a 6-dimensional orthogonal space = A2(F4) equipped with the 
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inner product 

(W, W') = W A W (E A4(V) w F. 

Although we are dealing here with groups of similitudes inside GSp(W@l&), 
a suitable modification of the theory of dual reductive pairs leads us to liftings 
TT <->Â 0ri,(7r) and TT <-> ~ ( T T ,  i f ) )  between GSp2 and GSO(V). 

Remarks 

(1) When dealing with groups of similitudes, it turns out that Howe's lifting 
(or the theta-series lifting) is independent of i f ) .  (The subscript i f )  may 
therefore be suppressed in these cases, though we shall usually refrain 
from doing so.) 

(2) There is a natural injection of GL4/z2 into GSO(V). Therefore, the 
@-series correspondence TT Ã‘ @(TT, i f ) )  may be viewed as a correspon- 
dence between representations of GSp2 and GL4 (by restricting func- 
tions in @(TT, i f ) )  to GL4/Z2); similarly, Howe's correspondence for the 
pair (GSp2, GSO(6)) naturally defines a correspondence between repre- 
sentations of GSp2 and H = GL4 which we again denote by @@(TT). With 
these remarks in mind, we state the following: 

Theorem ([J-P-S.31) 
(a) Suppose TT is an automorphic cuspidal representation of G(A); then 

@(T, $) $ {O} i j  and only if TT is globally generic, i.e., possesses a stan- 
dard Whittaker model (on the space of its $-Fourier coefficients). In this 
case, @(7r, i f ) )  realizes the Howe lift @+(TT), and the lifting is compatible 
with Langlands' functoriality in the following sense: if p : =G Ã‘Ã LH 
= GL4(C) denotes the standard embedding of GSp2(c) in GL4(c), and 
{o~(TT)} is the collection of conjugacy classes in =H determined by TT = 
@TT,,, then p{ov(v)} coincides with the collection of conjugacy classes in 
GL4(c) determined by @^TI-). 

(b) Suppose I1 is an automorphic cuspidal representation of H(A). Then I1 
is the @-series lift of some (globally generic) TT on G(A) as in (a) if and 
only if the degree 6 L-function 

has a pole at s = 1 for some grossen-character x. 
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Concluding remarks 

1. The example just given shows how Conjecture B can be proved using 
the theory of @-series liftings, at least for generic TT. One should also be 
able to establish this lifting (again for generic v) as a special case of the 
'converse theorem' program outlined in Section 1.1; for the case at  hand, 
this requires an analysis of the L-functions L(s, 11 x r )  on GSp2 x GL2 
already studied in [PS-So]. In general, for arbitrary TT, one must also 
eventually be able to establish this lifting using the trace formula. In 
any case, the functorial identity 

L(s, II, A2) = L(s, T, poA2), 

where p : LG + LH, already implies that (some twisting of) L(s, 11, A2) 
must have a pole at  s = 1 if 11 = @&) = ̂ (a"), since poA2 contains a 
one-dimensional subrepresentation (and therefore L(s, TT 0 x, poA2) will 
- for some x - contain the Riemann zeta-function as a factor). 

2. As the preceding examples confirm, instances of functorial lifting can 
be established using the trace formula, L-functions, the theory of theta- 
series liftings, or any combination thereof. In some cases, such as the 
Shalika-Tanaka example x -+ v(v), each one of these methods provides 
an (alternate) proof; the L-function method was applied in $12 of [J-L] 
(albeit at the level of GL(2)), whereas the trace formula approach was 
developed in [L-L], and led to new and provocative results. 

Zeta-integrals of Shimura type Although of interest in its own right, our 
lengthy detour through the theory of @-series was motivated entirely by our 
interest in the analytic properties of automorphic L-functions. The connec- 
tion between these subjects is provided by zeta-integrals of Shimura type, 
themselves modifications of Rankin-Selberg integrals involving @-series. 

To explain the general construction, we fix G = Spn, and we consider zeta- 
integrals of the type 

Here y(g) is a cusp form in the subspace of L;(G(F)/G(A)) realizing the 
irreducible cuspidal representation v of G(A); T is an n x n symmetric non- 
degenerate matrix, which we confuse with the n-dimensional orthogonal space 
VT it determines; Qf (9) is (the value at  (g, h) = (g, 1) of) the theta-kernel 
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corresponding to the dual pair (Spn, O(Vr)) in Spn and the choice of Schwartz- 
Bruhat function on the Lagrangian subspace Fn@VT (viewed as n x n  matrix 
space); finally, E(g, F, s) is the Eisenstein series on G(A) of the form 

where P = {(: i)} in G,is the parabolic subgroup whose Levi component 

M is isomorphic to GLn, and F,(g) belongs to 1nd~{~{ldet~m(~)1'+3^". For 
convenience, we assume n is even (and therefore the metaplectic group never 
need occur here). 

The zeta-integral ((s, y ,  <&, F )  interpolates the standard L-function of degree 
2n+l for G(A), and the desired properties of this L-function are thus obtained 
by an application of the L-function machine to the above zeta-integrals. For 
example, we have the following result, first discussed at the end of the last 
Lecture. 

Theorem [P-R.31 Suppose TT is an automorphic cuspidal (not necessarily 
generic) represent ation 
2 x 2 matrix in Mz2(F)  
coefficient' 

V T ( ~ )  

does not vanish (there 

of Sp2(f\), and suppose T is a symmetric invertible 
such that for some y in the space of v ,  the 'T-Fourier 

S = {X} denotes the F-vector space consisting of 
symmetric 2 x 2 matrices). Let p denote the standard 5-dimensional repre- 
sentation of the L-group of SO5(C) of Spt and let xr(a) denote the quadratic 
character (a, -det T). Then the L-function 

has meromorphic continuation to C, with only finitely many poles, and is 
analytic for Re(s) > 2. 

Sketch of proof Everything follows from the basic identity 

where F,(g) is suitably normalized, i.e., multiplied by a suitable product of 
zeta-functions, such that (1) the identity (2.3) holds and (2) the resulting 
(normalized) Eisenstein series has only finitely many poles (in this case, at 
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certain half-integral or integral points of the interval [-I, I]). The function 
GAS), which depends on the local data aÃ and FyS, is a meromorphic func- 
tion in C which can be chosen to be non-zero a t  any one of the possible poles 
of E(s, g, F). From this it is clear that L(s + t, a- ig) XT, p) can have a pole at 
s = so only if E(s, g, F) does. Moreover, a pole of E(s, g, F) will produce a 
pole of L(sl, a- ig) xT, p) only if this pole survives integration against y(g)@(g). 
This circumstance brings us full circle back to the theory of @-series liftings. 
In particular, we have the following important Corollaries to the proof just 
sketched: 

Theorem [Li] The L-function Ls(s, a- 8 XT, p) has a pole at s = 2 if and only 
if the Fourier expansion of any 9 in a- has only one 'orbit' of non-zero Fourier 
coefficients yT, i.e., a- is T-distinguished in the sense of [Li]. 

Remark There is always some nondegenerate T such that pr # 0; this was 
proved earlier by Li in his thesis [Li.3]. But then for T' = tA-lTA-l, with 
A in GL,,, we have 

Thus 9-f' # 0 for all T' in the 'orbit' of T. The meaning of a- being distin- 
guished.is that there is a T such that ifT! # 0 if and only if T ' i s  in the orbit 
of T. Li's characterization of distinguished a- follows from (the analog for Sp2 
of) the first half of the following result. 

Theorem [P-R.31 and [So] Consider the similitude group G = GSp2 in place 
of Sps (so now LG = GSp2(C), with five dimensional representation LG + 
PGSp2(C) w S05(c)  C GL5(C)). Then Ls(s, a- ig) x ~ ,  p) has a simple pole at 
s = 2 if and only if either one of the following conditions are satisfied: (1) 
the theta-series lifting of v to GO(T) is non-zero, i.e., @(a-, $) # 0; or (2) a- 
is a CAP representation with respect to either the Bore1 subgroup of G, or 
the parabolic subgroup Q which preserves a line. 

Remarks 

1. The first condition follows immediately from the fact that 
Res,=*E(g, s, F )  is independent of g, and therefore L(s', a- 0 XT, p) has 
a pole at s' = 2 iff 
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i.e., iff 0(v,  4) is not identically zero on GO(T). (Again, some modifi- 
cation of the theory of dual pairs is required for the similitude groups 
GO(T) and GSpy; in this case, as already mentioned in a recent remark, 
Q(x, ̂ >) no longer depends on ^>.) 

2. We shall come back to CAP representations at the end of Lecture 4. Suf- 
fice it now to give the definition: a cuspidal v is C(uspidal), A(ssociated 
to a) P(arabo1ic) if there exists a proper parabolic subgroup P = MU, 
and a cuspidal automorphic representation T of M(A), such that for al- 
most all v, ~y is a constituent of indpv~v. Put more colorfully, v is in 
the 'shadow' of an Eisenstein series! 

3. A similar characterization of those v such that L(s, v@xT, p) might have 
a pole at a different singularity of E(s,g, F) depends (at least) on the 
possibility of identifying the remaining residues of E(s,g, F )  via some 
kind of Siegel-Weil formula. For example, for the point s = i, such a 
Siegel-Weil formula is developed in [Ku-Ra-So], and applied to give a 
characterization of the pole of L(s, v @I \Ti p) at s = 1 (analogous to the 
theorem above). 

Comments on the Shimura zeta-integral 

(1) Theorem [P-R.31 above (and also Li's theorem) generalizes to Spn with n 
even. It gives the finiteness of poles result missing from the authors' ear- 
lier work on L(s, v, p) via the Godement-Jacquet type integral of [PR.l]. 
(Recall that for the latter zeta-integral, the required non-vanishing of the 
bad local integrals has yet to be established in full generality.) This re- 
sult also improves on Shahidi's theory, which gives the finiteness of poles 
result only for generic v. 

(2) The analysis of the poles of the Eisenstein series E(g, s, F) is a delicate 
business involving intertwining operators for the induced representation 
~ndjdetl"; this is the subject matter of $4 of [P-R.21 as well as $3 of 
[P-R.11. A still more difficult problem is the analogous analysis of inter- 
twining operators and Eisenstein series for the induced (from cuspidal!) 
representations ~ n d ~ r l d e t } "  on, say, G = SO%+i', until this problem is 
resolved, the finiteness of poles result for the Rankin-Selberg L-functions 
on G x GL(n) will remain incomplete. For a discussion of what must be 
proved, see Chapters I1 and I11 of [Ge-Sh]. 
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(3) For Spn, with n odd, these methods must be modified to involve Eisen- 
stein series on the metaplectic group. Indeed Or(g) is now a genuine 
function on the metaplectic cover of Spn, and hence must be multiplied 
by an Eisenstein series of the same 'genuine' type (so that the resulting 
integrand in the Shimura integral (2.2) will be naturally defined on Spn). 
For arbitrary n, the theory has not yet been worked out. However, for 
n = 1 we encounter the zeta-integral 

interpolating the degree 3 L-function for SL(2) corresponding to the 
L-group homomorphism 

In this case, Gelbart and Jacquet have shown that L(s,v 8 x, Ad) is 
entire for all twists x, unless the theta-series lifting of r to an isotropic 
G' = SO(2) is non-trivial. If this is so, there can be a pole at s = 1, 
again for reasons of Langlands functoriality. Indeed, such a v is then the 
Shalika-Tanaka lift of some v' on SO(2) coming from an L-group ho- 
momorphism @ : LG' Ã‘Ã PGL2(C) with the property that @op contains 
the identity representation, i.e., L(s, v, p )  = L(s, r', PO@) has a degree 1 
factor producing a pole at s = 1. In any event, an application of the con- 
verse theorem for GL(3) yields the Gelbart-Jacquet lifting from GL(2) 
to GL(3). 

(4) A further modification of the zeta-integral (2.2) comes from replacing y 
by an automorphic cusp form of half-integral weight, i.e., an automorphic 
cusp form on the metaplectic group. In case n = 1, this reduces to 
precisely the work [Shim] which got this entire business started, and 
which ties in with the work of Waldspurger discussed below. For general 
n, the theory is not yet developed. 

(5) The method of the Shimura zeta-integral works for L-functions on groups 
other than Spn, for example Spn x GLn and U(3) ([GeRo]), where it gives 
results completely analogous to Theorem [P-R.31. The latter results for 
U(3) complement those which can be obtained via the trace formula, 
since they give intrinsic characterizations in terms of @-series liftings and 
Fourier expansions - of those r whose (twisted) degree six L-functions 
are not always entire. 
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Waldspurger's work (on the non-vanishing of Fourier coefficients and special 
values of L-functions) and counterexamples to Ramanujan's Conjecture Con- 
sider again the dual pair (%, PGL2). Recall that in this case, the theory 
of theta-series liftings gives a bijection between cuspidal a on E2 with non- 
vanishing $th Fourier coefficients and cuspidal 7r on PGL2 with L(T, -) # 0. 
But the question remains: how can we characterize the non-vanishing of this 
Fourier coefficient intrinsically in terms of u? Waldspurger's answer comes 
from combining a Siegel-Weil formula with the theory of the Shimura integral. 

Given any automorphic cuspidal representation a on z, define its Shimura 
image on PGL2 by 

7r = Sh+ (a) = @(a, lpa) 8 xa . 
Here $"(x) = $( ax) is any character such that @(a,$"} $ {O}, and xa is 
the corresponding quadratic character x -+ (a,x). In [W.2] it is shown that 
S h d a )  depends only on $, and not on the choice of a in Fx. From the 
bijective properties of the correspondence 0 ( - ,  $) recalled above, it then also 
follows that, for any automorphic cuspidal representation 7r of PGLy, 

7r = Sh+(u) for some cuspidal a on i5'-L2 
if and only if 

L($, 7r 8 xa) # 0 for some a in Fx. 

It is interesting to note that this same characterization of the image of Sh+ 
has been sketched recently by Jacquet using the 'relative' trace formula (see 
[Ja]). However, the following remarkable result seems to lie deeper, and is 
(thus far) proved only in [W.3]. 

Theorem Suppose u = @a,, is an automorphic cuspidal representation of - 
SL2, and f is any cusp form in the space of u. Then f admits a non-zero $th 
Fourier coefficient if and only if: 
(i) for all v, u,, has a &-Whittaker model; and 

(ii) Ls($ Sh+(u)) # 0. 

Sketch of proof The only if direction is easy, since the non-vanishing of the 
$-Fourier coefficient immediately implies both the existence of a global (and 
hence local) Whittaker model, and the non-vanishing of the theta-series lift 
@(u, $) = 7r = Sh+(u) (hence L($, 7r) = L($, Sh+(a)) # 0). 

So suppose now that a satisfies (i) and (ii). By the properties of the bijection 
a * O(u, $), it will suffice to show that @(a, if}} # {O} (since this is equivalent 
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to the non-vanishing of the +th Fourier coefficients of f in cr); i.e., we must 
prove that for some choice of y,  @, and g, 

~ ( g )  = J t f t ( h ) q g ,  h)dh + o (see (2.1)). 
S L F ^ W  2( ) 

Note that for any y # 0, there is some a in Fx so that # 0. If a E (Fx)2, 
then the fact that and y+xa are related in an elementary fashion (see 
(2.4)) implies that we are done, i.e., y+ # 0. Thus we may assume a $ (Fx)2. 
In this case, recall that X is the three-dimensional quadratic space on which 

PGL2 SO(2,l) acts, fix xa = 5 "y] in X, and decompose X into the 

line generated by xa and the orthocomplement XIa. We may take @ of the 
form 4(\xa + xl) = 41(\Xa)if>2(x1)(x1 6 XIa), so that for t in the stabilizer T 
of xa in PGL2, we have 

i.e., for (t, h) E T x SL2, the Weil representation (or theta-kernel) decomposes 
in this simple way. 

Let us now assume ((t) s 0 and show this leads to a contradiction of our 
hypotheses. Let I( = F(i/a), and view T as the anisotropic form of norm 
1 elements of K1.  Since Tp\T^ is compact, we can integrate the integral 
expression for ((t) with respect to T(F)\T(A), and interchange the order of 
integration to obtain 

The Siegel-Weil type formula proved by Waldspurger asserts that the integral 
in parentheses above equals the value at s = of the Eisenstein series 

(Here f,(h) = L(s + $, Xa)lahlS-*(u:(h)~)(0), where 4 denotes the Weil 
representation associated to the dual pair SO(K) x SL2 c Sp4, and h in 

SL2 has the Iwasawa decomposition h = (7 a*-.)", with Ã e KA.) Since 
sL2 (A) fa belongs to Indm lafilSxa, and its value at h = e is essentially L(s + 

+,xa), E w s )  is a familiar normalized Eisenstein series on SL2. For s 
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locally &-generic and hence possess 'abstract' $-Whittaker models glob- 
ally, but are not globally $-generic. Clearly it will be interesting to 
resolve the following: 

Problem. If TT is a cuspidal representation of an algebraic reductive group 
G, and each TT,, is &-generic, prove that TT is globally $-generic. 

A special instance of this problem for GSp2 arises in the work of [Bl-Ra]. 
Some progress towards an affirmative solution has recently been made 
in the work of [Ku-Ra-So]; here G = Spy, and it is shown that local 
$-generic implies global $-generic provided the degree five L-function of 
TT is non-vanishing at Re(s) = 1. 

(c) The statement (and proof) of Waldspurger's theorem is not exactly true 
as stated since a few special cusp forms on the metaplectic group fail to 
lift to cusp forms on P a .  Examples of such cusp forms include the 'el- 
ementary theta-functions' on % arising from the dual pair (SL2, O(1)). 
The explanation for this phenomenon is a part of Rallis' theory of 'towers 
of @-series liftings', which we now briefly describe in this special context. 

Consider the following sequence of orthogonal groups paired dually with SL2: 

For each j = 0,1,2, let Ij denote the subspace of (genuine) cusp forms on - 
S L 2 ( ~ )  whose @-series lifts to 0 ( n  + 1,n) are zero for n < j, but not for 
n = j. According to [Ra.3]: 
(i) I. @ Ii @ I2 exhausts the space of genuine cusp forms on %, and 
(ii) if a c Ij , then the theta-series lift of a from to its dual pair partner 

O ( j  + 1, j )  is automatically cuspidal (and non-zero); however, the theta- 
lift of this same a to any 'larger' O(n + 1, n) is non-cuspidal (and non- 
zero). 

In particular, for Waldspurger's dual pair (z2, PGL2), the $ theta-lift of 
u will be non-cuspidal precisely when the theta-lift of this same a to O(1) 

' 
is non-zero. Such cuspidal a have non-vanishing $-Fourier coefficients and 

I generalize the classical theta-series I 
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where v = 0 or 1, x(-1) = (-I)", and Ox is a classical cusp form of 
weight $ + v .  It is precisely these cuspidal a which spoil the Waldspurger 
bijection between certain cusp forms on and PGL2, and hence must 
be removed. To sum up: the correct space of cusp forms for Waldspurger's 
bijective correspondence is precisely Rallis' space Il. 

What about the space 12? It turns out that It is just the space of genuine cusp 
forms on a wit,h vanishing $-Fourier coefficients. For example, if tf)'(x) = 
&(x) = $(tx), with t 6 (Fx)2, then the cusp forms on a which are $'-theta 
lifts from O(1) will have vanishing $-Fourier coefficients. (Classically, these 
lifts correspond to theta-series of the form ~ ~ ( n ) n " e ~ ' " " ~ ~ ~ . )  The space of all 
cusp forms in I2 is the space which Piatetski-Shapiro isolated for study in [P- 
S.21 and showed to be of such great interest in connection with Ramanujan's 
conjecture. Indeed, let v on S0(3,2) w PGSp4 be the $-theta-series lift of 
a cuspidal space a in I* From Rallis' theory of towers, it follows that TT is 
automatically cuspidal. What Piatetski-Shapiro proves in [P-S.21 is that each 
such TT also 'satisfies' the following unusual properties: 

(1) v provides a counterexample to the generalized Ramanujan conjecture; 
in fact, such v's contain the counterexamples of [Ku] if a does not come 
from any theta-series attached to a quadratic form in 1-variable, and the 
counterexamples of [H-P] otherwise; 

(2) v is a CAP (cuspidal associated to a parabolic) representation; 

(3) the standard (degree 4) L-function of v is not entire, and in fact has a 
pole to the right of the line Re(s) = 1; 

(4) TT is not globally $-generic for any $; and 

(5) TT has a 'unipotent' component in the sense of 51.3. 

It is this last property which seems to be at the root of the problem of 
extending Ramanujan's conjecture to groups beyond the context of GL(n) 
(where properties (2)-(5) are never satisfied by cuspidal representations, and 
hence one still believes in the truth of the Conjecture). Note that the theory 
of towers works in the opposite direction as well. For example, corresponding 
to the diagram 

O(2) + SP2 
\ ^ 

SPl = SL2 

one concludes that 'cusp forms' on O(2) which lift to zero on Spi, i.e., do not 
play a role in the Shalika-Tanaka construction of cusp forms on SL2 from 
0(2), are precisely the forms which lift to (non-zero) cusp forms on Sp2. (It 



1 

I 
References 

is crucial now that we deal with O(2) in place of S0(2).) Locally, at a place 
where the quadratic form is anisotropic, we saw earlier that there is just one 
representation of Oy missing from the pairing with SLi, namely the non- 
trivial character which is trivial on SO(2). The resulting lifted cusp forms 
on Sp2 are precisely the [H-P] counterexamples to Ramanujan's conjecture 
mentioned above, and in $3 of Part I. 
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