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Introduction

This paper is the first of a pair of articles on real harmonic analysis. The objects we

study are tempered distributions on real groups that occur on the geometric side of the

trace formula. In this paper, we shall study the distributions attached to a fixed reductive

group G(R). We shall establish explicit formulas for their values at data that approach

infinity. In the next paper, we shall use the asymptotic formulas to establish identities

among the distributions attached to different groups.

Suppose for a moment that G is abelian. The trace formula is then just the Poisson

summation formula, which applies to any discrete cocompact subgroup of G(R) and any

Schwartz function f on G(R). The geometric side is a sum of distributions f(γ), where γ

varies over elements in the discrete group. The spectral side is a sum of Fourier transforms

τ(f) =
∫

G(R)

f(x)τ(x)dx = f̂(τ−1),

where τ varies over characters on G(R) that are trivial on the discrete group. Our interest

is in nonabelian analogues of the distributions f(γ).

Our asymptotic formula is entirely trivial in the abelian case. It might nonetheless

still be suggestive. Suppose that T is a variable point in aG, a real vector space that in

general stands for the Lie algebra of the noncompact part of the center of G(R). Then

γT = γ expT is a variable point in the abelian group G(R), and the limit of f(γT ) is 0 as

T approaches infinity. However, we can also make the test function vary with T . Let fT

be the Schwartz function on G(R) such that

τ(fT ) = τ(expT )τ(f),

for any character τ on G(R). Then fT (γ) equals f
(
γ(expT )−1

)
, and fT (γT ) reduces simply

to f(γ). We can therefore write

(1) lim
T→∞

fT (γT ) =
∫

Ttemp(G)

θ(γ, τ)τ(f)dτ,
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where Ttemp(G) denotes the group of characters on G(R), and

θ(γ, τ) = τ−1(γ) = τ(γ−1).

This is of course just the Fourier inversion formula for G(R), since the function on the

left hand side is independent of T . Written in this slightly extravagant way, it serves as a

model for the general asymptotic formula we shall establish.

Suppose now that G is a general connected reductive algebraic group over R. The

most direct analogues of the distributions f(γ) above are in some sense the invariant orbital

integrals

fG(γ) = |D(γ)| 12
∫

Gγ(R)\G(R)

f(x−1γx)dx

of Harish-Chandra. They are parametrized by strongly regular elements γ ∈ Greg(R), and

are defined for any function f ∈ C(G) in the Schwartz space on G(R). The subscript G

is meant to emphasize that invariant orbital integrals are part of a more general family of

tempered distributions, indexed by Levi subgroups M of G. These are weighted orbital

integrals

JM (γ, f) = |D(γ)| 12
∫

Gγ(R)\G(R)

f(x−1γx)vM (x)dx,

in which γ is a strongly G-regular element in M(R), and vM (x)dx represents a noninvariant

measure on the conjugacy class of γ in G(R). The weight factor vM (x) is the volume in

aM/aG of a certain convex hull, which depends on x in general, but reduces to 1 in the

case M = G.

The distributions JM (γ, f) are the generic archimedean terms on the geometric side

of the trace formula. In the case of a discrete subgroup with compact quotient, only the

invariant distributions

fG(γ) = IG(γ, f)

occur. The more general distributions arise in the case of noncompact quotient. They

represent terms that fail to be invariant under conjugation of f by G(R). The invariant
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trace formula is a refined version of the basic trace formula, in which the weighted orbital

integrals are replaced by invariant distributions IM (γ, f). We thus have two families of

tempered distributions

JM (γ, f), IM (γ, f), γ ∈M(R) ∩Greg, f ∈ C(G),

onG(R). They each contain subtle information, the analysis of which remains an important

consideration for obtaining a deeper understanding of the trace formula [L3].

Suppose that M , γ and f are fixed, and that T varies over the real vector aM . We

can then form the variable point

γT = γ expT

in M(R), as in the abelian case. In §1, we shall introduce a variable function fT ∈ C(G).

To define fT , it suffices to characterize the operator valued Fourier transform fT−→π(fT )

as π ranges over the irreducible tempered representations of G(R). We do so by setting

π(fT ) =
( ∑

u

eνπ1 (uT )
)
π(f),

where νπ1 is the “imaginary part” of the infinitesimal character of π, and u ranges over

a finite set of embeddings of aM into the space on which the linear form νπ1 is defined.

The distributions JM (γT , fT ) and IM (γT , fT ) can then be studied as functions of T . The

problem is to calculate their limits, as T approaches infinity in a cone ar
P ⊂ aM attached

to a parabolic subgroup P ∈ P(M) and a small positive number r.

Our main results are in §6. They give a solution to the problem in the case that f

belongs to the Hecke algebra H(G) on G(R), and the element γ is elliptic in M . Theorem

6.1 treats the weighted orbital integrals, while Corollary 6.2 applies to their invariant

counterparts. We shall describe the latter.

Corollary 6.2 asserts the existence of an asymptotic formula

(2) lim
T−→

ar
P

∞
IM (γT , fT ) =

∫
Tε(M)

θM (γ, τ)mM (τ, P )fM (τ)dτ,
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whose constituents are as follows. The subscript ε = εP represents a small element in a∗M

that lies in the chamber of P . The associated domain Tε(M) is obtained from a natural

basis Ttemp(M) of virtual tempered characters on M(R), essentially the “singular invariant

distributions” of Harish-Chandra, by twisting with the real central character defined by

ε. It comes with a natural measure dτ . Since f belongs to the Hecke algebra, the class

function fM on M(R) defined by descent is holomorphic in the spectral variables. It is

therefore defined at any element τ in Tε(M). The function θM (γ, τ) is the kernel (with M

in place of G) in the expansion

(3) fG(γ) =
∫

Ttemp(G)

θG(γ, τ)fG(τ)dτ

of an invariant orbital integral in terms of virtual characters. Finally, mM (τ, P ) is a

slowly increasing function of τ ∈ Tε(M), built out of logarithmic derivatives of Plancherel

densities. This function is the most distinctive term on the right hand side of (2). It can

have singularities at ε = 0, reflecting the zeros of Plancherel densities. If we take M = G,

mM (τ, P ) equals 1, and since

IG(γT , fT ) = IG(γ, f) = fG(γ), T ∈ aG,

the formula (2) reduces in this case simply to (3). It can thus be regarded as a generalization

of the formula (1) for abelian G.

Corollary 6.2 is a straightforward consequence of Theorem 6.1 and a general estimate,

which we establish as Corollary 5.2 in §5. The proof of Theorem 6.1 occupies most of

the first six sections. In §1 we first review the relevant distributions. We then define the

mapping f → fT as a special case of a family of multipliers on the Schwartz space. In

general, our methods will be based on Harish-Chandra’s asymptotic theory of spherical

functions, particularly his theory of the constant term. We review some of the salient

points of this theory in §2. We also reformulate some of the Harish-Chandra’s estimates

(Lemma 2.2 and its corollaries) for use in §4.
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Sections 3 and 4 contain the heart of the argument. As steps in the proof of Theorem

6.1, they pertain to the weighted orbital integrals JM (γT , fT ). To exploit Harish-Chandra’s

theory of the constant term, we replace f by a suitable τ -spherical Schwartz function

f1 ∈ C(G, τ). The corresponding analogue of JM (γT , fT ) is a finite sum of functions

JM (γT , f
S
1 ), where fS

1 ∈ C(G, τ) is obtained in an obvious way from f1 and a linear

image S ∈ a1 of T . In §3, we show that as T approaches infinity, the Eisenstein integrals

that determine f1 may be replaced by their constant terms. The relevant estimates are

summarized in Lemma 3.4. In §4, we express the contribution of these constant terms in

the form of a relatively simple integral. This is summarized in Lemma 4.3. Techniques

in both sections include inequalities that relate the polar decomposition, the Iwasawa

decomposition, and the conjugacy class decomposition, all relative to G(R). We refer the

reader to the text for further discussion.

Sections 5 and 6 are designed to allow us to interpret the integral of Lemma 4.3.

In §5 we describe the domain Tε(M), and attach weighted characters to elements in this

set. We then derive Corollary 5.2 from Lemma 4.4, an estimate obtained from some of

the arguments used to prove Lemma 4.3. In §6 we establish Theorem 6.1 as a harder

consequence of Lemma 4.3. The problem at this point is to relate the weighted characters

(5.10) attached to spherical functions with weighted characters (5.8) for a Schwartz function

f . Though somewhat complicated, the computations of §6 are straightforward. Like the

techniques of §3 and §4, they generalize methods that were first applied to the group SL(2)

[AHS]. At the end of §6, we derive Corollary 6.2 from Theorem 6.1, Corollary 5.2, and the

inductive definition (1.4) of IM (γ, f) in terms of the weighted orbital integral JM (γ, f)

and the weighted characters (5.8).

In the interests of simplicity, we have limited the context of our results to that required

for applications in [A13]. It would not have been difficult to work in greater generality.

We conclude the paper at the end of §6 with some very brief remarks on how one might

extend the results. We discuss in turn the possibilities of allowing γ to be any element in
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M(R) ∩ Greg, of taking f to be a general Schwartz function on G(R), and of replacing R

by an arbitrary local field F of characteristic 0.

It has been a longstanding problem to compute the Fourier transforms of weighted

orbital integrals [L1]. The case of groups of real rank 1 was solved by Hoffmann [Ho],

following earlier papers [AHS], [W] on the topic. The rank 1 analogue of Theorem 6.1

was an essential part of the process. The asymptotic formula is considerably easier in this

case, for the reasons that a proper Levi subgroup M is compact and that a corresponding

chamber in aM is just a half line. In general, the problem of computing Fourier transforms

is equivalent to that of writing IM (γ, f) explicitly as a distribution on Ttemp(G). The

formula (2) of Corollary 6.2 can be regarded as a step in this direction. For example, it

reduces to the Fourier inversion formula (1) in the case of abelian G. Given its general form,

and its possible extension to the Schwartz space mentioned at the end of §6, the formula

(2) amounts to an asymptotic formula for the invariant Fourier transform of IM (γ, f).

We have been motivated by a different application. In the sequel [A13] to this paper,

we shall solve a comparison problem for the invariant distributions attached to different

groups. More precisely, we shall establish identities that relate the invariant distributions

IM (γ, f) for a given G with corresponding stable distributions for endoscopic groups G′

of G. The proof of such identities is part of the stabilization of the global trace formula,

and in fact can be regarded as a local archimedean analogue of the global question. There

is considerable common ground between the problem of computing Fourier transforms

and that of comparison. The latter is undoubtedly simpler. It entails the proof of a

given identity rather than the construction of what is likely to be a complicated function.

However, the methods needed to attack either problem seem to be closely related. Be that

as it may, the asymptotic formula (2) will be a key part of the comparison in [A13].
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§1. Distributions and multipliers

Let G be a connected, reductive algebraic group over the real field R. Our concern is

the harmonic analysis of functions and distributions on the real Lie group G(R). We begin

with a brief review of the distributions of interest.

Suppose that T is a maximal torus in G that is defined over R. We write Treg = TG-reg

for the open subset of elements in T that are strongly G-regular, in the sense that their

centralizer in G equals T . Harish-Chandra’s invariant orbital integral is defined for any

element γ in Treg(R) and any function f in the Schwartz space C(G) = C
(
G(R)

)
on G(R).

It is given by an absolutely convergent integral

(1.1) fG(γ) = |D(γ)| 12
∫

T (R)\G(R)

f(x−1γx)dx,

where dx is a G(R)-invariant measure on T (R)\G(R), and

D(γ) = DG(γ) = det
(
1−Ad(γ)

)
g/t

is the Weyl discriminant. (Following a general practice of denoting the Lie algebra of a

given group by the appropriate lower case gothic letter, we have written g and t for the

Lie algebras of G and T respectively.) Invariant orbital integrals play a central role in

Harish-Chandra’s proof of the Plancherel formula for G(R).

Invariant orbital integrals are part of a broader family of distributions, known as

weighted orbital integrals. These objects depend on a Levi subgroup M of G, by which

we mean a Levi subgroup over R of some parabolic subgroup of G over R, and a maximal

compact subgroup K of G. We assume that the maximal torus T = TM is contained in M ,

and therefore that TM contains the split component AM of the center of M . We assume

also that the Lie algebras of K and AM (R) are orthogonal with respect to the Killing form.

Since we are working over the field R, we can identify the Lie algebra of AM (R) with the

real vector space

aM = HomZ
(
X(M)R,R).
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We recall that there is a canonical homomorphism

HM : M(R) −→ aM .

The weighted orbital integral attached to M is defined for any γ ∈ Treg(R) and

f ∈ C(G) by a noninvariant integral

(1.2) JM (γ, f) = |D(γ)| 12
∫

T (R)\G(R)

f(x−1γx)vM (x)dx.

The weight factor

vM (x) = lim
ζ→0

∑
P∈P(M)

vP (ζ, x)θP (ζ)−1

is obtained from the (G,M)-family of functions

vP (ζ, x) = e−ζ(HP (x)), P ∈ P(M),

of ζ ∈ ia∗M , according to the prescription of [A3, Lemma 6.2], and equals the volume of

the convex hull in aM/aG of the set

{
−HP (x) : P ∈ P(M)

}
.

We are following standard notation and terminology, as for example in [A10, §1]. Thus

P(M) = PG(M) denotes the finite set of parabolic subgroups P = MNP of G with Levi

component M . The function

HP : G(R) −→ aM

is the mapping of Harish-Chandra, defined by

HP (nmk) = HM (m), n ∈ NP (R), m ∈M(R), k ∈ K.

The denominator θP (ζ) is a homogeneous function of ζ, of degree equal to the dimension

of aM/aG, which depends on a choice of metric ‖ · ‖ on aM . The integral (1.2) converges

absolutely, and defines a smooth function of γ on Treg(R) [A2, §8]. It depends only on the
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conjugacy class of γ in M(R), and in fact only on the orbit of the conjugacy class under

the Weyl group

W (M) = WG(M) = NormG(M)/M = NormK∩M (M)/K ∩M

of M .

Weighted orbital integrals have two drawbacks. They are not invariant under conju-

gation of f by G(R), and they depend on the choice of K. However, there is a natural

construction that gives a parallel family of distributions with better properties. It is based

on the dual family of distributions defined by weighted characters.

We write Π(G) = Π
(
G(R)

)
for the set of equivalence classes of irreducible represen-

tations of G(R), and Πtemp(G) = Πtemp

(
G(R)

)
for the subset of irreducible tempered

representations. The distributional character

fG(π) = tr
(
π(f)

)
=

∫
G(R)

f(x)Θ(π, x)dx

attached to any π ∈ Πtemp(G) and f ∈ C(G) may be regarded as a spectral analogue of

the invariant orbital integral (1.1). The resulting space of functions

I(G) = IC(G) =
{
fG : f ∈ C(G)

}
on Πtemp(G) forms a natural Schwartz space [A11]. The weighted character is defined for

any π ∈ Πtemp(M) and f ∈ C(G) by a “noninvariant trace”

(1.3) JM (π, f) = tr
(
MM (π, P )IP (π, f)

)
.

As usual, IP (π) denotes the representation of G(R) induced from the pullback of π to

P (R), acting on a Hilbert space HP (π) of operator valued functions on K. The weight

factor

MM (π, P ) = lim
ζ→0

∑
Q∈P(M)

MQ(ζ, π, P )θQ(ζ)−1
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is obtained from a (G,M)-family of operator valued functions

MQ(ζ, π, P ), Q ∈ P(M), ζ ∈ ia∗M ,

on HP (π). It was defined in terms of unnormalized intertwining operators and Plancherel

densities in [A12]. (We shall recall the construction in §5 in order to modify it slightly.)

The correspondence that sends any f ∈ C(G) to the function

φM (f) : π −→ φM (f, π) = JM (π, f), π ∈ Πtemp(M),

is then a continuous linear mapping from C(G) to I(M).

Consider the family of mappings

φL : C(G) −→ I(L), L ∈ L(M),

parametrized by the finite set L(M) = LG(M) of Levi subgroups of G that contain M .

Like the distributions (1.2), these mappings are noninvariant, and depend on the choice of

K. We use them to construct invariant tempered distributions

IM (γ, f) = IG
M (γ, f), γ ∈ Treg(R),

inductively by setting

(1.4) IM (γ, f) = JM (γ, f)−
∑

L∈L(M)
L6=G

ÎL
M

(
γ, φL(f)

)
,

where ÎL
M (γ) denotes the continuous linear form on I(L) such that

ÎL
M (γ, hL) = IL

M (γ, h), h ∈ C(L).

Since

IG(γ, f) = JG(γ, f) = fG(γ),

the families (1.2) and (1.4) both include the original invariant orbital integrals (1.1). How-

ever, the distributions IM (γ) in the second family have the advantage of being invariant.

11



They also turn out to be independent of the choice of K. (See [A12, §3].) For these reasons,

they represent the more natural generalizations of invariant orbital integrals.

If P ∈ P(M), we write ∆P as usual for the set of simple roots of (P,AM ). Elements

α ∈ ∆P can be regarded either as quasicharacters a → aα on AM (R), or as linear forms

H → α(H) on aM . Then

a+
P =

{
H ∈ aM : α(H) > 0, α ∈ ∆P

}
is the open chamber in aP attached to P . (Given P , we often write aP = aM and AP =

AM .) The closure a+
P of a+

P is a cone whose boundary components a+
Q are parametrized

by parabolic subgroups Q of G that contain P . We recall that any such Q has a Levi

decomposition Q = MQNQ, for a unique Levi component MQ that contains M , and that

the real vector space aQ = aMQ
has a canonical embedding into aM . We write ∆Q

P as usual

for the subset of roots in ∆P that vanish on the subspace aQ of aM . We shall also write

(1.5) H = HQ +HQ, HQ ∈ aQ, H
Q ∈ aQ

M ,

for the decomposition of a point H ∈ aM , in which aQ
M denotes the kernel of the canonical

projection of aM onto aQ.

The space aM attached to a given M comes with an implicitly chosen Euclidean metric

‖ · ‖. We assume that this metric is given by the restriction of a fixed W (M0)-invariant

Euclidean inner product (·, ·) on a space aM0 (which we also denote by ‖ · ‖), for some

minimal Levi subgroup M0 contained in M . The decomposition (1.5) is then orthogonal

with respect to the underlying inner product. Actually, for much of the paper it will be

convenient to fix M0, as well as a minimal parabolic subgroup P0 ∈ P(M0). We will then

employ the usual abbreviated notation N0 = NP0 , A0 = AM0 , W0 = W (M0), a0 = aM0 ,

H0 = HP0 , ∆0 = ∆P0 , a+
0 = a+

P0
, ∆Q

0 = ∆Q
P0

, etc., for objects attached to M0 and P0.

The Levi subgroup M will be fixed from now on. Our goal is to establish asymptotic

formulas for the distributions JM (γ, f) and IM (γ, f). The formulas are to depend on a
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point T ∈ a+
P that approaches infinity. (We follow several precedents in denoting the point

by T . It is for this reason that we sometimes fall back on the notation TM for the maximal

torus in the Levi subgroup M .) For any element γ as in (1.2), we set

(1.6) γT = γ expT, T ∈ a+
P .

If T is chosen to be far from the walls of a+
P , γT will be strongly G-regular, and JM (γT , f)

will be defined. However, for fixed f ∈ C(G), JM (γT , f) approaches 0 as T approaches

infinity. We need to replace f with a function that also varies with T .

We shall transform f by a variable object, which is to be a special case of what we can

call a Schwartz multiplier. The construction is quite natural. To put it into perspective,

we pause briefly for a few general remarks about such objects.

We define a Schwartz multiplier for G to be a continuous endomorphism f → fα of

C(G) that commutes with left and right translation. We write M(G) for the algebra of all

Schwartz multipliers for G. Any α ∈M(G) is determined by its dual function

α̂ : Πtemp(G) −→ C,

defined by the property

(1.7) π(fα) = α̂(π)π(f), π ∈ Πtemp(G), f ∈ C(G).

We write Πtemp,cusp(G) and Πcusp(G) for the subsets of cuspidal representations in

Πtemp(G) and Π(G) respectively. The dual function α̂ is characterized in turn by the

family of functions

α̂L : Πtemp,cusp(L) −→ C,

parametrized by (cuspidal) Levi subgroups L of G, such that

(1.8) α̂L(π) = α̂
(
IQ(π)

)
, Q ∈ P(L),
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where π now denotes a representation in Πtemp,cusp(L). Since α is continuous, α̂L(π) is

determined by the values it takes at the open dense set of representations π for which the

induced representation IQ(π) is irreducible.

The family of functions {α̂L} attached to any α ∈M(G) has two basic properties.

(i) For each L, α̂L is a smooth function on Πtemp,cusp(L), of which any invariant derivative

is tempered.

(ii) The family is symmetric, in the sense that

gα̂L = α̂gL,

for any L and any g ∈ G(R).

In the growth condition (i), an invariant derivative means the transfer of an invariant

differential operator on ia∗L, relative to the action

π −→ πλ(x) = π(x)eλ(HL(x)), λ ∈ ia∗L, x ∈ L(R).

A tempered function on Πtemp,cusp(L) is understood to be one whose value at π is bounded

by a polynomial in the norm of the infinitesimal character of π, or rather the norm of a

linear form on a Cartan subalgebra that represents the infinitesimal character. In the

symmetry condition (ii), it is understood that gL = Int(g)L, and that

(gα̂L)(πg) = α̂L(πg ◦ Int g), πg ∈ Πtemp,cusp(gL).

Conversely, for any family {α̂L} of functions that satisfy the conditions (i) and (ii),

there is a unique multiplier α ∈ M(G) such that (1.7) and (1.8) hold. This fact is a

simple consequence of the main theorem of [A1], which describes the image of C(G) under

noninvariant Fourier transform. We thus obtain a simple characterization of the algebra

M(G).

The noninvariant Fourier transform of a function f ∈ C(G) is defined as the operator

valued function

(1.9) f̂Q(π) = IQ(π, f∨), Q ∈ P(L), π ∈ Πtemp,cusp(L),
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on HQ(π), where

f∨(x) = f(x−1),

and L ranges (cuspidal) Levi subgroups of G. The inverse Fourier transform can be defined

for any operator valued function aQ that is rapidly decreasing in the natural sense. It equals

(1.10) a∨Q(x) = |W (L)|−1

∫
Πtemp,cusp(L)

tr
(
IQ(π, x)aQ(π)

)
εQ(π)dπ,

where εQ(π) is the Plancherel density, and dπ is the measure on Πtemp,cusp(L) induced

from the measure on ia∗L determined by a fixed Euclidean metric on aL and the free action

π → πλ of ia∗L. The noninvariant Fourier inversion formula is the identity

(1.11) f(x) =
∑
{L}

(f̂Q)∨(x),

where L ranges over conjugacy classes of cuspidal Levi subgroups, and Q represents a

group in P(L). (See [A1], for example.) The main theorem of [A1] characterizes the image

of C(G) under the noninvariant Fourier transform (1.9) as the appropriate Schwartz space

of operator valued functions on Πtemp(G). If α ∈M(G) is a multiplier,

(fα)∧Q(π) = α̂L(π∨)f̂Q(π), π ∈ Πtemp,cusp(L),

where π∨ is the contragredient of π. The inversion formula (1.11) therefore gives rise to a

natural expression for fα(x).

Now suppose that M1 is a fixed cuspidal Levi subgroup, and that S is a point in

the space aM1 . A representation π1 in Πtemp,cusp(M1) has an infinitesimal character,

represented by a linear form on any Cartan subalgebra of m1(C). We write νπ1 ∈ ia∗M1
for

the restriction of this linear form to aM1 , and call it the imaginary part of the infinitesimal

character of π1. If f is any function in C(G), we set

(1.12) fS(x) = (f̂S
P1

)∨(x),
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for the operator valued function

f̂S
P1

(π1) = e−νπ1 (S)f̂P1(π1), π1 ∈ Πtemp,cusp(M1),

on HP1(π1). Then fS is a function in C(G) whose noninvariant Fourier transform is

supported on the conjugacy class of M1. Its transform at M1 and P1 is given by

(fS)∧P1
(π1) = |W (M1)|−1

∑
w∈W (M1)

e−(wνπ1 )(S)f̂P1(π1)

= α̂S(π∨1 )f̂P1(π1),

where

α̂S(π1) = |W (M1)|−1
∑

w∈W (M1)

e(wνπ1 )(S).

In other words,

fS = fαS ,

where αS ∈M(G) is the multiplier such that

α̂S
L(π) =

 α̂S(π1), if (L, π) = (M1, π1),

0, if L is not conjugate to M1.

We shall use the multipliers αS of f to construct an element in M(G) that varies with

our point T ∈ a+
P . This necessitates a brief investigation of a family of linear injections

attached toM and the Levi subgroupM1. We define U(M,M1) to be the set of embeddings

u : aM ↪→ aM1

induced by elements g ∈ G(R) such that gMg−1 contains M1. The set could of course be

empty. In general, the Weyl group W (M1) acts by left composition on U(M,M1), while

W (M) acts freely by right composition. For future reference, we shall describe U(M,M1)

in terms of the Weyl sets introduced by Langlands [L2, §2].

Assume for the moment that M and M1 are both standard with respect to M0 and

P0. In other words, M0 is a minimal Levi subgroup contained in both M and M1, and
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P0 ∈ P(M0) is contained in parabolic subgroups P ∈ P(M) and P1 ∈ P(M1). Let

W (P1;P ) be the finite set of isomorphisms

w : aP1 −→ aP ′
1
, P0 ⊂ P ′1 ⊂ P,

obtained by restriction to aP1 = aM1 of elements in the Weyl group W0 = W (M0) such

that w−1α is a root of (P1, A1) for every root α in the subset ∆P
P ′

1
of ∆P ′

1
. (See [A1, §II.5],

for example.) If P = P1, W (P1;P ) is just the group W (M1). In general, however, the

parabolic subgroup P ′1 varies with w.

Lemma 1.1. For any w ∈W (P1;P ), let w−1
M denote the restriction of w−1 to the subspace

aM of aP ′
1
. Then the mapping

(1.13) w −→ u = w−1
M , w ∈W (P1;P ),

is a bijection from W (P1;P ) onto U(M,M1).

Proof. Suppose that u belong to U(M,M1). Let Q = ũP ũ−1, where ũ is an element

in G that induces the mapping u on aM . Then Q is a parabolic subgroup of G, with Levi

component MQ = ũMũ−1 that contains M1. Let Q1 be the unique parabolic subgroup

in P(M1) that is contained in Q, and such that Q1 ∩MQ = P1 ∩MQ. Of course, Q1

need not be standard, but its chamber a+
Q1

is an open subset of aM1 . A general result

of Langlands [L2, Lemma 2.13] implies that a+
Q1

equals w−1a+
P ′

1
, for a unique standard

parabolic subgroup P ′1 of G, and a unique linear isomorphism w from aP1 to aP ′
1

defined

by restriction of some element in W0. (See [A1, Lemma I.3.1].) If w̃ is a representative

of w in G, w̃ũ conjugates P to a group that contains the standard parabolic subgroup

P ′1 = w̃Q1w̃
−1. Since P is also standard, we conclude that

P = (w̃ũ)P (w̃ũ)−1

In particular, P contains P ′1. If α belongs to ∆P
P ′

1
, w−1α is a root of (Q1 ∩MQ, AP1),

and hence also of (P1, AP1), since Q1 ∩MQ equals (P1 ∩MQ). Therefore w belongs to
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W (P1;P ). The last identity implies also that w̃ũ lies in P . It follows that the mapping

wu = wMu is trivial on aM . In other words, u equals w−1
M .

We have now established that the mapping w → u is surjective. In proving it, we

established also that the element w attached to u is unique. The mapping is therefore

injective, and hence a bijection. �

If u belongs to U(M,M1), we shall often write Pu
1 = P ′1, where P ′1 is the standard

parabolic subgroup such that the preimage w of u in W (P ;P1) maps aP1 onto aP ′
1
. In

other words, the Levi component Mu
1 of Pu

1 equals the group w(M1) = w̃M1w̃
−1. This

definition is dependent upon the condition that both M and M1 be standard. Without

the condition, Mu
1 is well defined only as an M -orbit of Levi subgroups of M .

Lemma 1.2 The mapping

u −→ Mu
1 , u ∈ U(M,M1),

is a surjection from U(M,M1) onto the set of WM
0 -orbits of Levi subgroups of M in the

W0-orbit of M1. The Weyl group W (Mu
1 ) acts transitively on the fibre of Mu

1 in U(M,M1),

and the stabilizer of u in W (Mu
1 ) equals WM (Mu

1 ).

Proof. Suppose that M ′
1 is a Levi subgroup of M in the W0-orbit of M1. Replacing

M ′
1 by a WM

0 -conjugate if necessary, we can assume that M ′
1 is standard relative to the

minimal parabolic subgroup P0 ∩M of M . It follows that M ′
1 = M ′

P ′
1
, for a parabolic

subgroup P ′1 of G with P0 ⊂ P ′1 ⊂ P . By assumption, M ′
1 equals w0(M1), for an element

w0 ∈ W0. Replacing M ′
1 again by a WM

0 -conjugate if necessary, we can assume that

w−1α is a root of (P1, A1) for every α ∈ ∆P
P ′

1
. This implies that the restriction w of

w0 to aP1 lies in W (P1;P ). It follows that M ′
1 = w(M1) = Mu

1 , where u = w−1
M . The

mapping is therefore surjective. The assertions about the fibre of Mu
1 follow easily from the

definitions. �
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We now introduce a function that varies with T . We set

(1.14) fT =
∑
{M1}

∑
u∈U(M,M1)

fuT , f ∈ C(G),

where M1 again ranges over conjugacy classes of cuspidal Levi subgroups. The summand

fuT of course stands for the function (1.12), for the point S = uT in aM1 . In other words,

fT = fαT
,

for the multiplier

αT =
∑
{M1}

∑
u∈U(M,M1)

αuT

in M(G). Then fT is a Schwartz function, whose noninvariant Fourier transform at any

M1 and P1 is given by

f̂T,P1(π1) =
∑

u∈U(M,M1)

e−νπ1 (uT )f̂P1(π1), π1 ∈ Πtemp,cusp(M1).

Let r be a positive number that is small relative to the underlying norm ‖ · ‖ on aM .

We define

ar
P =

{
H ∈ aM : α(H) > r‖H‖, α ∈ ∆P

}
,

and we write

T −→
P,r

∞

if T becomes large within the open cone ar
P . The general problem is to obtain explicit

formulas for the limits

(1.15) lim
T−→

P,r
∞
JM (γT , fT )

and

(1.16) lim
T−→

P,r
∞
IM (γT , fT ),
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for any function f in C(G). If the maximal torus T = TM is not elliptic in M , standard

descent formulas lead to a reduction of the problem from G to a proper Levi subgroup. We

therefore may as well assume that TM is elliptic in M , and in particular, M is a cuspidal

Levi subgroup of G. With this condition, we shall solve the problem in the special case

that f lies in the Hecke algebra H(G).
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§2. Spherical functions

We shall begin our proof of the asymptotic formulas in §3. The general argument will

be based on Harish-Chandra’s spectral decomposition of generalized spherical functions.

We use this section to recall a few basic properties of the decomposition. After doing so,

we shall formulate two lemmas from Harish-Chandra’s proof of these properties. Lemma

2.1 will be at heart of the reduction we carry out in §3. Lemma 2.2 and its corollaries will

be an essential part of our estimates of constant terms in §4.

The families of spherical functions that occur in the spectral decomposition are again

parametrized by conjugacy classes of cuspidal Levi subgroups M1 of G. For much of our

discussion M1 will be fixed, with the assumption that the Lie algebras of K and AM1(R)

are orthogonal. Then

K1 = KM1 = K ∩M1(R)

is a maximal compact subgroup of M1(R). We let P1 = M1N1 be a parabolic subgroup

in P(M1). Extending notation we have adopted for minimal Levi subgroups M0, we shall

frequently replace a subscript M1 or P1 simply by 1.

Suppose that V is a finite dimensional Hilbert space, equipped with a unitary, two-

sided representation τ of K. In other words, V comes with commuting left and right

K-actions

(k1, k2) : v −→ τ(k1)vτ(k2), v ∈ V, k1, k2 ∈ K.

In future discussions, we shall often write

πK : v −→ vK =
∫

K

τ(k−1)vτ(k)dk, v ∈ V,

for the projection of v onto the subspace V K of diagonally K-invariant vectors in V .

Harish-Chandra’s results pertain to functions from G(R) to V that are τ -spherical, in the

sense that

f(k1xk2) = τ(k1)f(x)τ(k2), x ∈ G(R), k1, k2 ∈ K.
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Let

τ1 = τM1 = τP1

denote the restriction of τ from K to the subgroup K1. Following Harish-Chandra, we

write Acusp(M1, τ1) for the finite dimensional space of cuspidal τ1-spherical functions from

the group

M1(R)1 =
{
m ∈M1(R) : H1(m) = HM1(m) = 0

}
to V . Harish-Chandra’s Eisenstein integral is defined for any P1 ∈ P(M1), x ∈ G(R), and

ψ ∈ Acusp(M1, τ1), and for λ1 in the complex vector space a∗1,C = a∗M1,C, by the formula

EP1(x, ψ, λ1) =
∫

K

τ(k−1)ψP1(kx)e
(λ1+ρ1)(H1(kx))dk,

where

ψP1(nmak) = ψ(m)τ(k), n ∈ N1(R), m ∈M1(R)1, a ∈ A1(R)0, k ∈ K.

As usual ρ1 = ρP1 denotes the linear form on a1 such that

e2ρ1(H1(m)) =
∣∣det

(
Ad(m)

)
n1

∣∣, m ∈M1(R),

where n1 = nP1 is the Lie algebra of N1. The Eisenstein integral is a τ -spherical function

of x.

Suppose that f belongs to the space C(G, τ) of τ -spherical Schwartz functions. For

any P1 ∈ P(M1), the spherical transform f̂1 = f̂P1 of f is a function from ia∗1 = ia∗M1
to

Acusp(M1, τ1). It is defined by

(2.1)
(
f̂1(λ1), ψ

)
=

∫
G(R)

(
f(x), EP1(x, ψ, λ1)

)
dx, λ1 ∈ ia∗1,

for any ψ ∈ Acusp(M1, τ1). It follows easily from Harish-Chandra’s definition of the

Schwartz space on G(R) that the transform F1 = f̂1 belongs to the space
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C
(
ia∗1,Acusp(M1, τ1)

)
of Schwartz functions from ia∗1 to Acusp(M1, τ1). Moreover, F1 sat-

isfies the symmetry condition

(2.2) F1(wλ1) = 0c1(w, λ1)F1(λ1), w ∈W (M1),

where

0c1(w, λ1) = 0cP1|P1(w, λ1) = cP1|P1(1, wλ1)−1cP1|P1(w, λ1)

is defined in terms of Harish-Chandra’s c-functions

cP1(w, λ1) = cP1|P1(w, λ1).

We recall that the general c-function

cP ′
1|P1(w, λ1) : Acusp(M1, τ1) −→ Acusp(M ′

1, τ
′
1), λ1 ∈ a∗1,C,

is attached to a second parabolic subgroup P ′1 = M ′
1N

′
1, and an isomorphism

w = Int(w̃) : a1 −→ a′1 = aM ′
1
, w̃ ∈ K,

that maps M1 to a Levi component M ′
1 of P ′1. It is a meromorphic function from a∗1,C to the

finite dimensional space of linear transformations from Acusp(M1, τ1) to Acusp(M ′
1, τ

′
1), in-

troduced by Harish-Chandra to describe the constant term of EP1(x, ψ, λ1) in the direction

of P ′1.

Conversely, suppose that F1 = FP1 belongs to C
(
ia∗1,Acusp(M1, τ1)

)
. We recall that

there is a decomposition

Acusp(M1, τ1) =
⊕
π1

Aπ1(M1, τ1), π1 ∈ Πcusp(M1)1,

where Πcusp(M1)1 = Πtemp,cusp(M1)1 denotes the set of square integrable representations

of M1(R)1. Following Harish-Chandra, we identify the group M1(R)1 with the quotient

M1(R)/A1(R)0, thereby allowing ourselves to write

Πtemp,cusp(M1) =
{
π1,λ1 : π1 ∈ Πcusp(M1)1, λ1 ∈ ia∗1

}
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and

Πcusp(M1) =
{
π1,λ1 : π1 ∈ Πcusp(M1)1, λ1 ∈ a∗1,C

}
.

Recall that the µ-function

µ1(π1,λ1) = µP1(π1,λ1) = µP̄1|P1
(π1,λ1), λ1 ∈ a∗1,C,

attached by Harish-Chandra to any π1 ∈ Πcusp(M1)1 is a meromorphic function, which is

analytic and slowly increasing on a cylindrical neighbourhood of ia∗1 in a∗1,C. The direct

sum

µ1(λ1) = µP1(λ1) =
⊕

π

µP̄1|P1
(π1,λ1), λ1 ∈ a∗1,C, π1 ∈ Πcusp(M1)1,

can then be regarded as a meromorphic function from a∗1,C to the space of endomorphisms

of Acusp(M1, τ1), whose restriction to ia∗1 is analytic and tempered. The inverse spherical

transform of F1 is the τ -spherical function

(2.3) F∨1 (x) = |W (M1)|−1

∫
ia∗1

EP1

(
x, µ1(λ1)F1(λ1), λ1

)
dλ1, x ∈ G(R).

One of Harish-Chandra’s basic results is that F∨1 is a Schwartz function from G(R) to V .

Furthermore, if F1 satisfies the symmetry condition (2.2) and f equals F∨1 , then f̂1 equals

F1.

The spectral decomposition for spherical functions is now easy to state. It is the

assertion that any function f ∈ C(G, τ) can be written as a sum of functions F∨1 . More

precisely, f satisfies the Fourier inversion formula

(2.4) f(x) =
∑
{M1}

(f̂1)∨(x),

where {M1} ranges over conjugacy classes of cuspidal Levi subgroups, and f̂1 = f̂P1 is

defined with respect to any parabolic subgroup P1 ∈ P(M1). (See [Ha5].) This is of course

closely related to noninvariant inversion formula (1.11). In particular, the Plancherel

densities and µ-functions implicit in (1.11) and (2.4) respectively satisfy the identity

εP1(π1,λ1) = dπ1µP1(π1,λ1),
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where dπ1 is the formal degree of π1.

Harish-Chandra’s theory of spherical functions is based on his asymptotic estimates

for the function

φ(x) = EP1(x, ψ, λ1), ψ ∈ Acusp(M1, τ1), λ1 ∈ ia∗1,

in terms of their constant terms. If Q is any parabolic subgroup with Levi component MQ,

the constant term φQ of φ along Q is a τQ-spherical, AQ(R)-finite function on MQ. It has

the property that for any m ∈MQ(R)1,

lim
a−→

Q,r
∞

(
eρQ(log a)φ(ma)− φQ(ma)

)
= 0,

in the notation at the end of §1. The proof that F∨1 is a Schwartz function depends on a

sharper estimate for the difference between φ and its constant term, which we shall state

in terms of a fixed minimal parabolic subgroup.

Let P0 = M0N0 be a minimal parabolic subgroup for which M1 is standard. Then

M1 contains M0, and is a Levi component of a unique parabolic subgroup P1 ∈ P(M1)

that contains P0. We assume until further notice that P0 is fixed, and that r0 is a small

positive number. Suppose that Q = MQNQ is a standard parabolic subgroup relative to

P0. We define ar0
P0,Q to be the set of points H in the space a0 = aP0 such that

0 ≤ α(H) ≤ r0‖H‖

for every α in the subset ∆Q
0 = ∆Q

P0
of ∆0 = ∆P0 , and such that

α(H) > r0‖H‖

for every α in the complement of ∆Q
0 in ∆0. The closure a+

0 of the chamber a+
0 = a+

P0
is

then a disjoint union over Q ⊃ P0 of the sets ar0
0,Q. Observe that if Q = P0, ar0

P0,Q is the

analogue ar0
P0

for P0 of the cone ar
P defined in §1.
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The following lemma is included in a general estimate [Ha4, Lemma 10.8] of Harish-

Chandra. The reader can find some of Harish-Chandra’s terms defined at the beginning

of Sections 3, 8 and 10 of [Ha4].

Lemma 2.1. Suppose that

φ(x) = EP1(x, ψ, λ1), ψ ∈ Acusp(M1, T1), λ1 ∈ ia∗1.

Then for any standard parabolic subgroup Q ⊃ P0, we can find a positive number δ and a

polynomial p on ia∗1, with the property that

(2.5) ‖φ(h)− e−ρQ(log h)φQ(h)‖ ≤ |p(λ1)|‖ψ‖e−(1+δ)ρ0(log h),

for any point h ∈ A0(R) such that log h lies in ar0
P0,Q. �

We need to establish a second lemma, which depends on the detailed structure of

constant terms. Let us first recall how to express the constant term φQ of Lemma 2.1 in

terms of c-functions. If

w : aP1

∼−→ aP ′
1

belongs to the set of transformations W (P1;Q) attached in §1 to the standard parabolic

subgroups P1 and Q of G, the subscript

P ′1 = Pu
1 , u = w−1

Q , wQ = wMQ
,

represents another standard parabolic subgroup of G. The intersection

R = P ′1 ∩MQ

is then a parabolic subgroup of MQ that is standard relative to the minimal parabolic

subgroup R0 = P0 ∩MQ. The constant term φQ is given by the sum

(2.6) φQ(ma) =
∑

w∈W (P1;Q)

φQ,w(ma), m ∈MQ(m)1, a ∈ AQ(R),
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where
φQ,w(ma) = ER

(
ma, cR(1, wλ1)−1cP ′

1|P1(w, λ1)ψ,wλ1

)
= ER

(
m, cR(1, wλ1)−1cP ′

1|P1(w, λ1)ψ,wλ1

)
e(wλ1)(log a).

The objects ER and cR are of course defined with respect to the parabolic subgroup R of

MQ. In case MQ is conjugate to M1, (2.6) is Theorem 18.1 of [Ha2]. For general Q, the

formula is easily derived from this special case and [Ha2, Lemma 18.3]. (See for example

[A1, §II.6].)

Suppose that F1 is a function in C
(
ia∗1,Acusp(M1, τ1)

)
, as in (2.3). If S is a point in

a1, the function

(2.7) FS
1 (λ1) = F1(λ1)e−λ1(S), λ1 ∈ ia∗1,

also belongs to C
(
ia∗1,Acusp(M1, τ1)

)
. We shall need an estimate for the Schwartz function

(FS
1 )∨ that is uniform in S.

Lemma 2.2. For any n ≥ 0, there is a positive constant cn such that the norm of

(2.8) eρ0(H)(FS
1 )∨(expH)

is bounded by

(2.9) cn sup
Q′⊃P0

sup
w′∈W (P1;Q′)

(
1 + ‖H − (w′S)Q′‖

)−n
,

for any H ∈ a+
0 and S ∈ a1.

Proof. The argument has two stages. The first will be an application of Lemma 2.1

to the integrand in

(FS
1 )∨(expH) = |W (M1)|−1

∫
ia∗1

EP1

(
expH,µ1(λ1)FS

1 (λ1), λ1

)
dλ1.

For this to provide a useful reduction of the problem, we assume that H belongs to the

interior a+
0 of a+

0 . We are of course free to do so, since (2.8) and (2.9) are both continuous
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in H. We shall also need to write the integral over ia∗1 as a double integral over the product

of i(aG
1 )∗ with ia∗G.

If ζ belongs to ia∗G, µ1(λ1 + ζ) equals µ1(λ1). Moreover,

EP1

(
expH,µ1(λ1)FS

1 (λ1), λ1 + ζ
)

= EP1

(
expH,µ1(λ1)FS

1 (λ1), λ1

)
eζ(Z),

where Z = HG − SG. It follows that

(FS
1 )∨(expH) =

∫
i(aG

1 )∗
EP1

(
exp η, µ1(λ1)Fσ

1,Z(λ1), λ1

)
dλ1,

where η = HG = H −HG, σ = SG = S − SG, and

Fσ
1,Z(λ1) = |W (M1)|−1

∫
ia∗

G

Fσ
1 (λ1 + ζ)eζ(Z)dζ.

By assumption, the point η belongs to the projection (aG
0 )+ of a+

0 onto aG
0 . It therefore

lies in a set ar0
P0,Q, for a unique proper parabolic subgroup Q ⊃ P0. We use Lemma 2.1 to

approximate the last integrand by its constant term

EP1,Q

(
exp η, µ1(λ1)Fσ

1,Z(λ1), λ1

)
at Q. We see that for any λ1 ∈ i(aG

1 )∗ and η ∈ ar0
P0,Q, the norm of the difference between

eρ0(η)EP1

(
exp η, µ1(λ1)Fσ

1,Z(λ1), λ1

)
and

(2.10) e(ρ0−ρQ)(η)EP1,Q

(
exp η, µ1(λ1)Fσ

1,Z(λ1), λ1

)
is bounded by

|p(λ1)|µ1(λ1)‖Fσ
1,Z(λ1)‖e−δρ0(η),

for p(λ1) and δ as in Lemma 2.1. The integral over λ1 ∈ i(aG
1 )∗ of the last expression

converges. This is because both p(λ1) and µ1(λ1) are slowly increasing in λ1, while Fσ
1,Z(λ1)

is rapidly decreasing. In fact, the norm

‖Fσ
1,Z(λ1)‖ = ‖F1,Z(λ1)‖
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is rapidly decreasing in both λ1 ∈ i(aG
1 )∗ and Z ∈ aG. Moreover, the linear form ρ0(η) =

ρP0(η) is bounded below by a positive multiple of ‖η‖. It follows that for any n, we can

choose cn such that

e−δρ0(η)

∫
i(aG

1 )∗
|p(λ1)|µ1(λ1)‖Fσ

1,Z(λ1)‖dλ1 ≤ cn(1 + ‖η‖+ ‖Z‖)−n.

Since

‖η‖+ ‖Z‖ = ‖η + Z‖ = ‖H − SG‖,

this is bounded by (2.9). To complete the first stage of the argument, we observe that the

integral over λ1 ∈ i(aG
1 )∗ of (2.10) equals the expression

(2.11) e(ρ0−ρQ)(H)|W (M1)|−1

∫
ia∗1

EP1,Q

(
expH,µ1(λ1)FS

1 (λ1), λ1

)
dλ1.

We have established that the norm of the difference between (2.8) and (2.11) is

bounded by (2.9), for any S ∈ a1 and H ∈ a+
0 such that η = HG belongs to ar0

P0,Q.

The second stage of the proof will be to show that the norm of (2.11) is bounded by (2.9),

for any S ∈ a1 and any H ∈ a+
0 at all. We shall argue by induction.

The exponential factor in (2.11) equals

e(ρ0−ρQ)(H) = eρR0 (H),

where R0 is the minimal parabolic subgroup P0 ∩MQ of MQ. The integrand in (2.11) is

given by (2.6). It equals the sum over w ∈W (P1;Q) of Eisenstein integrals

ER

(
expH, cR(1, wλ1)−1cP ′

1|P1(w, λ1)µ1(λ1)FS
1 (λ1), wλ1

)
,

where P ′1 = Pu
1 , u = w−1

Q , and R = P ′1 ∩MQ. To deal with this last summand, we set

Λ = wλ1, T = wS, and

FR(Λ) = µR(Λ)−1cR(1,Λ)−1cP ′
1|P1(w,w

−1Λ)µP1(w
−1Λ)F1(w−1Λ),
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for the given element w ∈ W (P1;Q). We claim that as a function of Λ in ia∗R = i(a∗P ′
1
),

FR(Λ) belongs to the space C
(
ia∗R,Acusp(MR, τR)

)
. Granting this claim for the moment,

we see that the integral over λ1 in (2.11) may be taken inside the sum over w, and then

changed to an integral over Λ. The expression (2.11) becomes

∑
w∈W (P1;Q)

eρR0 (H)|W (M1)|−1

∫
ia∗

R

ER

(
expH,µR(Λ)FT

R (Λ),Λ
)
dΛ,

with

FT
R (Λ) = FR(Λ)e−Λ(T ) = FR(Λ)e−λ1(S).

In other words, (2.11) equals the product of a quotient

|WMQ(MR)||W (M1)|−1

of orders of Weyl groups with the sum

∑
w∈W (P1;Q)

eρR0 (H)(FT
R )∨(expH).

We are assuming that H is any point in a+
0 . Since the chamber a+

0 = a+
P0

is contained in

a+
R0

, we can estimate the last summands by applying the lemma inductively to the proper

Levi subgroup MQ of G. We obtain a bound

eρR0 (H)‖(FT
R )∨(expH)‖ ≤ c′n sup

Q′,wR

(
1 + ‖H − (wRT )Q′∩MQ

‖
)−n

,

where Q′ ranges over parabolic subgroups with P0 ⊂ Q′ ⊂ Q, and wR ranges over elements

in W (R;Q′ ∩MQ). For any such wR, the product w′ = wRw belongs to W (P1;Q′), and

(wRT )Q′∩MQ
= (w′S)Q′ .

It thus follows that the norm of (2.11) satisfies a bound (2.9). The same is therefore true

of the original function (2.8).
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We have established the lemma, given our claim that FR belongs to

C
(
ia∗R,Acusp(MR, τR)

)
. To justify the claim, it would be enough to show that the co-

efficient

(2.12) µR(Λ)−1cR(1,Λ)−1cP ′
1|P1(w,w

−1Λ)µP1(w
−1Λ)

of F1(w−1Λ) is a smooth function with slowly increasing derivatives. Results of this kind

were part of Harish-Chandra’s theory of spherical functions, and are now well known. For

example, one can write

µP1(w
−1Λ) = µP ′

1
(Λ) =

(
rP ′

1
(Λ)rP ′

1
(Λ)

)−1
,

where

rP ′
1
(Λ) =

∏
α′

rα′(Λ)

is a product over the reduced roots α′ of (P ′1, AP ′
1
) of rank one normalizing factors attached

to standard intertwining operators. Both the normalized c-function

rP ′
1
(Λ)−1cP ′

1|P1(w,w
−1Λ),

and the inverse (
rR(Λ)−1cR(1,Λ)

)−1

of its analogue for R, are rational functions of Λ whose singularities do not intersecct

ia∗R. (See [A6, Theorem 2.1 (R6), (R7)] and formulas [A5, (2.4)] for c-functions in terms

of intertwining operators.) The remaining component of (2.12) is a product of factors

(rα′(Λ))−1, taken over reduced roots of P ′1 that are not roots of R. From the explicit

formulas is the appendix of [A6] on sees easily that each of these factors is an analytic,

slowly increasing function on some cylindrical neighbourhood of ia∗R in a∗R,C. It follows

from the Cauchy integral formula that as a function of Λ ∈ ia∗R, (2.12) has slowly increasing

derivatives. The claim is therefore valid, and the estimate (2.9) of the lemma holds. �
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Remark. We did not keep track of the dependence of the estimate (2.9) on the function

F1. It would have been easy to do so. An inspection of the argument reveals that we

could set the constant cn in (2.9) equal to ‖F1‖n, for a continuous seminorm ‖ · ‖n on the

space C
(
ia∗1,Acusp(M1, τ1)

)
that contains F1. Suppose that F1 also satisfies the symmetry

condition (2.2). Then F1 is the image of the function f1 = F∨1 in C(G, τ), under the

continuous mapping (2.1). In this case, we can take

cn = ‖f1‖n,

where ‖ · ‖n is now a continuous seminorm on C(G, τ). As constructed, the last seminorm

still depends on M1 and (τ, V ). However, one can actually arrange that it is the seminorm

on C(G, τ) attached to a continuous seminorm on C(G) that is independent of M1 and

(τ, V ), and the Hermitian seminorm on V whose value at (2.8) is part of the statement of

the lemma. This is a straightforward consequence of the proof of the easy half of the main

theorem in [A1].

For future reference, we formulate as a separate corollary the conclusion we drew at

the end of the proof of the lemma.

Corollary 2.3. Set

(2.13) FR(Λ) =
(
µR(Λ)−1cR(1,Λ)−1cP ′

1|P1(w,w
−1Λ)µP1(w

−1Λ)
)
FP1(w

−1Λ), Λ ∈ ia∗R,

for Q ⊃ P0, w ∈ W (P1;Q), P ′1 = Pu
1 , u = w−1

Q , and R = P ′1 ∩MQ, as in the proof of

the lemma. Then the coefficient of F1(w−1Λ) on the right extends to an analytic, slowly

increasing function on a cylindrical neighbourhood of ia∗R in a∗R,C, and the function FR(Λ)

itself belongs to C
(
ia∗R,Acusp(MR, τR)

)
. �

The estimates of the lemma will be used primarily in the form taken by the next

corollary.

Corollary 2.4. Set

φS(λ1, x) = EP1

(
x, µ1(λ1)FS

1 (λ1), λ1

)
, S ∈ a1, λ1 ∈ ia∗1.
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Then for any Q ⊃ P0 and w ∈ W (P1;Q), and any point h ∈ A0(R) with log(h) ∈ a+
0 , the

norm of

(2.14) e−ρQ(log h)|W (M1)|−1

∫
ia∗1

φS
Q,w(λ1, h)dλ1

is bounded by

cne
−ρ0(log h) sup

Q′,w′

(
1 + ‖(log h)− (w′S)Q′‖

)−n
,

where Q′ ranges over parabolic subgroups with P0 ⊂ Q′ ⊂ Q, w′ ranges over elements in

W (P1;Q′) such that w′w−1 leaves a∆ pointwise fixed, and cn depends only on n.

Proof. The corollary is a consequence of the lemma and its proof. We have seen that

the expression (2.14) equals the product of e−ρ0(log h) with

|WMQ(MR)||W (M1)|−1eρR0 (log h)(FT
R )∨(h), T = wS,

in the notation of the second stage of the proof. We have only to apply the lemma to the

function (FT
R )∨ in C(MQ, τQ), as we did inductively near the end of the proof. We see that

(2.14) satisfies a bound of the required kind. �
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§3. Reduction to constant terms

We return to the problem posed at the end of §1. Then M is a fixed, cuspidal Levi

subgroup of G with M -elliptic maximal torus TM . We fix a compact subset C of aM . We

shall then let γ range over the relatively compact subset

Γ = TM,G-reg(R)C =
{
γ ∈ TM,G-reg(R) : HM (γ) ∈ C

}
of TM (R). As in §1, T is to range over a cone ar

P in a+
P , for a fixed parabolic subgroup

P = MNP in P(M). Our aim will be to study the limit (1.13) in terms of spherical

functions.

The terms in (1.13) depend only on M and P (in addition of course to f and γ).

However to prove the formula, we shall fix a minimal parabolic subgroup P0 = M0N0

with P ⊃ P0 and M ⊃ M0. Having chosen P0, we take M1 to be a standard cuspidal

Levi subgroup as in §2. Then M1 contains M0, and comes with a parabolic subgroup

P1 = M1N1 in P(M1) that contains P0. With this setting we will be able to apply the

estimates of Harish-Chandra summarized in Lemma 2.1.

We fix a double representation τ of K on the finite dimensional Hilbert space V . We

then fix a Schwartz function F1 = FP1 on the space ia∗1 = ia∗M1
, with values in the finite

dimensional complex vector space Acusp(M1, τ1) = Acusp(M1, τM1). The inverse spherical

transform f1 = F∨1 is a function in C(G, τ). The transformation f → fT of §1 can be

applied to this (vector-valued) function. It yields another function f1,T = F∨1,T in C(G,T ).

The weighted orbital integral JM (γT , f1,T ) is then defined as a function of T with values

in V . We assume that F1 satisfies the symmetry condition (2.2). This implies that the

spherical transform f̂1,P1 equals F1. Moreover, the spherical transform (f1,T )∧P1
of f1,T

equals the function

F1,T (λ1) =
∑

u∈W (M,M1)

e−λ1(uT )F1(λ1), λ1 ∈ ia∗1.

Our interest is in the limit of JM (γT , f1,T ) as T approaches infinity in ar
P .
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We shall actually have to consider a slightly more general problem. Let us write

(3.1) fS
1 = (FS

1 )∨

for any point S ∈ a1, where we recall that FS
1 (λ1) is defined in (2.7) as F1(λ1)e−λ1(S).

The function f1,T above is a sum of functions fS
1 , with S ranging over the W (M,M1)-

translates of T . For reasons of induction, it will eventually be necessary to study integrals

JM (γT , f
S
1 ) in which S is a more general linear form in T . We shall make this precise

later. In the meantime, we allow S to be any variable point in a1. We shall establish some

estimates for JM (γT , f
S
1 ) that are uniform in S.

We need to investigate the weighted orbital integral (1.2), with f replaced by the

τ -spherical function fS
1 . Since the maximal torus T = TM in M is elliptic, its split

component is AM . We may therefore replace the domain of integration T (R)\G(R) in

(1.2) by AM (R)\G(R), with the understanding that the quotient AM (R)\TM (R) has Haar

measure 1. Applying the decomposition G(R) = M(R)NP (R)K to the integral, we obtain

JM (γT , f
S
1 )

= |D(γT )| 12
∫

AM (R)\G(R)

fS
1 (x−1γTx)vM (x)dx

= |D(γT )| 12
∫

K

∫
AM (R)\M(R)

∫
NP (R)

fS
1 (k−1n−1m−1γTmnk)vM (n)dndmdk.

Before attempting any estimates, we shall make two structural changes in the last expres-

sion.

The first change will be in the integral over NP (R). For a given m ∈M(R), we shall

sometimes write

δT = δT (m) = m−1γTm.

This equals δ expT , where

δ = δ(m) = m−1γm.

If n belongs to NP (R), we can also write

n−1m−1γTmn = n−1δTn = δT ν,
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for the point

(3.2) ν = δ−1
T n−1δTn

in NP (R). For fixed m and T , the map n → ν is an invertible morphism of NP . Taking

the inverse of this map, we consider the point

n = n(ν, δT ) = n(ν,m−1γTm)

as a function of ν and δT . In fact, we shall change variables from n to ν in the last integral

over NP (R). We can do so as long as we multiply the integrand by the corresponding

Jacobian determinant

|DG(γT )|− 1
2 |DM (γT )| 12 eρP (HM (γT )) = |DG(γT )|− 1

2 |DM (γ)| 12 eρP (HM (γ)+T ).

The first factor in this product cancels the normalizing factor |D(γT )| 12 = |DG(γT )| 12 in

the original integral. We find that JM (γT , f
S
1 ) equals the product of

(3.3) |DM (γ)| 12 eρP (HM (γ)+T )

with

(3.4)
∫

K

∫
AM (R)\M(R)

∫
NP (R)

fS
1 (k−1m−1γTmνk)vM

(
n(ν,m−1γTm)

)
dνdmdk.

The second change will be to express the variables of integration in terms of the polar

decomposition of G(R). For any x ∈ G(R), we write x+
0 = x+

P0
for the noncompact part of

x in the polar decomposition. In other words, x+
0 is the unique point in A0(R)0 = exp(a0)

whose logarithm lies in the closure of the chamber a+
0 = a+

P0
, and such that x lies in Kx+

0 K.

For any m and ν in the integral (3.4), we set

hT = hT (m, ν) = (m−1γTmν)+0 = (δT ν)+0 .

Thus

m−1γTmν = k1
ThT k

2
T ,
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for points

ki
T = ki

T (m, ν), i = 1, 2,

in K. We shall also write

h′T = h′T (m) = (m−1γTm)+R0
= (δT )+R0

for the noncompact part of m−1γTm = δT in the polar decomposition with respect to the

minimal parabolic subgroup R0 = P0 ∩M of M . Then h′T = h′expT , where h′ = h′(m) is

the value of h′T at T = 0, and

m−1γTm = k′,1T h′T k
′,2
T ,

for points

k′,iT = k′,iT (m), i = 1, 2,

in KM = K ∩M(R). Moreover,

(3.5) hT = (h′T ν
′)+0 ,

where

(3.6) ν′ = (k′,2T )ν(k′,2T )−1.

We return to the discussion of JM (γT , f
S
1 ). The τ -spherical function fS

1 is the inverse

spherical transform of the function FS
1 (λ1). It is thus the |W (M1)|−1-normalized average

in λ1 of the Eisenstein integral

(3.7) φS(λ1, x) = EP1

(
x, µP1(λ1)FS

1 (λ1), λ1

)
attached to P1. We can therefore write∫

K

f1,T (k−1xk)dk = |W (M1)|−1

∫
ia∗1

πK
(
φS(λ1, x)

)
dλ1,
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for the projection πK defined at the beginning of §2. Moreover,

φS(λ1,m
−1γTmν) = τ(k1

T )φS(λ1, hT )τ(k2
T ),

in the notation above. The expression (3.4) can therefore be written as the integral over

m ∈ AM (R)\M(R) and ν ∈ NP (R) of

(3.8) |W (M1)|−1

∫
ia∗1

πK
(
τ(k1

T )φS(λ1, hT )τ(k2
T )

)
dλ1 · vM

(
n(ν,m−1γTm)

)
.

Our intention is to apply Harish-Chandra’s theory of the constant term to the function

φS(λ1, hT ) in (3.8). We will estimate the contribution of the error term to (3.8) in this

section, and the contribution of the constant term itself in §4. In both cases, we shall need

a bound for the exponential function

e−ρ0(log hT ) =
∣∣det

(
Ad(hT )

)
n0

∣∣− 1
2 ,

where n0 is the Lie algebra of N0 = NP0 . We may as well establish it now, with the defini-

tion of hT still freshly in mind. The bound will be given in terms of familiar coordinates

on G(R), which we will need later in the context of a general standard parabolic subgroup

Q ⊃ P0. Recall that Q denotes the parabolic subgroup in P(MQ) opposite to Q. For any

such Q, and any x ∈ G(R), we write

(3.9) x = nQ̄(x)mQ̄(x)aQ̄(x)kQ̄(x),

for points nQ̄(x) ∈ NQ̄(R), mQ̄(x) ∈ MQ̄(R)1, aQ̄(x) ∈ AQ(R)0 and kQ̄(x) ∈ K. In the

case Q = P0 that we will use here, we denote the four points by n0(x), m0(x), a0(x), and

k0(x) respectively. The point m0(x) actually belongs to K in this case, and can therefore

be ignored.

In estimating the exponential function, we shall derive a geometric property of the

vector log(hT )− T in a0. Define

+a0 =
{
X ∈ a0 : (X,H) > 0, H ∈ a+

0

}
,
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the chamber in a0 that is dual to a+
0 relative to our fixed Euclidean inner product (·, ·) on

a0. Notice that +a0 is a closed cone in the subspace aG
0 of a0.

Lemma 3.1. (a) We can choose positive constants C0 and c0 depending only on G such

that

(3.10) e−ρ0(log hT ) ≤ C0e
−ρ0(T )e−ρ0(log h′)e−ρ0(log a0(ν

′))

and

(3.11) ρ0(log hT ) + c0 ≥ ρ0(T ) + ρ0(log h′) + ρ0

(
log a0(ν′)

)
.

(b) There is a point TG
0 ∈ aG

0 that depends only on G such that the vector

(
log(hT )− T

)
−

(
HM (γ) + TG

0

)
belongs to the chamber +a0.

Proof. The elements hT , h′ and ν′ in (a) are of course defined as above. The two

inequalities in (a) become equivalent under exponentiation, so it suffices to prove (3.11).

We shall do so in the course of establishing (b).

Let µ ∈ a∗0 be a highest weight relative to (P0, A0). Then µ′ = (−µ) is a lowest weight,

in the sense that there is an irreducible, finite dimensional representation (r′, V ′) of G over

R with lowest weight µ′. We choose a K-invariant Hermitian inner product on V ′(C) that

has an orthonormal basis of weight vectors. Then

‖r′(hT )−1‖2 =
( ∑

η

e−2η(log hT )
) 1

2
,

where ‖ · ‖2 is the corresponding Hilbert-Schmidt norm on End
(
V ′(C)

)
, and η is summed

over the A0-weights (with multiplicity) of r′. For any weight η, µ′ − η lies in the negative

chamber (−+a0). Since (log hT ) lies in the closure of the positive chamber a+
0 ,

(µ′ − η)(log hT ) ≤ 0.
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The inequality

‖r′(hT )−1‖2 = eµ(log hT )
(
1 +

∑
η 6=µ′

e2(µ
′−η)(log hT )

) 1
2

≤ (dim V ′)
1
2 eµ(log hT ))

follows. To obtain a second inequality, we evaluate the operator r′(hT )−1 at a lowest

weight vector v′ of norm 1. It follows from (3.5) and (3.9) that

‖r′(hT )−1‖2 = ‖r′(h′T ν′)−1‖2

≥ ‖r′(h′T ν′)−1v′‖

= ‖r′(ν′)−1r′(h′T )−1v′‖

= eµ(log h′T )‖r′(ν′)−1v′‖

= eµ(log h′T )
∥∥r′(k0(ν′)

)−1
r′

(
a0(ν′)

)−1
r′

(
n0(ν′)−1

)
v′

∥∥
= eµ(log h′T )eµ(log a0(ν

′)).

The two inequalities together become

eµ(log h′T )eµ(log ā0(ν
′)) ≤ (dim V ′)

1
2 eµ(log hT ).

It follows from the definitions that log(h′T ) equals log h′ + T . Taking logarithms of the

last inequality, we see that

(3.12) µ(log hT )− µ(T ) + c′ ≥ µ(log h′) + µ
(
log a0(ν′)

)
,

where c′ = 1
2 log(dim V ′). The required inequality (3.11) then follows with µ = 2ρ0.

To establish (b), we recall that log h′ lies in the closure of the chamber a+
R0

for (R0, A0).

Moreover, the projection of this point onto aM equals the vector

HM (h′) = HM (γ).

The subset of points in a+
R0

that project to 0 in aM is contained in the dual chamber +aR0 ,

which is in turn contained in +a0. The difference
(
log h′ −HM (γ)

)
therefore lies in +a0.
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The second vector
(
log a0(ν′)

)
on the right hand side of (3.12) is well known also to lie in

+a0. In fact, one sees directly from the argument above that µ
(
log a0(ν′)

)
is nonnegative

for any µ. It thus follows from (3.12) that for any µ, there is a constant c′ such that

µ
(
log hT − T −HM (γ)

)
+ c′ ≥ 0.

Now, it is a consequence of the definitions that the vector

log hT − T −HM (γ)

lies in the subspace aG
0 of a0. Let {µ} be a finite set of highest weights, which all lie in

(aG
0 )∗ and for which the intersections of the half spaces

{H ∈ aG
0 : µ(H) ≤ 0}

equals +a0. We take TG
0 ∈ aG

0 to be a vector such that for any of these µ, the sum of

µ(TG
0 ) with the corresponding constant c′ is negative. The assertion of (b) follows. �

Returning again to the discussion of JM (γT , f
S
1 ), we shall apply the estimate (2.5) of

Lemma 2.1 to the integrand in (3.8). If ∆ is any subset of the simple roots ∆0 of (P0, A0),

let P∆ ⊃ P0 be the corresponding subgroup of G. We shall generally replace any subscript

P∆ simply by ∆. For example, ∆ determines the subspace

a∆ = aP∆ = {H ∈ a0 : α(H) = 0, α ∈ ∆}

of a0, which we have agreed to identify with the Lie algebra of A∆(R). We fix, for once

and for all, a small positive number r with respect to which we will ultimately take the

limits (1.15) and (1.16). Having chosen r, we then fix the positive number r0 of §2 so that

it is small relative to r. In particular, we assume that 0 < r0 < r. The closed chamber ā+
0

is then a disjoint union over ∆ of the sets

a0,∆ = ar0
P0,P∆

,
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defined in §2. Given ∆ and T , we write

P (R)∆,T =
{
(m, ν) ∈ AM (R)\M(R)×NP (R) : log

(
hT (m, ν)

)
∈ a0,∆

}
.

We can then apply Lemma 2.1 (with P∆ in place of Q) to the points hT = hT (m, ν) with

(m, ν) in P (R)∆,T . We see that the norm

(3.13)
∥∥πK

(
τ(k1

T )φS(λ1, hT )τ(k2
T )

)
− e−ρ∆(log hT )πK

(
τ(k1

T )φS
∆(λ1, hT )τ(k2

T )
)∥∥

has a bound

|p1(λ1)| · ‖µ1(λ1)FS
1 (λ1)‖e−(1+δ1)ρ0(log hT ),

for a polynomial p1 and a positive number δ1, which is valid for any T ∈ a+
P and any

(m, ν) ∈ P (R)∆,T .

Consider the contribution of P (R)∆,T to the formula for JM (γT , f
S
1 ) if the integrand

in (3.8) is replaced by the absolute value (3.13). The contribution is bounded by the

product of (3.3) with the two integrals

|W (M1)|−1

∫
ia∗1

|p1(λ1)| · ‖µ1(λ1)FS
1 (λ1)‖dλ1

and

(3.14)
∫

P (R)∆,T

e−(1+δ1)ρ0(log hT )
∣∣vM

(
n(ν,m−1γTm)

)∣∣dνdm.
Since µ1(λ1) is slowly increasing and FS

1 (λ1) is rapidly decreasing, the first integral is finite,

and is bounded independently of S. To treat the second integral, we require a couple of

simple lemmas.

Following Harish-Chandra, we write

σ(x) = log ‖rG(x)‖2, x ∈ G(R),

where (rG, VG) is a suitably fixed finite dimensional representation of G, and ‖ · ‖2 is the

Hilbert-Schmidt norm attached to a suitable Hermitian inner product on VG(C).
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Lemma 3.2. There are positive constants c and p such that∣∣vM

(
n(ν,m−1γTm)

)∣∣ ≤ c
(
1 + σ(ν)

)p(1 + σ(m−1γm)
)p
,

for all ν and m, all γ ∈ Γ, and all T ∈ ar
P sufficiently large relative to Γ.

Proof. The estimate in a consequence of the proof of [A2, Lemma 7.2]. According to

[Ha2, Lemma 10], the correspondence

n −→ ν = δ−1
T n−1δTn, δT = m−1γTm,

is the exponential transfer of an invertible polynomial mapping of nP onto itself. The

matrix coefficients of this mapping are linear combinations of monomials, with coefficients

that are in turn polynomials in the matrix coefficients of the map

AδT
=

(
1−Ad(δT )−1

)
: nP −→ nP .

The same goes for the inverse correspondence

ν −→ n = n(ν, δT ),

except that the monomial coefficients are polynomials in the matrix coefficients of AδT

divided by the determinant of AδT
. The determinant equals

det(AδT
) = 1− e−2ρ1(HM (δT )) = 1− e−2ρ1(HM (γ)+T ).

It is bounded away from 0 whenever T ∈ ar
P is large relative to γ ∈ Γ. The matrix

coefficients of AδT
can be bounded independently of T , or in other words, in terms of the

matrix coefficients of Aδ = Am−1γm. The required estimate follows easily from the usual

formula [A2, (4.1)] for vM

(
n(ν,m−1γTm)

)
, and standard properties of the Harish-Chandra

function σ(·). (See [A2, (7.2) and Lemma 7.1].) �

We apply Lemma 3.2 and (3.10) to the integral (3.14). We see that (3.14) is bounded

by a constant multiple of the product of two expressions

e−(1+δ1)ρ0(T )

∫
AM (R)\M(R)

e−(1+δ1)ρ0(log h′)
(
1 + σ(m−1γm)

)p
dm
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and ∫
NP (R)

e−(1+δ1)ρ0(log(a0(ν
′)))

(
1 + σ(ν)

)p
dν.

In dealing with the first expression, we can substitute

ρ0(log h′) = ρR0(log h′) + ρP

(
HM (γ)

)
, R0 = P0 ∩M,

into the exponential part of the integrand, since the projection of log h′ onto aM equals

HM (γ). Recall that h′ equals (m−1γm)+R0
, so in particular log h′ lies in the closure of the

chamber a+
R0

, and that γ lies in the relatively compact subset Γ of TM (R). It follows that

the product

e−δ1ρR0 (log h′)
(
1 + σ(h′)

)n+p

is bounded for any n. Moreover, an elementary estimate [Ha1, Lemma 36] of Harish-

Chandra tells us that

e−ρR0 (log h′) ≤ ΞM (h′),

where ΞM is the function used to define the Schwartz space on M(R) [Ha3]. We can thus

find a constant cn for any given n such that

e−(1+δ1)ρ0(log h′)

≤ cne
−(1+δ1)ρP (HM (γ))ΞM (h′)

(
1 + σ(h′)

)−(n+p)

= cne
−(1+δ1)ρP (HM (γ))ΞM (m−1γm)

(
1 + σ(m−1γm)

)−(n+p)
,

since the functions ΞM and σ are both biinvariant under KM . It follows that the product

of the first expression above with the earlier factor (3.3) is bounded by the product of

cne
−δ1ρP (T+HM (γ))

with

|DM (γ)| 12
∫

AM (R)\G(R)

ΞM (m−1γm)
(
1 + σ(m−1γm)

)−n
dm.

We have of course used the fact that ρ0(T ) = ρP (T ). According to a basic estimate

[Ha3, Theorem 5] of Harish-Chandra, the last factor is finite for n sufficiently large, and
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is bounded independently of γ. We conclude that the product of the first expression with

(3.3) approaches 0 at T approaches infinity in ar
P , uniformly in γ ∈ Γ.

The second expression equals∫
NP (R)

e−(1+δ1)ρ0(log(ā0(ν)))
(
1 + σ(ν)

)p
dν,

since

σ(ν) = σ
(
Int(k′,2T )ν

)
= σ(ν′),

and dν = dν′. Moreover, for any n, this expression is bounded by a constant multiple of∫
NP (R)

e−ρ0(log(ā0(ν)))
(
1 + ρ0

(
log(a0(ν))

))−n(
1 + σ(ν)

)p
dν.

The finiteness of this integral for large n is the case that Q = P in the following lemma.

Lemma 3.3. For any p > 0 and Q ∈ P(M), we can choose n so that the integral

(3.15)
∫

NP (R)∩NQ̄(R)

e−ρ0(log ā0(ν)))
(
1 + ρ0(log a0(ν))

)−n(
1 + σ(ν)

)p
dν

is finite.

Proof. The lemma is a variant of a classical estimate of Harish-Chandra ([Ha1,

Lemma 45] or [Ha3, Lemma 89]). In the case at hand, we shall argue by induction on

d(P,Q), the minimal number of singular hyperplanes in aM that separate the chambers

a+
P and a+

Q. This is a familiar technique, so we shall be brief. If p = 0, for example,

the integrand in (3.15) is essentially the function (I.4.7) in [A1], and the finiteness of the

corresponding integral is established in [A1, p. I.4.22–I.4.24, p. I.4.7–I.4.9].

One can choose a quasisplit inner twist ψ: G → G∗ of G, and parabolic subgroups

P ∗, Q∗ ∈ P(M ′) of G∗, such that ψ restricts to an R-isomorphism from NP ∩ NQ̄ onto

NP∗ ∩ NQ∗ . Moreover, this isomorphism maps the functions log a0(ν) and σ(ν) on

NP (R) ∩ NQ̄(R) to corresponding functions on NP∗(R) ∩ NQ∗(R). We may therefore

assume that G is quasisplit. The intersection NP ∩NQ̄ equals NP0 ∩NQ̄0
, for a minimal
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parabolic subgroup Q0 ∈ P(M0). We can therefore also assume that M = M0 and P = P0.

In particular, we shall write

ρ0

(
log a0(ν)

)
= ρP

(
HP̄ (ν)

)
in the integrand of (3.15).

Given Q, we choose a group P1 ∈ P(M), with d(P1, Q) = 1, such that d(P, P1) is less

than d(P,Q). We then have a decomposition of integrals∫
NP (R)∩NQ̄(R)

φ(ν)dν =
∫

NP1 (R)∩NQ̄(R)

∫
NP (R)∩NP̄1

(R)

φ(ν1x)dν1dx,

for any nonnegative measurable function φ on NP (R) ∩ NQ̄(R). To deal with the two

variables on the right, we write

HP̄ (ν1x) = HP̄

(
ν1nP̄ (x)aP̄ (x)kP̄ (x)

)
= HP̄

(
ν′1,xaP̄ (x)

)
= HP̄ (ν1,x) +HP̄ (x),

where ν′1,x is the point inNP (R)∩NP̄1
(R) such that ν1nP̄ (x) belongs toNP̄ (R)ν′1,x, and ν1,x

is the conjugate of ν′1,x by aP̄ (x)−1. For any x, the mapping ν1 → ν1,x is a diffeomorphism

of NP (R) ∩NP̄1
(R), which is easily seen to transform the Haar measure according to the

formula

e−ρP (HP̄ (x))dν1 = e−ρP1 (HP̄ (x))dν1,x.

Moreover, it is not difficult to establish a bound

σ(ν1x) ≤ c
(
σ(ν1,x) + σ(x)

)
from the subadditive property [Ha3, Lemma 10] of σ. The integrand in (3.15) is therefore

bounded by a constant multiple of the function

e−ρP (HP̄ (ν1,x)+HP̄ (x))
(
1 + ρP

(
HP̄ (ν1,x) +HP̄ (x)

))−n(
1 + σ(ν1,x) + σ(x)

)p
.
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Changing the inner variable of integration from ν1 to ν1,x (which we then write again as

ν1), we see that (3.15) itself is bounded by a constant multiple of the product of the two

integrals ∫
NP (R)∩NP̄1

(R)

e−ρP (HP̄ (ν1))
(
1 + ρP

(
HP̄ (ν1)

))−n′(1 + σ(ν1)
)p
dν1

and ∫
NP1 (R)∩NQ̄(R)

e−ρP1 (HP̄ (x))
(
1 + ρP

(
HP̄ (x)

))−n′(1 + σ(x)
)p
dx,

for the positive multiple n′ = 1
2n of n. The first integral is the analogue of (3.15) with Q

and n replaced by P1 and n′. It converges for large n, by our induction assumption. The

terms in the second integrand satisfy HP̄ (x) = HP̄1
(x), and

ρP

(
HP̄ (x)

)
= ρP

(
HP̄1

(x)
)

= r1ρP1

(
HP̄1

(x)
)
,

where r1 is a positive number. The second integral is therefore bounded by a constant

multiple of the analogue of (3.15) with P and n replaced by P1 and n′.

We have reduced the proof to the case that G is quasisplit, P = P0, and P and Q

are adjacent. Let G′ be the Levi subgroup of G such that aG′ is the subspace of aM = a0

spanned by the common wall of the adjacent chambers a+
P and a+

Q. The various terms in

(3.15) readily reduce to their analogues for the minimal parabolic subgroups P ′ = G′ ∩ P

and Q′ = G′ ∩Q = P ′ of G. From direct computations on the groups SL(2) and SU(2, 1),

one knows that the function

e−ρ0(log(ā0(ν))), ν ∈ NP (R),

is bounded below by a positive definite quadratic form in the coordinates of ν, and hence

that (
1 + σ(ν)

)
≤ c

(
1 + ρ0

(
log a0(ν)

))
,

for some constant c. We may therefore assume that p = 0. The assertion of the lemma

then follows in this case either by direct computation, or an appeal to Harish-Chandra’s

original estimate. �
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We have now dealt with each of the two expressions whose product was used to bound

the integral (3.14). Our conclusion is that the product of (3.14) with (3.3) approaches

0 uniformly for γ ∈ Γ as T approaches infinity in ar
P . It follows that for any ∆, the

contribution of (3.13) to the formula for JM (γT , f
S
1 ) approaches 0 uniformly in γ and S

as T approaches infinity in ar
P . In calculating the required limit, we can thus replace the

integral over m and ν of (3.8) with a sum of integrals over the sets P (R)∆,T of expressions

obtained from (3.8) by replacing φS(λ1, hT ) with e−ρ∆(log hT )φS
∆(λ1, hT ). The constant

term φS
∆(λ1, hT ) is given by (2.6). It equals

φS
∆(λ1, hT ) =

∑
w∈W (P1;P∆)

φS
∆,w(λ1, hT ),

where if w maps aP1 to aP ′
1

and R∆ = P ′1 ∩M∆, φS
∆,w(λ1, hT ) equals

ER∆

(
hT , cR∆(1, wλ1)−1cP ′

1|P1(w, λ1)µP1(λ1)FS
1 (λ1), wλ1

)
.

We shall write

ΦS
∆,w(m, ν; γ, T ), w ∈W (P1;P∆), (m, ν) ∈ AM (R)\M(R)×NP (R),

for the product of

(3.16) e−ρ∆(log hT )|W (M1)|−1

∫
ia∗1

πK
(
τ(k1

T )φS
∆,w(λ1, hT )τ(k2

T )
)
dλ1

with

(3.17) |DM (γ)| 12 eρP (HM (γ)+T )vM

(
n(ν,m−1γTm)

)
.

The second factor (3.17) here is just the product of the original normalizing factor (3.3)

for JM (γT , f
S
1 ) with the weight factor in the integrand of (3.8). We have established

Lemma 3.4. The difference

(3.18) JM (γT , f
S
1 )−

∑
∆

∫
P (R)∆,T

∑
w∈W (P1;P∆)

ΦS
∆,w(m, ν; γ, T )dνdm

approaches 0 uniformly in γ and S as T approaches infinity in ar
P . �
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§4. Estimation of the constant terms

We continue with the discussion of the last section. We have reduced the asymptotic

study of JM (γT , f
S
1 ) to that of integrals of constant terms attached to fS

1 . Our task is now

to estimate these integrals. We shall show that if S is a U(M,M1)-transform of T , all but

at most one of the integrals converge to 0 at T approaches infinity. We shall then examine

the limit of the remaining integral.

For the reasons of induction mentioned in §3, we shall have to be prepared also to let

S be a more general image of T . In fact, at the end of the section, we shall establish some

of the estimates for independent parameters T and S, subject only to a weak condition

on their relative position. However, our main task is still to carry out a finer analytic

argument under the restrictive conditions on T and S. We therefore assume for the time

being that S = uT , for some u ∈ U(M,M1).

The integrals are the terms on the right hand side of (3.18). For any indices of summa-

tion ∆ and w in (3.18), we shall estimate the integral over P (R)∆,T of the corresponding

summand ΦS
∆,w(m, ν; γ, T ). Among other things, this will allow us to interchange the in-

tegral in (3.18) with the sum over w. We recall that the two factors (3.16) and (3.17) of

ΦS
∆,w(m, ν, γ, T ) both depend on the variables (m, ν) of integration, even though this is

explicit in the notation only in the case of (3.17).

The first step is to apply Corollary 2.4, with (P∆, hT ) in place of (Q,h), to the factor

(3.16). We see that for any n, the norm of (3.16) is bounded by an expression

cne
−ρ0(log hT ) sup

∆′,w′

(
1 + ‖ log hT − (w′S)∆′‖

)−n
,

for a constant cn that depends only on n. The supremum is taken over subsets ∆′ of ∆

and elements w′ ∈ W (P1;P∆′) such that w′w−1 leaves a∆ pointwise fixed, while (w′S)∆′

denotes the projection of w′S onto a∆′ . To put this estimate into tractible form, we have

to make use of the various assertions of Lemma 3.1.
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We can certainly decompose the vector

(log hT )− (w′S)∆′

in a0 into a sum(
log hT − T −HM (γ)− TG

0

)
+

(
T − (w′S)∆′

)
+

(
HM (γ) + TG

0

)
of three vectors. According to Lemma 3.1(b), the first of these vectors belongs to the dual

chamber +a0 of a+
0 . We are assuming that S = uT is a U(M,M1) transform of T . It then

follows from standard properties of the convex hull of W0T in a0 ([A2, Lemma 3.2(iii)],

[A4, Lemma 3.1]) that the second vector

T − (w′S)∆′ = T − (w′uT )∆′

also lies in the dual chamber +a0. Since +a0 is the cone spanned by a linearly independent

set of vectors in a0, we can bound the sum of the first two vectors below by a positive

constant multiple of the sum of their norms. We can therefore write

‖ log hT − (w′S)∆′‖ ≥ δ
(
‖ log hT − T‖+ ‖T − (w′S)∆′‖ − (1 + δ)‖HM (γ) + TG

0 ‖
)
,

for a constant δ > 0. We can therefore write the third vector is the sum of a point TG
0

that depends only on G, and a vector HM (γ) whose norm remains bounded as γ ranges

over the bounded set Γ. It then follows that

(4.1)
(
1 + ‖ log hT − (w′S)∆′‖

)
≥ δΓ

(
1 + ‖ log hT − T‖+ ‖T − (w′S)∆′‖

)
,

for a positive constant δΓ that depends only on Γ.

We now use the inequalities of Lemma 3.1(a) to complete the first step of the argument.

Combining (3.11) with the lower bound (4.1), we obtain inequalities(
1 + ‖ log hT − (w′S)∆′‖

)−n

≤ c1
(
1 + ‖T − (w′S)∆′

)−n′(1 + ‖ log hT − T‖
)−n′

≤ c2
(
1 + ‖T − (w′S)∆′‖

)−n′(1 + ρ0(log hT − T )
)−n′

≤ c3
(
1 + ‖T − (w′S)∆′‖

)−n′(1 + ρ0(log h′)
)−n′′(1 + ρ0(log a0(ν′))

)−n′′

,
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for positive constants c1, c2 and c3, and positive multiples n′ = 1
2n and n′′ = 1

4n of n. We

then apply the other inequality (3.10) of Lemma 3.1(a) to the remaining factor e−ρ0(log hT )

in the estimate above for (3.16). We conclude that for any n, the norm of (3.16) is bounded

by the product of
e−ρ0(T ) sup

∆′,w′

(
1 + ‖T − (w′S)∆′‖

)−n
,

e−ρ0(log h′)
(
1 + ρ0(log h′)

)−n
,

and

e−ρ0(log ā0(ν
′))

(
1 + ρ0(log a0(ν′))

)−n
,

with a constant that depends only on n.

The second step is simply to apply the inequality of Lemma 3.2 to the other factor

(3.17). Using the fact that ρP (T ) = ρ0(T ), we see that (3.17) is bounded by a constant

multiple of the product of

|DM (γ)| 12 eρP (HM (γ))eρ0(T )

with (
1 + σ(ν)

)p(1 + σ(m−1γm)
)p
.

We now have an estimate for any summand in (3.18) in terms of a product of five

factors. The element h′ in the second of the three earlier factors was defined in terms of

γ and m. It follows from Harish-Chandra’s inequality [Ha1, Lemma 36], as it was applied

in the discussion between Lemmas 3.2 and 3.3, that

e−ρ0(log h′)
(
1 + ρ0(log h′)

)−n(
1 + σ(m−1γm)

)p

is bounded by a constant multiple

e−ρP (HM (γ))ΞM (m−1γm)
(
1 + σ(m−1γm)

)−n+p1
,

for a constant p1 that is independent of n. The element ν′ in the last of the earlier factors

depends on ν and T , as well as γ and m. However, it follows immediately from its definition
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that σ(ν) equals σ(ν′). Taking into account the cancellation of terms from the product of

the five factors, we see that for any n, the norm

‖ΦS
∆,w(m, ν; γ, T )‖

of the summand is bounded by the product of

(4.2) sup
∆′,w′

(
1 + ‖T − (w′S)∆′‖

)−n
,

(4.3) |DM (γ)| 12 ΞM (m−1γm)
(
1 + σ(m−1γm)

)−n+p1
,

and

(4.4) e−ρ0(log(ā0(ν
′)))

(
1 + ρ0(a0(ν′))

)−n(
1 + σ(ν′)

)p
,

with a constant that depends only on n. The exponents p and p1 are constants that depend

only on G.

We can of course assume that n is as large as we want. It then follows from [Ha3,

Theorem 5] that the integral of (4.3) over m in AM (R)\M(R) is bounded uniformly for γ

in Γ. In dealing with the expression (4.4), we recall from the definition of §3 that ν → ν′

is a measure preserving diffeomorphism of NP (R). It follows from Lemma 3.3 that the

integral of (4.4) over ν in NP (R) converges. We conclude that for any ∆ and w, and for

any γ ∈ Γ and T ∈ ar
P , the integral∫

AM (R)\M(R)

∫
NP (R)

‖ΦS
∆,w(m, ν; γ, T )‖dνdm, S = uT,

is bounded by the product of (4.2) with a constant that depends only on n. In particular,

the integral over P (R)∆,T in (3.18) can be taken inside the sum over w. In other words,

the difference

(4.5) JM (γT , f
S
1 )−

∑
∆

∑
w

∫
P (R)∆,T

ΦS
∆,w(m, ν; γ, T )dνdm, S = uT,
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converges to 0 uniformly in γ ∈ Γ as T approaches infinity in ar
P .

The bounds (4.2) we have obtained for the summands in (4.5) would be easy to analyze

at this point. However, we may as well first establish that most of the summands can be

eliminated. We shall show that any summand attached to ∆ converges to 0 unless ∆ = ∆P
0 .

To simplify the notation in the remaining case, we write

P (R)T = P (R)∆P
0 ,T =

{
(m, ν) : log

(
hT (m, ν)

)
∈ ar0

P0,P

}
.

If Ω is any subset of P (R), we shall also write Ωγ for the set of points (m, ν) in

AM (R)\M(R) × NP (R) such that m−1γmν belongs to Ω. We then let Ωc
γ denote the

complement of Ωγ in AM (R)\M(R)×NP (R).

Lemma 4.1. (a) For any ε > 0, we can choose a compact subset Ω of P (R) such that∫
Ωc

γ

‖ΦS
∆,w(m, ν; γ, T )‖dνdm < ε, S = uT,

for all ∆, w and γ, and all T in ar
P .

(b) For any compact subset Ω of P (R), we can choose a relatively compact subset CΩ of

ar
P such that Ωγ is contained in P (R)T , for all γ and all T in the complement of CΩ in

ar
P .

Proof. (a) This is a recapitulation of the remarks above. The integrand is bounded

by a constant multiple of the product of (4.2), (4.3) and (4.4). We want to choose Ω

so that the integral of this product over the complement of Ωγ is small. Observe that if

Ω = Ω′ × Ω′′, for compact sets Ω′ ⊂ M(R) and Ω′′ ⊂ NP (R), then Ωγ equals Ω′γ × Ω′′.

The term (4.2) is bounded independently of T . The integral of (4.4) over ν in NP (R) is

finite if n is sufficiently large, and can be approximated by the integral over a compact

set Ω′′. The integral of (4.3) over m in AM (R)\M(R) is bounded independently of γ, so

long as n is sufficiently large. Moreover, the integral over the complement (Ω′γ)c of Ω′γ in

AM (R)\M(R) is bounded by the product of

sup
m∈(Ω′γ)c

(
1 + σ(m−1γm)

)−1

53



and the integral of the corresponding expression with (n − 1) in place of n. Since we

can increase the size of n by 1, the latter integral is bounded independently of γ. Given

the nature of the function σ, we can make the supremum as small as we wish simply by

choosing the compact set Ω′ ⊂M(R) to be sufficiently large. The assertion (a) follows.

(b) Recall that for any ∆, P (R)∆,T is the set of (m, ν) in AM (R)\M(R)×NP (R) such

that the point HT = log hT belongs to the subset a0,∆ of a+
0 . Recall also that

hT = (m−1γTmν)+0 = (expT ·m−1γmν)+0 .

Suppose that (m, ν) belongs to the intersection of P (R)∆,T with Ωγ . We need to show

that if T ∈ ar
P is sufficiently large, ∆ must equal ∆P

0 .

Since (m, ν) belongs to Ωγ , the point ω = m−1γmν lies in the compact set Ω. Let

(r, V ) be an irreducible finite dimensional representation of G over R, with highest weight

µ ∈ a∗0 relative to (P0, A0). As in the proof of Lemma 3.1, we fix a K-invariant Hermitian

inner product on V (C) that has an orthonormal basis of weight vectors. We immediately

obtain two estimates

‖r(hT )‖2 = ‖r(m−1γTmν)‖2 = ‖r(expT · ω)‖2

≤ ‖r(expT )‖2 ‖r(ω)‖2

≤ C1‖r(expT )‖2

and
‖r(expT )‖2 = ‖r(m−1γTmνω

−1)‖2 ≤ ‖r(m−1γTmν)‖2 ‖r(ω−1)‖2

= ‖r(hT )‖2 ‖r(ω−1)‖2

≤ C1‖r(hT )‖2,

where

C1 = sup
ω∈Ω

{
‖r(ω)‖2, ‖r(ω−1)‖2

}
.

Taking logarithms, we see that

∣∣ log ‖r(hT )‖2 − log ‖r(expT )‖2
∣∣ ≤ c1,
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where c1 = log C1. But

‖r(hT )‖2 = e(log hT )
(
1 +

∑
η 6=µ

e(2η−2µ)(log hT )
) 1

2

and

‖r(expT )‖2 = eµ(T )
(
1 +

∑
η 6=µ

e(2η−2µ)(T )
) 1

2
,

where η is summed over the A0-weights (with multiplicity) of r. It follows that

∣∣( log ‖r(hT )‖2 − log ‖r(expT )‖2
)
− µ(log hT − T )

∣∣ ≤ log(dim V ).

Therefore

|µ(log hT − T )| ≤ c1 + log(dim V ).

Letting µ vary over a basis of a∗0, we conclude that ‖ log hT −T‖ is bounded independently

of T .

The point T belongs to the subset ar
P of a+

0 , where we recall that r > 0 was fixed in

§3. This set is in turn contained in the subset

a0,P = a0,∆P
0

= ar0
P0,P

of a+
0 corresponding to ∆P

0 and r0. In fact, the distance from T to the complement of a0,P

in a+
0 grows linearly with the norm of T . This is a consequence of the definitions and the

fact that r0 is strictly less than r. The assertion of (b) follows. �

It follows from the lemma that any summand in (4.5) with ∆ 6= ∆P
0 converges to 0

uniformly in γ ∈ Γ as T approaches infinity in ar
P . To the remaining case that ∆ = ∆P

0

we apply the bounds (4.2) for the corresponding summands, which were obtained prior to

the lemma. In this case, we have

‖T − (w′S)∆′‖ ≥ ‖T − (w′S)∆‖

= ‖T − (wS)∆‖ = ‖T − (wuT )P ‖,
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for any of the elements ∆′ and w′ that index the supremum (4.2) attached to ∆ and w.

The corresponding function in (4.2) therefore satisfies

(
1 + ‖T − (w′S)∆′‖

)−n ≤
(
1 + ‖T − (wuT )P

)−n
.

The restriction w̃ of wu to aM coincides with that of some element in W0. It maps a+
P to

a cone in a0 that is disjoint from a+
P unless it is actually trivial on aM . Combining this

with the fact that

‖(wuT )P ‖ ≤ ‖T‖,

we deduce that (4.2) approaches 0 as T approaches infinity in ar
P unless w̃ is the identity

transformation of aM . The element w is an index of summation in (4.5) that runs over

the set W (P1;P∆) = W (P1;P ). The restriction to aM of its inverse gives the bijection

from W (P1;P∆) to U(M,M1) of Lemma 1.1. We conclude that a summand in (4.5)

corresponding to (∆, w) converges to 0 uniformly in γ ∈ Γ as T approaches infinity in ar
P

unless ∆ equals ∆P
0 , and u is the image of w under the bijection from W (P1;P ) to the

subset U(M,M1).

Let us write

Φu
P (m, ν; γ, T ) = ΦuT

∆,w(m, ν; γ, T ), u ∈ U(M,M1),

where ∆ = ∆P
0 and w is the preimage of u in W (P1;P ). Lemma 4.1 implies that the

integral of this function over (m, ν) in the complement of P (R)T converges to 0 uniformly

in γ ∈ Γ as T approaches infinity is ar
P . We have obtained the following refinement of

Lemma 3.4.

Lemma 4.2. The difference

JM (γT , f
uT
1 )−

∫
AM (R)\M(R)

∫
NP (R)

Φu
P (m, ν; γ, T )dndm

converges to 0 uniformly in γ ∈ Γ as T approaches infinity in ar
P . �
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We have established that the limit of JM (γT , f
uT
1 ) equals

(4.6) lim
T−→

P,r
∞

∫
AM (R)\M(R)

∫
NP (R)

Φu
P (m, ν; γ, T )dνdm,

provided that the latter limit exists. To investigate (4.6), we need to be able to replace

the domain of integration by a compact set. We first choose a positive number ε that is

to be fixed until the end of the argument. It then follows from Lemma 4.1(a) that there is

a compact subset Ω of P (R) such that

(4.7)
∫

Ωc
γ

|Φu
P (m, ν; γ, T )|dνdm <

ε

3
,

for any γ ∈ Γ and T ∈ ar
P . It will suffice to consider the limit of the integral∫

Ωγ

Φu
P (m, ν; γ, T )dmdν.

Our task will be to calculate the pointwise limit of the integrand.

Recall that Φu
P (m, ν; γ, T ) is the product of the function (3.17) with the value taken by

(3.16) when ∆ = ∆P
0 , S = uT , and w is the preimage of u in W (P1;P ). The corresponding

value of the constant term φS
∆,w(λ1, hT ) in (3.16) is given by the general formula (2.6). It

equals

ER

(
hT , µR(Λ)FT

R (Λ),Λ
)
, R = P ′1 ∩M,Λ = wλ1,

in the notation of §2. In particular,

FT
R (Λ) = FR(Λ)e−Λ(T ) = FR(Λ)e−λ1(S),

where FR(Λ) is defined as in the statement of Corollary 2.3. Let us write

ER

(
hT , µR(Λ)FT

R (Λ),Λ
)

= ER

(
h1

T , µR(Λ)FR(Λ),Λ
)
eΛ(HM (hT )−T ),

where

m1 = m exp
(
HM (m)

)−1
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denotes the projection of a point m ∈ M(R) onto M(R)1. Changing variables from λ1 to

Λ in the integral in (3.16), we can then express Φu
P (m, ν; γ, T ) as the product of

(4.8) |DM (γ)| 12 eρP (HM (γ)),

(4.9) |W (M1)|−1

∫
ia∗

R

πK
(
τ(k1

T )ER(h1
T , µR(Λ)FR(Λ),Λ)τ(k2

T )
)
e(Λ−ρP )(HM (hT )−T )dΛ,

and

(4.10) vM

(
n(ν,m−1γTm)

)
,

since ρ∆ = ρP . As functions of m and ν, (4.9) and (4.10) are both quite complicated.

However, we shall see that both functions converge to simpler expressions as T approaches

infinity.

We write

m−1γTmν = m−1γTmnP̄ (ν)mP̄ (ν)aP̄ (ν)kP̄ (ν),

in the notation of (3.9). This in turn equals

κPm
−1γTmmP̄ (ν)aP̄ (ν)kP̄ (ν),

where

κP = Int(m−1γTm)nP̄ (ν) = Int(expT )
(
Int(m−1γm)nP̄ (ν)

)
.

We are assuming that (m, ν) lies in the set Ωγ , so that m−1γmν lies in the compact set

Ω. Therefore

Int(m−1γm)nP̄ (ν)

lies in a compact subset of NP̄ (R) that is independent of γ. It follows that κP converges

to 1 uniformly in m, ν and γ as T approaches infinity in ar
P . We have shown that the two

points

m−1γTmν = k1
ThT k

2
T
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and

m−1γTmmP̄ (ν)aP̄ (ν)kP̄ (ν) = m−1γmmP̄ (ν)(expT )aP̄ (ν)kP̄ (ν)

differ only up to a left translate by some element that converges uniformly to 1. It is

then easily seen, by [A8, Lemma 5.2] for example, that the respective components of the

polar decompositions of the two points also differ only by translation by elements that

converge to 1. But the polar decomposition of the second point can obviously be expressed

in terms of the polar decomposition in M(R) of the point m−1γmmP̄ (ν). This gives us an

asymptotic approximation to the polar decomposition of the first point.

We apply these remarks to the limit of the integrand in (4.9). We see that

lim
T−→

P,r
∞

(
τ(k1

T )ER(h1
T , ψR,Λ)τ(k2

T )
)

= ER

(
m−1γ1mmP̄ (ν), ψR,Λ

)
τ
(
kP̄ (ν)

)
,

for any vector ψR ∈ Acusp(MR, τR), and that

lim
T−→

P̃ ,r

∞

(
HM (hT )− T

)
= HM

(
γaP̄ (ν)

)
= HP̄ (m−1γmν).

The first limit is uniform in Λ, and both limits are uniform in m, ν and γ ∈ Γ. Let us

write

(4.11) ER,P̄ (x, ψR,Λ) = ER

(
mP̄ (x), ψR,Λ

)
τ
(
kP̄ (x)

)
e(Λ−ρP )(HP̄ (x)),

for any x ∈ G(R). The limit

lim
T−→

P,r
∞

(
τ(k1

T )ER(h1
T , ψR,Λ)τ(k2

T )
)
e(Λ−ρP )(HM (hT )−T )

is then equal to

ER,P̄ (m−1γmν, ψR,Λ),

uniformly in Λ, m, ν and γ ∈ Γ. We shall apply this limit formula to (4.9) in a moment.

Let us first recall that

ν = (m−1γTm)−1n−1(m−1γTm)n =
(
Int(expT )−1Int(m−1γm)−1n−1

)
n.
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Since m−1γm and ν remain in fixed compact sets, so does n. The point ν therefore

converges to n uniformly in γ as T approaches infinity in ar
P . Applying this to the inverse

mapping ν → n, we see that

lim
T−→

P,r
∞
n(ν,m−1γTm) = ν.

We obtain the limit formula

lim
T−→

P,r
∞
vM

(
n(ν,m−1γTm)

)
= vM (ν)

for the function (4.10), which is again uniform in m, ν and γ.

We have now established that the limit in T of the integrand in (4.9) equals

πK
(
ER,P̄ (m−1γmν, µR(Λ)FR(Λ),Λ)

)
.

According to Corollary 2.3, the function FR(Λ) belongs to the space

C
(
ia∗R,Acusp(MR, τR)

)
. Since the µ-function µR(Λ) is slowly increasing, the product

µR(Λ)FR(Λ) is rapidly decreasing in Λ. It follows that the limit of the product of the

integrand in (4.9) with any polynomial in Λ is uniform in Λ. This implies that the limit in

T of the integral (4.9) itself exists, and can be taken inside the integral over ia∗R. Combining

this with the limit we have obtained for (4.10), we conclude that

lim
T−→

P,r
∞

Φu
P (m, ν; γ, T ) = Φu

P (m, ν; γ),

where Φu
P (m, ν; γ) equals the product of (4.8) with

(4.12) |W (M1)|−1

∫
ia∗

R

πK
(
ER,P̄ (m−1γmν, µR(Λ)FR(Λ),Λ)

)
vM (ν)dΛ.

The limit of Φu
P (m, ν; γ, T ) is uniform in (m, ν) ∈ Ω, as well as γ ∈ Γ. The limit

lim
T−→

P,r
∞

∫
Ωγ

Φu
P (m, ν; γ, T )dνdn
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therefore exists, and equals ∫
Ωγ

Φu
P (m, ν; γ)dνdm.

Moreover, we can use the Weyl discriminant |DM (γ)| 12 in the factor (4.8) to control the

behaviour of the integrals over Ωγ as γ approaches the singular set. It is a consequence

of [Ha3, Theorem 5] and the definition of Ωγ that the last limit is uniform in γ. This

discussion applies of course to any compact subset Ω of P (R). It implies that for any such

Ω, and ε > 0 as above, there is a relatively compact subset CΩ,ε of ar
P such that

(4.13)
∣∣∣ ∫

Ωγ

Φu
P (m, ν; γ, T )dνdm−

∫
Ωγ

Φu
P (m, ν; γ)dνdm

∣∣∣ < ε

3
,

for all γ ∈ Γ and all T in the complement of CΩ,ε in ar
P .

The function (4.12) is actually integrable over (m, ν) in the entire set

AM (R)\M(R) × NP (R). In fact, the product of (4.8) with the integral of the absolute

value of (4.12) is bounded independently of γ ∈ Γ. This follows from Lemmas 3.2 and 3.3,

Theorem 5 of [Ha3], and the fact that the product µR(Λ)FR(Λ) in the integrand of (4.12)

is a Schwartz function of Λ ∈ ia∗R. We may therefore choose the compact set Ω so that

(4.14)
∫

Ωc
γ

|Φu
P (m, ν; γ)|dνdm <

ε

3
,

for all γ ∈ Γ.

It remains only to combine the estimates (4.7), (4.13) and (4.14) in the obvious way.

Our conclusion is that the limit (4.6) exists, and equals the integral of Φu
P (m, ν; γ) over all

m and ν, uniformly in γ ∈ Γ. Recalling Lemma 4.2, we obtain the following lemma, which

can be regarded as a summary of the work we have done in the last two sections.

Lemma 4.3. The τ -spherical function

fuT
1 = (FuT

1 )∨, F1 ∈ C
(
ia∗1,Acusp(M1, τ1), u ∈ U(M,M1)

)
,

satisfies the uniform limit formula

(4.15) lim
T−→

P,r
∞

(
JM (γT , f

uT
1 )

)
= Φu

P (γ), γ ∈ Γ,
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where

(4.16) Φu
P (γ) =

∫
AM (R)\M(R)

∫
NP (R)

Φu
P (m, ν; γ)dνdm. �

We now pause to see how the early part of the discussion above applies to more general

points S. The restrictive condition that S = uT was used only in deriving the inequality

(4.1). To describe a weaker substitute for this condition, we let c0 = c+0 be any open cone

in a0 that is contained in a+
0 . The dual cone

+c0 =
{
X ∈ a0 : (X,H) > 0, H ∈ c0

}
then contains +a0. Recall that M and M1 are both standard with respect to P0, so in

particular, the spaces aM = aP and a1 = aM1 = aP1 are both contained in a0. We assume

that the closure of c0 intersects a+
P in a subset with nonempty interior. We shall say that

T ∈ a+
P is (c0, S)-dominant, for a point S ∈ a1, if T −wS belongs to the closure +c̄0 of +c0

for every w ∈W0. If this is so, we set

dc0(T, S) = inf
w∈W0

‖T − wS‖.

Notice that these definitions do not actually require that M1 be standard. They remain

valid if M1 is a general Levi subgroup, so long as we replace W0 by the set U(M1,M0).

For example, suppose that W̃0 is a Coxeter group for some root system for a0 that

contains the roots of (G,A0). We take c0 to be the chamber ã+
0 defined by a system of

positive roots that contains ∆0, such that the closure of ã+
0 intersects a+

P in a set with

nonempty interior ã+
P . Suppose that S = uT , where T is restricted to the subset ã+

P of

a+
P , and u belongs to the set Ũ(M,M1) of linear injections from aM to aM1 induced by

elements in the larger group W̃0. It then follows from the properties of the convex hull of

W̃0T in a0 that T − wS lies in the closure of +ã0 for every w ∈ W̃0. Since W̃0 contains

W0, T is thus (c0, S)-dominant in this case.

The next lemma gives a a general estimate in terms of the chamber c0 ⊂ a+
0 and the

relatively compact set Γ ⊂ TG-reg(R). We formulate it in a way that is independent of
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the choice of two-sided representation (τ, V ) of K, even though this is stronger than we

need for the present application. As a uniform estimate in τ , it may be regarded as a step

towards generalizing our results from H(G) to C(G), even though it is stronger than will

be needed for present applications.

Lemma 4.4. For any n ≥ 0, there is a continuous seminorm ‖ · ‖n on C(G) such that

(4.17) ‖JM (γT , f
S
1 )‖ ≤ ‖f1‖n

(
1 + dc0(T, S)

)−n
, fS

1 = (FS
1 )∨,

for any (τ, V ) and γ ∈ Γ, any F1 ∈ C
(
ia1,Acusp(M1, τ1)

)
that satisfies the symmetry

condition (2.2), and any T ∈ ar
P and S ∈ a1 such that T is (c0, S)-dominant.

Proof. On the left hand side of (4.17), ‖ ·‖ is the norm attached to any inner product

on the finite-dimensional space V for which τ is unitary. On the right hand side, ‖f1‖n

represents the value at the function f1 = F∨1 of the seminorm on C(G,V ) defined by ‖ · ‖n

and ‖ · ‖. It therefore makes sense that the seminorm on C(G) be independent of (τ, V ).

We shall use the estimates derived prior to Lemma 4.1. We could apply these again

to the summands in (3.18). However, since we are aiming only for an upper bound rather

than an asymptotic formula, we may as well combine them directly with the estimate of

Lemma 2.2.

Recall the discussion at the beginning of §3. It allows us to write JM (γT , f
S
1 ) as the

integral over AM (R)\M(R) and ν ∈ NP (R) of the product of (3.3) and (3.8). This product

is the same as the product of the expression

(4.18) πK
(
τ(k1

T )(FS
1 )∨(hT )τ(k2

T )
)

with (3.17). It follows from Lemma 2.2, together with the remark after its proof, that

there is a continuous seminorm ‖ · ‖n on C(G) such that the norm of (4.18) is bounded by

‖f1‖ne
−ρ0(log hT ) sup

∆′,w′

(
1 + ‖ log hT − (w′S)∆′‖

)−n
.

The last expression is similar to the bound with which we began the discussion of this

section, apart from the fact that the supremum is now taken over all subsets ∆′ of ∆0
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and all elements w′ ∈W (aP1 , aP∆′ ), a consequence of our having used Lemma 2.2 in place

of Corollary 2.4. To apply the earlier discussion here, we need to establish the inequality

(4.1) under the weaker condition on T and S.

The cone c0 contains a smaller open cone

c̃0 =
{
H ∈ a0 : α̃(H) > 0, α̃ ∈ ∆̃0

}
,

defined by a linearly independent subset ∆̃0 of a∗0. The corresponding dual cone

+c̃0 =
{
X ∈ a0 : (X,H) > 0, H ∈ c̃0

}
then contains +c0. It therefore contains the vector

log hT − T −HM (γ)− TG
0 ,

which lies in +a0 by Lemma 3.1(b). Since T is assumed to be (c0, S)-dominant, +c̃0

contains the set T−W0S, and hence also the convex hull of this set. But any point (w′S)∆′

represented in bound above lies in the convex hull of W0S, since it is the projection of a

vertex onto to subspace a∆′ of a0. It follows that T − (w′S)∆′ belongs to the closure of

+c̃0. On the other hand, c̃0 is the open cone generated by a linearly independent subset

of a0. It follows that there is a positive constant δ such that

(4.19) ‖X1 +X2‖ ≥ δ(‖X1‖+ ‖X2‖),

for any two vectors X1 and X2 in the closure of +ã0. We then deduce the inequality (4.1)

for T and S as before.

We can now follow the discussion prior to Lemma 4.1. We see that ‖JM (γT , f
S
1 )‖ is

bounded by the integral over m and ν of the product of ‖f‖n, (4.2), (4.3) and (4.4), and

a constant that depends only on n. We can assume that n is large. Then as we noted

earlier, the integral of (4.3) over m is bounded uniformly for γ in Γ, and the integral of

(4.4) over ν is finite. To deal with the points (w′S)∆′ represented in (4.2), we write

T − (w′S)∆′ = (T − S1) +
(
S1 − (w′S)∆′

)
,
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where S1 = w1S is the W0-translate of S that lies in the closure of +a0. The two vectors

on the right both belong to the closure +c0 of +c0. Moreover, the norm of T − S1 equals

the infimum dc0(T, S), since T and S1 both lie in ā+
0 . It follows from (4.19) that

‖T − (w′S)∆′‖ ≥ δ
(
‖T − S1‖+ ‖S1 − (w′S)∆′‖

)
≥ δdc0(T, S).

The function (4.2) is therefore bounded by a constant multiple of

(
1 + dc0(T, S)

)−n
.

Adjusting ‖ · ‖n by a multiplicative constant, we obtain the required estimate (4.17). �
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§5. Weighted virtual characters and spherical transforms

It remains for us to apply Lemma 4.3 to the desired limit (1.15). We shall do so in the

next section. More precisely, we shall compute the limit (4.15) of Lemma 4.3 in terms of

distributions that closely resemble the weighted characters (1.3). In this section we shall

collect various results and definitions needed for the application of Lemma 4.3. Among

other things, we shall discuss variants of weighted characters, and some relations of these

objects with spherical functions.

We begin with some remarks on the invariant Schwartz space I(G). This space (or

rather its analogue for L) is an essential part of the construction of the invariant dis-

tributions (1.4). However, the presence of reducible induced representations complicates

the description of I(G) as a Schwartz space of functions in Πtemp(G). The set Πtemp(G)

of course parametrizes the irreducible tempered characters {Θ(π)} on G(R). It is often

preferable to work with a second basis {Θ(τ)} of virtual characters, parametrized by the

set T (G) defined in [A9, §3]. We shall pause to review the properties of this basis, and the

corresponding modification of the mappings φL(f) in (1.4).

In this paper, we shall write Ttemp(G) for the set denoted T (G) in [A9], since the latter

set indexes tempered virtual characters. We reserve the symbol T (G) for a larger set that

indexes a basis of general virtual characters, and which may be described as follows. We

first recall that Ttemp(G) is a disjoint union

(5.1) Ttemp(G) =
∐
{M1}

(
Ttemp,ell(M1)/W (M1)

)
.

As earlier, {M1} is a set of representatives of G(R)-conjugacy classes of cuspidal Levi

subgroups of G, while Ttemp,ell(M1) denotes the set of elements τ ∈ Ttemp(M1) that are

elliptic, in the sense that Θ(τ) does not vanish on the regular elliptic set in M1(R). If ε

belongs to a∗G, we write Tε(G) for the set {τε} that indexes the (nontempered) characters

Θ(τε, x) = Θ(τ, x)eε(HG(x)), τ ∈ Ttemp(G), x ∈ Greg(R).
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We also write

Tell(G) =
∐

ε∈a∗
G

Tε,ell(G),

where Tε,ell(G) denotes the set of elliptic elements in Tε(G). Then T (G) is a disjoint union

(5.2) T (G) =
∐
{M1}

(
Tell(M1)/W (M1)

)
.

Each set Ttemp,ell(M1) on the right hand side of (5.1) may be interpreted as a disjoint

union of real affine spaces, the union of whose complexifications is the corresponding set

Tell(M) on the right hand side of (5.2). We can identify I(G) with a space of functions

fG(τ) = Θ(τ, f) =
∫

G(R)

Θ(τ, x)f(x)dx, f ∈ C(G), τ ∈ Ttemp(G),

on Ttemp(G). With this interpretation, I(G) becomes a direct sum of Schwartz spaces

[A11]. (More precisely, I(G) = IC(G) is a “rapidly decreasing” direct sum of Schwartz

spaces, with symmetry conditions defined by the action of the finite groups W (M1).)

We shall presently have reason to consider the Hecke algebra H(G) on G, in addition

to the Schwartz space C(G). We recall that H(G) = H(G,K) is the space of smooth, K-

finite functions of compact support on G(R). Clozel and Delorme [CD] have characterized

the image

IH(G) =
{
fG : f ∈ H(G)

}
of H(G) in I(G). As a space of functions on Ttemp(G), IH(G) is a direct sum of Paley-

Wiener spaces, defined by restriction to Ttemp(G) of functions of Paley-Wiener type [A9,

p. 93] on the complexification T (G). (More precisely, IH(G) is an algebraic direct sum of

Paley-Wiener spaces, with symmetry conditions defined by the action of the finite groups

W (M1).)

The invariant orbital integral (1.1) can be described as a function on Ttemp(G). From

the results of [He] or [A10], one obtains an expansion

(5.3) fG(γ) =
∫

Ttemp(G)

θG(γ, τ)fG(τ)dτ, f ∈ C(G),
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for a smooth tempered function

θG(γ, τ), τ ∈ Ttemp(G),

on Ttemp(G), and a natural measure dτ on Ttemp(G). (In [A10], (5.3) is the special case of

Theorem 4.1 in which M = G. In this case, the function

IG(γ, τ) = IG
G (γ, τ), τ ∈ Tdisc(L),

in the expansion [A10, (4.1)] is supported on the subset Tell(L), and (5.3) follows from

the decomposition of Ttemp(G) given by (5.1).) The function θG(γ, τ) in (5.3) satisfies the

formula

θG(γ, τλ) = e−λ(HG(γ))θG(γ, τ), λ ∈ ia∗G.

It therefore continues analytically to a tempered function on the space Tε(G), for any

ε ∈ a∗G.

If M is our fixed Levi subgroup, and I(M) is to be regarded as a space of functions

on Ttemp(M), we shall have to formulate the weighted character JM (·, f) = φM (f, ·) as a

Schwartz function on Ttemp(M). Let us first review the weighted character JM (π, f) of

(1.3), defined for a representation π ∈ Πtemp(M) as in [A12].

The (G,M)-family MG(ζ, π, P ) that goes into the construction (1.3) is defined by a

product

(5.4) JQ(ζ, π, P ) = mQ(ζ, π, P )MQ(ζ, π, P ), ζ ∈ ia∗M , Q ∈ P(M).

The left hand side is a (G,M)-family of operator valued functions

JQ(ζ, π, P ) = JQ|P (π)−1JQ|P (πζ)

on HP (π), in which

JQ|P (π) : HP (π) −→ HQ(π)
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is the standard (unnormalized) intertwining operator, defined for almost all π. The first

factor on the right hand side of (5.4) represents a (G,M)-family of scalar valued functions

mQ(ζ, π, P ) = mQ|P (π)−1mQ|P (π 1
2 ζ),

where

mQ|P (π) = µQ|P (π)−1

is the inverse of the partial µ-function

(5.5) µQ|P (π) =
(
JP |Q(π)JQ|P (π)

)−1
,

defined again for almost all π. The elements in both (G,M)-families extend to meromor-

phic functions of π ∈ Π(M). The number MM (π, P ) attached to the quotient (G,M)-

family {MQ(ζ, π, P )} is an analytic function of π ∈ Πtemp(M), any derivative of which

is slowly increasing. It follows that for any f ∈ C(G), JM (π, f) is a Schwartz function of

π ∈ Πtemp(M). (See [A12, §2].)

Suppose now that τ belongs to T (M). According to the definitions [A9], τ is an

M(R)-orbit of triplets

(Mτ , ρτ , rτ ),

where Mτ is a cuspidal Levi subgroup of M , ρτ belongs to the subset Πcusp(Mτ ) of rep-

resentations in Π(Mτ ) that are square integrable modulo Aτ = AMτ , and rτ lies in the

R-group RM (ρτ ) of τ relative to Mτ . For any parabolic subgroup Rτ ∈ PM (Mτ ), we form

the induced representation

π = IRτ
(ρτ )

of M(R). By normalizing the associated standard intertwining operators, we obtain a

representation

(5.6) w −→ R̃(w, ρτ ) = A(ρw
τ )Rw−1Rτ w|Rτ

(ρτ ), w ∈ RM (ρτ ),
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of RM (ρτ ) on HRτ (ρτ ) that commutes with IRτ (ρτ ). The operator

A(ρw
τ ) : Hw−1Rτ w(ρτ ) −→ Hρτ

(ρτ )

here is given by an extension ρw
τ of ρτ to the group Mw

τ (R) generated by Mτ (R) and (a

representative in K of) w, while Rw−1Rτ w|Rτ
(ρτ ) is the product of Jw−1Rτ w|Rτ

(ρτ ) with a

scalar normalizing factor. (See [A9, §2]. In retaining conventions from [A9], we are asking

the reader to tolerate some overlapping notation. In particular, we are using the symbol

R for the finite group RM (ρτ ), a parabolic subgroup Rτ , and the operator R̃(w, ρτ ).)

Assume now that τ belongs to the subset Ttemp(M) of T (M). Setting w = rτ , we

define the virtual character

fM (τ) = tr
(
R̃(rτ , ρτ )IP (π, f)

)
, f ∈ C(G),

where R̃(rτ , ρτ ) acts on the space HP (π) through its action on HRτ
(ρτ ). More generally,

the weighted character attached to τ is defined by

(5.7) JM (τ, f) = tr
(
R̃(rτ , ρτ )MM (π, P )IP (π, f)

)
.

We can then use the mappings

φM (f) : τ −→ φM (f, τ) = JM (τ, f)

(with L in place of M) in the definition (1.4).

It is actually a variant of (5.7) that will be the main term in our asymptotic formula for

JM (γT , fT ). We modify the right hand side of (5.7) by replacing the operator MM (π, P )

with a second operator

JM (π, P ) = lim
ζ→0

∑
Q∈P(M)

JQ(ζ, π, P )θQ(ζ)−1,

obtained from the (G,M)-family (5.4). The corresponding weighted character

(5.8) JP
M (τ, f) = tr

(
R̃(rτ , ρτ )JM (π, P )IP (π, f)

)
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is defined for any f ∈ H(G) as a meromorphic function of τ ∈ T (M). This will be our

variant of (5.7). Unlike its better behaved counterpart JM (τ, f), JP
M (τ, f) depends on the

choice of P , and could also have poles that lie in the tempered subspace Ttemp(M) of

T (M). (See [A12, §2].) However, if ε ∈ a∗M is in general position, JP
M (τ, f) is analytic for

any τ in the translate Tε(M) of Ttemp(M). In the next section we shall take ε = εP to be

any small point in the chamber (a∗P )+ of P in a∗M .

The weighted characters (5.8) are linear forms on the Hecke algebra H(G). Our goal

is to express the limit (1.15) in terms of these objects. However, the formula (4.13) we

have established applies to the spherical function fuT
1 = (FuT

1 )∨. We have therefore to

introduce spherical analogues of the distributions (5.8), in preparation for the calculations

of the next section. We shall then review the relations between Eisenstein integrals and

induced representations.

Let (τ, V ) be a unitary, finite dimensional, two-sided representation of K. For any

cuspidal Levi subgroup M1 of G, the usual (unnormalized) intertwining operators give rise

to linear operators

J`
Q1|P1

(λ1), Jr
Q1|P1

(λ1) : Acusp(M1, τ1)−→Acusp(M1, τ1), P1, Q1 ∈ P(M1),

that are meromorphic functions of λ1 ∈ a∗1,C. (See [A5, p. 13]. The superscripts ` and r

stand for “left” and “right”.) These operators have decompositions

J ι
Q1|P1

(λ1) =
⊕

π1∈Πcusp(M1)1

J ι
Q1|P1

(π1,λ1), ι = `, r,

into operators on the spaces Aπ1(M1, τ1). Our interest will be in the case that the super-

script ι equals r and that M1 is replaced by a subgroup Mu
1 of our fixed Levi subgroup

M . We can then write Mu
1 = MR, where R is a fixed parabolic subgroup in PM (Mu

1 ).

We also consider only those parabolic subgroups Qu
1 ∈ P(Mu

1 ) of the form Q(R), for some

Q ∈ P(M). By definition, Q(R) is the unique parabolic subgroup in P(MR) that is con-

tained in Q, and whose intersection with M equals R. If P ∈ P(M) is fixed and Λ belongs
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to a∗R,C, the product

J r,P
Q (ζ,Λ) = Jr

P (R)|Q(R)(−ζ + Λ)Jr
P (R)|Q(R)(Λ)−1, Q ∈ P(M),

is a (G,M)-family of functions of ζ ∈ ia∗M . The limit

J r,P
M (Λ) = lim

ζ→0

( ∑
Q∈P(M)

J r,P
Q (ζ,Λ)θQ(ζ)−1

)
therefore exists, and defines a meromorphic function of Λ with values in the space of linear

operators on Acusp(MR, τR). We shall compose J r,P
M (Λ) with the spherical analogue of an

operator (5.6).

Suppose that τ ∈ T (M) is represented by a triplet (Mτ , ρτ , rτ ), as above. (We are

now using the symbol τ to denote both a two-sided representation of K and an element in

T (M).) We take the Levi subgroup of M above to be equal to Mτ . Then Mτ = MR, for

a fixed parabolic subgroup R = Rτ of PM (Mτ ). We shall write

(5.9) ρτ = ρΛτ
, ρ ∈ Πcusp(MR)1, Λτ ∈ a∗R,C.

The spherical analogues of (5.6) require operators

Aι(ρw
τ ), ι = `, r, w ∈ RM (ρτ ),

on Aρ(MR, τR). Our chosen extension ρw
τ of the representation ρτ to the group

Mw
τ (R) = Mw

R (R) determines an extension of any matrix coefficient of ρτ to a func-

tion on Mw
τ (R). This allows us to identify elements in Aρ(MR, τR) with AR(R)0-invariant

functions from Mw
τ (R) to V . We define

(
A`(ρw

τ )ψ
)
(m) = τ(w̃)−1ψ(w̃m)

and (
Ar(ρw

τ )ψ
)
(m) = ψ(mw̃)τ(w̃)−1,
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for any ψ ∈ Aρ(MR, τR) and m ∈MR(R), where w̃ is a representative of w in K. We then

define the spherical analogues of (5.6) as products

R̃ι(w, ρτ ) = Aι(ρw
τ )Rι

w−1Rw|R(ρτ ), ι = `, r, w ∈ RM (ρτ ),

where the operators on the right are normalized by the same scalar factor used to define

the corresponding operator in (5.6).

The spherical analogue of (5.8) we shall use requires a preliminary word about the

invariant transform f → fM . If f belongs to C(G, τ), we define fM to be the Schwartz

function from Ttemp(M) to V obtained from the familiar scalar valued mapping from C(G)

to I(M). An obvious variant of this transform applies to cuspidal spherical functions on

a Levi subgroup M1. It is a mapping ψ → ψM1 that sends ψ ∈ Acusp(M1, τ1) to the

function ψM1 of finite support from Πcusp(M1)1 to V . In general, we shall write π∨ for

the contragredient of a given representation π. If π1 belongs to Πcusp(M1)1, ψM1(π
∨
1 ) is a

vector in V that depends only on the image of ψ in Aπ1(M1, τ1). If ψ1 actually belongs to

Aπ1(M1, τ1), the orthogonality relations for matrix coefficients of discrete series tell us that

the (V -valued) character ψM1(π
∨
1 ) equals d−1

π1
ψ(1). We can therefore write the projection

ψK
M1

(π∨1 ) of ψM1(π
∨
1 ) onto V K as

ψK
M1

(π1) = d−1
π1

∫
K

τ(k−1)ψ(1)τ(k)dk = d−1
π1
eK(ψ),

for the Eisenstein integral

eK(ψ) = EP1(1, ψ, 1), P1 ∈ P(M1).

If τ ∈ T (M) is represented by the triplet (Mτ , ρτ , rτ ) as above, we write τ∨ for the

element in T (M) represented by the triplet (Mτ , ρ
∨
τ , rτ ).

Lemma 5.1. Assume that τ lies in Ttemp(M), and that f belongs to C(G, τ). Then

fM (τ∨) = d−1
ρ eK

(
R̃ι(rτ , ρτ )f̂P (R)(Λτ )

)
, ι = `, r,

in the notation above.

73



Proof. Results of this kind are quite familiar, so we shall just sketch the proof. In

fact, we shall treat only the special case that Mτ = M , leaving the reader to check the

general case. The representation π = ρ then belongs to Πcusp(M)1, the point λ = Λτ

belongs to ia∗M , and rτ is trivial. According to the definition (2.1),

(
f̂P (λ), ψ

)
=

∫
G(R)

(
f(x), EP (x, ψ, λ)

)
dx

=
∫

G(R)

∫
K

(
f(x), τ(k−1)ψP (kx)

)
e(−λ+ρP )(HP (kx))dkdx

=
∫

G(R)

∫
K

(
τ(k)f(k−1x), ψP (x)

)
e(−λ+ρP )(HP (x))dkdx

=
∫

M(R)1

∫
aM

∫
NP (R)

(
f(m expHn), ψ(m)

)
e(−λ+ρP )(H)dndHdm,

for any ψ ∈ Aπ(M, τM ). We have used the fact that f is τ -spherical to remove the integral

over K in the third expression, and the implicit integral over K in the last expression. It

then follows from the orthogonality relations for the square integrable representation π∨

that the value of
(
f̂P (λ)

)K

M
at π∨ equals

∫
K

∫
M(R)1

∫
aM

∫
NP (R)

f(k−1m expHnk)Θ(π∨,m)e(−λ+ρP )(H)dndHdmdk,

where Θ(π∨, ·) is the character of π∨. This is just the value of the function fM ∈ C(M)⊗V

at the character of the representation (πλ)∨ of M(R). The required formula, in the special

case that Mτ = M , then follows from the remark preceding the lemma (with M1 = M).

�

It is clear that the formula of Lemma 5.1 remains valid for nontempered τ ∈ T (M),

if f belongs to the Hecke algebra. The spherical weighted characters we shall use in the

argument of the next section apply to this setting. They pertain to an analytic function

FP (R)(Λ) from a∗R,C to the space

Acusp(MR, τR) =
⊕

ρ∈Πcusp(MR)1

Aρ(MR, τR).
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The operator J r,P
M (Λ) acts on this space, and the product J r,P

M (Λ)FP (R)(Λ) becomes

a meromorphic function of Λ. Suppose that τ ∈ T (M) is represented by the triplet

(Mτ , ρτ , rτ ), with Mτ = MR as above. The operator R̃r(rτ , ρτ ) acts on the space

Aρ(MR, τR), where ρ is the restriction of ρτ to MR(R)1. We extend it to Acusp(MR, τR) by

defining it to be zero on the orthogonal complement of Aρ(MR, τR). We assume that the

triplet τ has the property that the image in a∗M of the real part of Λτ ∈ a∗R,C is in general

position. By the nature of the (G,M)-family from which J r,P
M (Λ) was constructed, this

function is analytic at Λ = Λτ . We define

(5.10) (J r,P
M FP (R))

∨,K
M (τ∨) = d−1

ρ eK
(
R̃r(rτ , ρτ )J r,P

M (Λτ )FP (R)(Λτ )
)
.

The notation we have chosen for the left hand side of this definition will be clearer when

we encounter the objects on the right hand side in §6.

The composition of an Eisenstein integral with a linear form on V is a linear com-

bination of matrix coefficients of induced representations. This is implicit in the original

definition. The relations between Eisenstein integrals and induced representations become

especially transparent for a particular choice of the two-sided representation τ .

Suppose that (σ1, V1) and (σ2, V2) are irreducible unitary representations of K. Let σ

be the two-sided representation of K on the space

Uσ = HomC(V2, V1)

given by

σ(k1)uσ(k2) = σ1(k1) ◦ u ◦ σ2(k2), k1, k2 ∈ K, u ∈ Uσ.

We take τ = τσ to be the two-sided representation of K on the space

V = Vσ = End(Uσ) = HomC(Uσ, Uσ),

defined by (
τ(k1)vτ(k2)

)
(u) = σ(k1)v(u)σ(k2), v ∈ V, u ∈ Uσ.
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Suppose that M1 is a cuspidal Levi subgroup, and that τ1 = τM1 denotes as usual the

restriction of the two-sided representation τ = τσ to KM1 . Suppose that P1 ∈ P(M1), and

that π1 is a representation in Πcusp(M1)1. The induced representation IP1(π1) acts on the

Hilbert space HP1(π1) of vector valued functions on K. For any irreducible representation

σ∗ of K, let HP1(π1)σ∗ be the finite dimensional subspace of functions in HP1(π1) that

transform under translation according to σ∗. Frobenius reciprocity can be used to describe

this space in terms of the restriction of π1 to KM1 . By combining the cases that σ∗ equals

σ1 and σ2, one constructs a canonical isomorphism from the vector space

Endσ

(
HP1(π1)

)
= HomC

(
HP1(π1)σ1 ,HP1(π1)σ2

)
onto the space Aπ1(M1, τ1), which we denote by

(5.11) S −→ ψ(S), S ∈ Endσ

(
HP1(π1)

)
.

(See [A5, §3]. This isomorphism is essentially the one defined by Harish-Chandra in [Ha5,

§7].)

The isomorphism satisfies the basic identity

(5.12) tr
(
IP1(π1, π1,λ1 , x)S

)
= tr

(
EP1(x, ψ(S), λ1)

)
, x ∈ G(R), λ1 ∈ a∗1,C,

where S is any operator in Endσ

(
HP1(π1)

)
. (See [A5, p. 21], [A1, Lemma I.5.2].) This ex-

presses the basic relation between Eisenstein integrals and induced representations. Other

identities apply to the intertwining operators discussed above. It follows from the various

definitions that

J`
Q1|P1

(λ1)ψ(S) = ψ
(
SJP1|Q1(π1, π1,λ1)

)
and

(5.13) Jr
Q1|P1

(λ1)ψ(S) = ψ
(
JQ1|P1(π1, π1,λ1)S

)
,
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for P1, Q1 ∈ P(M1) and λ1 ∈ a∗1,C. If M1 and P1 are specialized to the groups MR and

P (R) above, one uses these relations to derive further identities

R̃`(w, ρτ )ψ(S) = ψ
(
SR̃(w, ρτ )

)
and

(5.14) R̃r(w, ρτ )ψ(S) = ψ
(
R̃(w, ρτ )S

)
, w ∈ RM (ρτ ),

for the operators in (5.6).

We conclude this section with a corollary of Lemma 4.4, which pertains to the chamber

c0 ⊂ a+
0 of that lemma, and hence also parabolic subgroups P0 ∈ P(M0) and P ∈ P(M).

We shall use (5.12) to convert the uniform estimate (4.17) in τ to a pair of uniform estimates

in f ∈ C(G). Formulated in this generality, the corollary can be regarded as a first step

towards extending our results from H(G) to C(G).

Corollary 5.2. For any n ≥ 0, there is a continuous seminorm ‖ · ‖n on C(G) such that

(5.15) |JM (γT , f
S)| ≤ ‖f‖n

(
1 + dc0(T, S)

)−n

and

(5.16) |IM (γT , f
S)| ≤ ‖f‖n

(
1 + dc0(T, S)

)−n
,

for any γ ∈ Γ and f ∈ C(G), and any points T ∈ a+
P and S ∈ a1 such that T is (c0, S)-

dominant.

Proof. We can express f as a convergent sum

f =
∑

σ=(σ1,σ2)

fσ, σi ∈ Π(K),

where fσ transforms under right and left translation by K according to σ1 and σ2 respec-

tively. Since the sum is convergent in C(G), it would be enough to establish (5.15) for each
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of the components fσ ∈ C(G). We may therefore assume that f = fσ, for a fixed pair

σ = (σ1, σ2) of irreducible representations of K. We do so, writing τ = τσ in the notation

above.

By definition (1.12), the function fS depends only on the Fourier transform

f̂P1(π1,λ1) = IP1(π1,λ1 , f
∨), π1 ∈ Πcusp(M1)1, λ1 ∈ ia∗1,

of f . Since f̂P1(π1,λ1) lies in the space Endσ

(
HP1(π1)

)
, we can define

F1(λ1) =
⊕

π1∈Πcusp(M1)1

dπ1ψ
(
f̂P1(π1,λ1)

)
.

Then F1 is a Schwartz function from ia∗1 to the finite dimensional vector space

Acusp(M1, τ1). According to the definition (2.7) and its analogue for f̂S
P1

in §1, the func-

tions FS
1 and f̂S

P1
depend on S in the same way. It follows from (1.12) and (5.12) that

fS(x) = |W (M1)|−1

∫
ia∗1

∑
π1∈Πcusp(M1)1

tr
(
IP1(π1,λ1 , x)f̂

S
P1

(π1,λ1)
)
εP1(π1,λ1)dλ1

= |W (M1)|−1

∫
ia∗1

tr
(
EP1(x, µP1(λ1)FS

1 (λ1), λ1)
)
dλ1

= tr
(
(FS

1 )∨(x)
)
,

since the restriction of the operator dπ1µP1(λ1) to the space Aπ1(M1, τ1) equals the scalar

εP1(π1,λ1). The first estimate (5.15) then follows from Lemma 4.4.

To derive the second estimate (5.16) from the first, we shall need to be able to express

the function φL(fS) in terms of φL(f), for any L ∈ L(M). We note that any element

in M(G) factors to an endomorphism of I(G), since it acts through the infinitesimal

character. The multiplier f → fS for C(G) therefore factors to an endomorphism a→ aS

of I(G), with the property that (fS)G = (fG)S . However, it is not generally true that

φL(fS) equals φL(f)S (or even that φL(f)S is defined). The Fourier transform of fS is

supported on the G-conjugacy class of M1, while the cuspidal support of the function

φL(fS) is a finite family (possibly empty) of classes of Levi subgroups of L. To be precise,

let

M1,i = w̃iM1w̃
−1
i , wi ∈W0 = W (M0), 1 ≤ i ≤ k,
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be a set of representatives of L-conjugacy classes of Levi subgroups of L that lie in the

G-conjugacy class of M1. (Keep in mind that the assertions of the corollary are framed in

terms of a minimal Levi subgroup M0 that is contained in both M1 and M , and hence L

as well. It is perhaps also helpful to observe that

Mi = Mui
1 , ui = w−1

i,L,

in the notation of Corollary 1.2.) It then follows from the definition of the mappings

f → φL(f) and f → fS , and the symmetry condition

fS = |W (M1)|−1
∑

w∈W (M1)

fwS ,

that

(5.17) φL(fS) = |W (M1)|−1
∑
w

k∑
i=1

φL(f)wiwS .

(The sum over w insures that the symmetry condition is reflected in the functions

φL(f)Si , Si ∈ aM1,i.)

We assume inductively that (5.16) holds if G is replaced by a proper Levi subgroup

L ∈ L(M). It follows from the definitions prior to Lemma 4.4 that if T is (c0, S)-dominant

(relative to G), it is also (c0, wiwS)-dominant (relative to L), for any elements w and wi

in (5.16). Moreover, the distance function

dc0(T, S) = dG
c0

(T, S)

for G satisfies

dG
c0

(T, S) ≤ dL
c0

(T,wwiS).

The estimate (5.16) for G then follows from the definition (1.4), the first estimate (5.15),

and the fact that the mapping φL is continuous. �
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§6. The asymptotic formula

We are now ready to solve the problem posed at the end of §1. We shall convert what

we have already established into an asymptotic formula for the weighted orbital integrals

(1.2). This is our main task. Once we have completed it, we shall derive an asymptotic

formula for the invariant distributions (1.4).

The discussion of Sections 3 and 4 culminated in Lemma 4.3. This result applies to

a spherical function fuT
1 in C(G, τ), and gives an integral formula (4.16) for the limit of

JM (γT , f
uT
1 ). There are three further operations to be performed on the formula. We need

to evaluate the integral (4.16) in more explicit terms, we must sum u over U(M,M1) to

obtain the function fT , and we must then convert the resulting expression to a linear form

on C(G). We shall actually carry out the third operation only for functions f in the Hecke

algebra H(G). For any such f , the function fT is a K-finite Schwartz function, which

does not generally lie in H(G). However, its operator valued Fourier transform is entire, a

property that will be more than sufficient for our needs. As a matter of fact, the mapping

f → fT does lift to an endomorphism of the image IH(G) of H(G) in I(G), a fact that

follows from the characterization [CD] of IH(G).

We recall again that M , TM ⊂M , P ∈ P(M), and r > 0 were fixed in §2 and §3. We

shall evaluate the limit (1.15) in terms of the function θM (γ, τ) in (5.3) (with M in place

of G) and the linear form JP
M (τ, f) given by (5.8).

Theorem 6.1. Asume that f ∈ H(G), and that ε = εP is a small point in the chamber

(a∗P )+. Then

(6.1) lim
T−→

P,r
∞
JM (γT , fT ) =

∫
Tε(M)

θM (γ, τ)JP
M (τ, f)dτ,

uniformly for γ in the relatively compact subset Γ = TM,G-reg(R)C of TM (R).

Proof. There are two stages to the proof. The first is to convert the integral Φu
P (γ)

in Lemma 4.3 to an analogue for spherical functions of the right hand side of (6.1). The
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second is to derive (6.1) itself from the relations between Eisenstein integrals and induced

representations.

Lemma 4.3 applies to any two-sided representation (τ, V ) of K, and any Schwartz

function f1 ∈ C(G, τ) whose spherical transform {F1} is supported on the conjugacy class

of M1. We now make the assumption that the Schwartz function

F1 : ia∗1 −→ Acusp(M1, τ1)

extends to a holomorphic function of rapid decrease on a cylindrical neighbourhood of

ia∗1 in ia∗1,C. Recall that M1 is a cuspidal Levi subgroup of G, equipped with a parabolic

subgroup P1 ∈ P(M1) such that both P and P1 are standard with respect to a minimal

parabolic subgroup P0. The element u in (4.15) belongs to the set U(M,M1), and equals

the image w−1
M of an element w ∈W (P1;P ) under the mapping of Lemma 1.1.

Lemma 4.3 asserts that the limit of JM (γT , f
uT ) as T approaches infinity in ar

P equals

the integral Φu
P (γ) given by (4.16). Recall that the integrand Φu

P (m, ν; γ) in (4.16) is the

product of (4.8) and an integral (4.12) over Λ ∈ ia∗R. With our assumptions on F1,

Corollary 2.3 implies that the mapping

FR : ia∗R −→ Acusp(MR, τR),

defined for w as in (2.13), extends to a rapidly decreasing analytic function on a cylindrical

neighbourhood of ia∗R in ia∗R,C. The same is therefore true of the product µR(Λ)FR(Λ) in

(4.12), since µR(Λ) is analytic and slowly increasing. It follows from the definition (4.11)

that the integrand in (4.12) itself extends to a rapidly decreasing analytic function on a

cylindrical neighbourhood of ia∗R. This circumstance allows us to deform the contour of

integration over Λ in (4.12) from the space ia∗R to its translate (−εP + ia∗R) by the point

(−εP ).

The purpose of this change of contour is to allow an interchange of the integrals over

Λ and ν. Indeed, for any Λ in (−εP + ia∗R), the exponential factor in the value of (4.11)
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at x = m−1γmν is bounded by

e(−εP−ρP )(HM (γ)+HP̄ (ν)) = cγe
−(εP +ρP )(HP̄ (ν)),

where cγ is independent of ν. It follows from the general estimate [Ha3, Lemma 89] of

Harish-Chandra that the integral over ν of Φu
P (m, ν; γ) can be taken inside the integral

over Λ in the deformed contour. The factor vM (ν) in (4.12) is defined as in §1 by the

simple formula

lim
ζ→0

( ∑
Q∈P(M)

e−ζ(HQ(ν))θQ(ζ)−1
)
, ζ ∈ ia∗M .

The other factor in (4.12) can obviously be taken inside the limit in ζ and the finite sum

over Q. A second appeal to the estimate [Ha3, Lemma 89] tells us that the integral over ν

can also be taken inside these operations. It follows that the limit Φu
P (γ) of JM (γT , f

uT
1 )

can be expressed as the integral overm ∈ AM (R)\M(R), the integral over Λ ∈ (−εP +ia∗R),

the limit in ζ, and the sum over Q of the product of (4.8), |W (M1)|−1, θQ(ζ)−1, and

(6.2)
∫

NP (R)

EK
R,P̄

(
m−1γmν, µR(Λ)FR(Λ),Λ

)
e−ζ(HQ(ν))dν.

We need to express (6.2) in terms of intertwining operators.

We claim that for any elements y ∈M(R)1, ψ ∈ Acusp(MR, τR), and Λ ∈ (−εP + ia∗R),

the integral

(6.3)
∫

NP (R)

ER,P̄ (yν, ψ,Λ)e−ζ(HQ(ν))dν

equals

(6.4) ER

(
y, Jr

P (R)|Q(R)(−ζ + Λ)Jr
Q(R)|P̄ (R)(Λ)ψ,Λ

)
.

According to the definition (4.11), the integral (6.3) is a weighted average of the function

ER under right translation by NP (R). The Eisenstein integral ER is in turn a weighted

average of the function ψ under left translation by KM . These two operations commute.
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We can therefore study (6.3) in terms of the weighted average of ψ under right translation

by NP (R). One sees easily from this that it is enough to justify the claim in the special

case that MR = M . We shall do so, noting that Q(R) equals Q, and that the point λ = Λ

lies in (−εP + ia∗M ).

The required identity is a simple variant of the usual multiplicative property of inter-

twining operators, stated for example in [A5, (2.2)]. By definition [A5, §2],

(
JQ|P̄ (λ)ψ

)
(y) =

∫
NQ(R)∩NP (R)

ψP̄ ,λ(yv)dv, Q ∈ P(M),

where

ψP̄ ,λ(x) = ψ
(
mP̄ (x)

)
τ
(
kP̄ (x)

)
e(λ+ρP̄ )(HP̄ (x)), x ∈ G(R).

The covergence of the integral is assured by the fact that the real part of λ equals (−εP ).

We can therefore write(
Jr

P |Q(λ− ζ)Jr
Q|P̄ (λ)ψ

)
(y)

=
∫ (

Jr
Q|P̄ (λ)ψ

)
Q,λ−ζ

(yu)du

=
∫ (

Jr
Q|P̄ (λ)ψ

)(
ymQ(u)

)
τ
(
kQ(u)

)
e(λ−ζ+ρQ)(HQ(u))du

=
∫ ∫

ψP̄ ,λ

(
ymQ(u)v

)
τ
(
kQ(u)

)
e(λ−ζ+ρQ)(HQ(u))dvdu

=
∫ ∫

ψP̄ ,λ

(
yvmQ(u)

)
τ
(
kQ(u)

)
e(λ−ζ+ρQ)(HQ(u))dvdu,

where u and v are integrated over NP (R) ∩ NQ̄(R) and NQ(R) ∩ NP (R) respectively.

Appealing to the definitions and the appropriate changes of variable in the integrals, we

see that this in turn can be written as∫ ∫
ψP̄ ,λ

(
yaQ(u)vmQ(u)kQ(u)

)
e(ρQ−ρP̄−ζ)(HQ(u))dvdu

=
∫ ∫

ψP̄ ,λ

(
yvaQ(u)mQ(u)kQ(u)

)
e−ζ(HQ(u))dudv

=
∫ ∫

ψP̄ ,λ(yvu)e−ζ(HQ(u))dvdu

=
∫

NP (R)

ψP̄ ,λ(yν)e−ζ(HQ(ν))dν,
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since HQ(u) = HQ(vu). The last expression equals (6.3), in the special case that MR = M .

Since the original expression is just (6.4) in this case, we have justified the claim when

MR = M .

We thus have a general identity of (6.3) with (6.4). We can therefore calculate the

integral (6.2) by substituting y = m−1γm and ψ = µR(Λ)FR(Λ) into (6.4), and then taking

the projection onto V K . The point y actually lies in M(R) rather than M(R)1, but this

minor modification of the identity entails simply multiplying (6.4) by the quantity

e−ρP (HM (m−1γm)) = e−ρP (HM (γ)).

The vector ψ can be written as

µR(Λ)FR(Λ) = cR(1,Λ)−1cP (R)|P (R)(1,Λ)µP (R)(Λ)Fu
1 (Λ),

where

(6.5) Fu
1 (Λ) = 0cP u

1 |P1(w,w
−1Λ)F1(w−1Λ), u = w−1

M .

This follows from the definition (2.13), the formulas

0cP u
1 |P1(w,w

−1Λ) = cP u
1 |P

u
1
(1,Λ)−1cP u

1 |P1(w,w
−1Λ)

and

0cP u
1 |P1(w,w

−1Λ)µP1(w
−1Λ) = µP u

1
(Λ) 0cP u

1 |P1(w,w
−1Λ),

and the fact that Pu
1 = P (R). The coefficient of F1(w−1Λ) on the right hand side of (6.5),

as an operator valued function of Λ, is known to be a rational function, none of whose

singularities intersect ia∗R. It follows from our condition on F1 that Fu
1 (Λ) is a rapidly

decreasing analytic function on a cylindrical neighbourhood of ia∗R in a∗R,C with values in

Acusp(MR, τR).

Before we make the substitution into (6.4), let us rewrite the c and µ functions in the

formula

FR(Λ) =
(
cR(1,Λ)µR(Λ)

)−1(
cP (R)(1,Λ)µP (R)(Λ)

)
Fu

1 (Λ)
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in terms of intertwining operators. Following Harish-Chandra, we can write

cR(1,Λ)µR(Λ) = Jr
R̄|R(Λ) ·

(
Jr

R|R̄(Λ)Jr
R̄|R(Λ)

)−1 = Jr
R|R̄(Λ)−1.

(See [A5, §2].) Similarly, we have

cP (R)|P (R)(1,Λ)µP (R)(Λ) = Jr
P (R)|P̄ (R̄)(Λ)−1.

We then deduce that

Jr
R|R̄(Λ)Jr

P (R)|P̄ (R̄)(Λ)−1

= Jr
P̄ (R)|P̄ (R̄)(Λ)

(
Jr

P (R)|P̄ (R)(Λ)Jr
P̄ (R)|P̄ (R̄)(Λ)

)−1

= Jr
P (R)|P̄ (R)(Λ)−1

= Jr
Q(R)|P̄ (R)(Λ)−1Jr

P (R)|Q(R)(Λ)−1, Q ∈ P(M),

from the standard multiplicative and descent properties of unnormalized intertwining op-

erators. The µ-function µR(Λ) for R commutes with the operators Jr
P (R)|Q(R)(−ζ+Λ) and

Jr
Q(R)|P̄ (R)

(Λ) in (6.4). We conclude that the projection onto V K of the value of (6.4) at

y = m−1γm and ψ = µR(Λ)FR(Λ) is

(6.6) EK
R

(
m−1γm, µR(Λ)Jr

P (R)|Q(R)(−ζ + Λ)Jr
P (R)|Q(R)(Λ)−1Fu

1 (Λ),Λ
)
.

It is the product of this expression with e−ρP (HM (γ)) that is equal to (6.2). We have thus

obtained an expression for (6.2) in terms of intertwining operators. Observe that the factor

e−ρP (HM (γ)) by which (6.6) must be multiplied cancels the second factor in (4.8). This

leaves only the first factor |DM (γ)| 12 from (4.8).

We have shown that Φu
P (γ) equals the integral over m and Λ, the limit in ζ, and the

sum over Q of the product of |DM (γ)| 12 , |W (MR)|−1, θQ(ζ)−1 and (6.6). This becomes

the product of |DM (γ)| 12 with the integral over m ∈ AM (R)\M(R) of

|W (MR)|−1

∫
−εP +ia∗

R

EK
R

(
m−1γm, µR(Λ)J r,P

M (Λ)Fu
1 (Λ),Λ

)
dΛ,
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with J r,P
M (Λ) being the operator valued function defined in §5. Let us write

(J r,P
M Fu

1 )∨(y) = |WM (MR)|−1

∫
−εP +ia∗

R

ER

(
y, µR(Λ)J r,P

M (Λ)Fu
1 (Λ),Λ

)
dΛ,

for any point y ∈M(R). The function (J r,P
M Fu

1 )∨ need not be rapidly decreasing on M(R),

since the function J r,P
M (Λ) of Λ in the integrand could have poles that meet ia∗R. However,

its failure to be so is mild. To see this, we write the integral over (−εP + ia∗R) as a double

integral

(6.7)
∫

ia∗
R

/ia∗
M

( ∫
−εP +ia∗

M

ER

(
y, µR(Λ)J r,P

M (Λ + λ)Fu
1 (Λ + λ),Λ

)
eλ(HM (y))dλ

)
dΛ.

We then note that the integral over (ia∗R/ia
∗
M ) can be identified with an obvious variant of

the integral in (2.3) (with (G,P1, x) replaced by (M,R, y)). It follows that for any function

a ∈ C∞c (aM ), the product

α
(
HM (y)

)
(J r,P

M Fu
1 )∨(y), y ∈M(R),

belongs to C(M, τM ). Since any conjugacy class in M(R) projects to a point in aM , we

can form the invariant orbital integral

(6.8) (J r,P
M Fu

1 )∨,K
M (γ) = |DM (γ)| 12

∫
AM (R)\M(R)

(J r,P
M Fu

1 )∨,K(m−1γm)dm

of the function

(J r,P
M Fu

1 )∨,K = πK
(
(J r,P

M Fu
1 )∨

)
.

We conclude that

Φu
P (γ) = |WM (MR)||W (MR)|−1(J r,P

M Fu
1 )∨,K

M (γ).

Finally, we apply the expansion (5.3) to the V -valued orbital integral (6.8). More

precisely, we apply the relevant variant of (5.3), in which G is replaced by M and Ttemp(G)

is replaced by the set Ttemp(M)/ia∗M of ia∗M -orbits in Ttemp(M), to the orbital integral of
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the function defined by the outer integral in (6.7). This gives rise to a double integral of

a function on the set

{
τλ : τ ∈ Ttemp(M)/ia∗M , λ ∈ (−εP + ia∗M )

}
.

Notice that the symbol (J r,P
M Fu

1 )∨,K at this point represents two different objects, the

function on MR(R) above and the function on the right hand side of (5.10). However, an

appeal to Lemma 5.1 tells us that the two objects are in fact compatible. Let us write

Tu
ε (M) for the set of elements τ ∈ Tε(M) that can be represented by a triplet (Mτ , ρτ , rτ )

with Mτ = Mu
1 . We set ε = εP , as in the statement of the theorem. The orbital integral

(6.8) then has an expansion

(6.9)
∫

T u
−ε

(M)

θM (γ, τ∨)d−1
ρ eK

(
R̃r(rτ , ρτ )J r,P

M (Λτ )Fu
1 (Λτ )

)
dτ,

in the notation of (5.10). It follows that Φu
P (γ) equals the product of

|WM (MR)||W (MR)|−1

with (6.9). This completes the first stage of the proof.

The second stage of the proof applies to the given function f ∈ H(G). We have an

expansion

f =
∑

σ=(σ1,σ2)

fσ, σi ∈ Π(K),

as in the proof of Corollary 5.2, which is finite in this case since f itself is K-finite. We

need only establish Theorem 6.1 for each of the components fσ ∈ H(G). We can therefore

assume that f = fσ, for a fixed pair σ = (σ1, σ2) of irreducible representations of K.

As a Schwartz function, f satisfies the Fourier inversion formula (1.11). It is thus a

finite sum of functions (f̂P1)
∨, where

f̂P1(π1,λ1) = IP1(π1,λ1 , f
∨), π1 ∈ Πcusp(M1)1, λ1 ∈ ia∗1,
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for a Levi subgroup M1 and a parabolic subgroup P1 ∈ P(M1). The fact that f lies in

H(G) implies that each Schwartz function

λ1 −→ f̂P1(π1,λ1)

extends to an entire function on a∗1,C of Paley-Wiener type. This is actually more than we

require. We need only assume that f ∈ C(G) is such that for each M1 and π1, f̂P1(π1,λ1)

extends to an analytic function of rapid decrease on a cylindrical neighbourhood of ia∗1.

In particular, the right hand side of the putative limit (6.1) remains well defined under

this condition. The weaker condition on f remains in force if f is replaced by any of the

components (f̂P1)
∨. It would therefore be enough to prove the theorem in the special case

that f has a single component (f̂P1)
∨.

We therefore assume that the function f = fσ equals (f̂P1)
∨, for a fixed Levi subgroup

M1. We set τ = τσ and

(6.10) F1(λ1) =
⊕

π1∈Πcusp(M1)1

dπ1ψ
(
f̂P1(π1,λ1)

)
,

as in the proof of Corollary 5.2. Then F1 is an analytic function of rapid decrease on a

cylindrical neighbourhood of ia∗1 in a∗1,C, with values in the finite dimensional vector space

Acusp(M1, τ1). Following the proof of Corollary 5.2, we use (1.12) and (5.12) to deduce

that

fuT (x) = tr
(
(FuT

1 )∨(x)
)
, x ∈ G(R),

for any element u ∈ U(M,M1). Since the noninvariant Fourier transform of f is supported

on the conjugacy class of M1, we conclude that

(6.11) lim
T−→

P,r
∞

(
JM (γT , fT )

)
=

∑
u∈U(M,M1)

(
lim

T−→
P,r

∞
tr

(
JM

(
γT , (FuT

1 )∨
)))

.

It remains only to apply the limit formula we obtained in the first stage of the proof to

the summands on the right.
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We fix an element u ∈ U(M,M1), and adopt the notation of the earlier part of the

proof. The function

FP (R)(Λ) = Fu
1 (Λ), Λ ∈ a∗R,C,

is defined in terms of F1 by the relation (6.5). The Fourier transform f̂ of f automatically

satisfies a parallel symmetry condition, which can be related to that of (6.5) by (5.13) and

[A5, (2.15)]. It follows from (6.10) that

FP (R)(Λ) =
⊕

ρ∈Πcusp(MR)1

dρψ
(
f̂P (R)(ρΛ)

)
.

Suppose that ρ lies in Πcusp(MR)1. We shall write

S : Aρ(MR, τR) ∼−→ Endσ

(
HP (R)(ρ)

)
for the inverse of the mapping ψ in (5.11). If ψρ is any vector inAρ(MR, τR) and ψ̃ρ = dρψρ,

we have

tr
(
d−1

ρ eK(ψ̃ρ)
)

= tr
(
eK(ψρ)

)
= tr

(
EP (R)(1, ψρ, 1)

)
= tr

(
S(ψρ)

)
,

by (5.12). We will substitute this formula, with

ψ̃ρ = R̃r(rτ , ρτ )J r,P
M (Λτ )FP (R)(Λτ ), τ ∈ Tu

−ε(M),

into the expansion (6.9).

As usual, the given element τ ∈ Tu
−ε(M) is represented by the triplet (Mτ , ρτ , rτ ),

while ρ and Λτ are as in (5.9). The corresponding function ψ̃ρ depends only on the

projection of FP (R)(Λτ ) onto Aρ(MR, τR). Since this projection equals the product of dρ

with the function

ψ
(
f̂P (R)(ρτ )

)
= ψ

(
IP (R)(ρτ , f

∨)
)
,

we see that

ψρ = R̃r(rτ , ρτ )J r,P
M (Λτ )ψ

(
IP (R)(ρτ , f

∨)
)
.
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In order to describe S(ψρ), we write π for the induced representation IRτ (ρτ ) = IRτ (ρΛτ ),

as in (5.8). It then follows from (5.13), [A10, (R.5)], and the various definitions that

J r,P
M (Λτ )ψ

(
IP (R)(ρτ , f

∨)
)

= lim
ζ→0

∑
Q∈P(M)

(
Jr

P (R)|Q(R)(−ζ + Λτ )Jr
P (R)|Q(R)(Λτ )−1θQ(ζ)−1

)
ψ

(
IP (π, f∨)

)
= lim

ζ

∑
Q

ψ
(
JP |Q(π−ζ)JP |Q(π)−1IP (π, f∨)

)
θQ(ζ)−1

= lim
ζ

∑
Q

ψ
(
JQ|P (π∨ζ )∨

(
JQ|P (π∨)−1

)∨IP (π∨, f)∨
)
θQ(ζ)−1

= lim
ζ

∑
Q

ψ
((
IP (π∨, f)JQ|P (π∨)−1JQ|P (π∨ζ )

)∨)
θQ(ζ)−1

= ψ
((
IP (π∨, f)JM (π∨, P )

)∨)
.

We have identified the representation IP (π∨) here with the contragredient of IP (π), so

that IP (π, f∨) equals the transpose IP (π∨, f)∨ of the operator IP (π∨, f). It follows from

(5.14) that
ψρ = R̃r(rτ , ρτ )ψ

((
IP (π∨, f)JM (π∨, P )

)∨)
= ψ

(
R̃(rτ , ρτ )

(
IP (π∨, f)JM (π∨, P )

)∨)
= ψ

((
IP (π∨, f)JM (π∨, P )R̃(rτ , ρ∨τ )

)∨)
,

since R̃(rτ , ρτ ) is the transpose of the operator R̃(rτ , ρ∨τ ). We conclude that

S(ψρ) =
(
IP (π∨, f)JM (π∨, P )R̃(rτ , ρ∨τ )

)∨
.

We have now established that

tr
(
d−1

ρ eK(ψ̃ρ)
)

= tr
(
S(ψρ)

)
= tr

(
IP (π∨, f)JM (π∨, P )R̃(rτ , ρ∨τ )

)
.

The last expression in turn can be written as

tr
(
R̃(rτ , ρ∨τ )IP (π∨, f)JM (π∨, P )

)
=tr

(
IP (π∨, f)R̃(rτ , ρ∨τ )JM (π∨, P )

)
=tr

(
R̃(rτ , ρ∨τ )JM (π∨, P )IP (π∨, f)

)
= JP

M (τ∨, f),
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by definition (5.8). This gives us a formula for the trace of the integrand in (6.9). Making

the substitution into (6.9), we see that the trace of (6.9) itself equals∫
T u
−ε

(M)

θ(γ, τ∨)JP
M (τ∨, f)dτ.

But τ → τ∨ is a measure preserving bijection from Tu
−ε(M) to Tu

ε (M). We conclude from

the first part of the proof that

tr
(
Φu

P (γ)
)

= |WM (MR)||W (MR)|−1

∫
T u

ε (M)

θM (γ, τ)JP
M (τ, f)dτ.

We remind ourselves again that the vectors Φu
P (γ) and eK(·) in (6.9) are now endomor-

phisms, by virtue of our choice τ = τσ, and therefore do have traces.

Our aim in calculating the trace of Φu
P (γ) has of course been to be able to apply

Lemma 4.3. Combining Lemma 4.3 with (6.11) and our formula for the trace of Φu
P (γ),

we find that for our given function f , the limit

lim
T−→

P,r
∞
JM (γT , fT )

equals ∑
u∈U(M,M1)

|WM (MR)||W (MR)|−1

∫
T u

ε (M)

θM (γ, τ)JP
M (τ, f)dτ,

uniformly for γ ∈ Γ. The set Tu
ε (M) depends only on the Levi subgroup Mu

1 = MR of M .

We can therefore apply the fibration u→Mu
1 of Lemma 1.2 to the sum over u. The limit

can thus be written as ∑
{Mu

1 }

∫
T u

ε (M)

θM (γ, τ)JP
M (τ, f)dτ,

where {Mu
1 } varies over WM

0 -orbits of Levi subgroups of M . Finally, our choice of f is

such that the function

JP
M (τ, f), τ ∈ Tε(M),

vanishes unless τ belongs to one of the subsets Tu
ε (M) of Tε(M). It follows that the limit

equals the right hand side of (6.1). The limit formula (6.1) thus holds, and is uniform for

γ in the relatively compact set Γ. �
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We have established our asymptotic formula for weighted orbital integrals. Our ul-

timate aim, to be addressed in the paper [A13], is to compare distributions on different

groups. For this, we require a parallel asymptotic formula for the associated invariant

distributions.

In §5, we introduced a (G,M)-family

mQ(ζ, π, P ) = µQ|P (π)µQ|P (π 1
2 ζ)

−1, Q ∈ P(M), ζ ∈ ia∗M ,

of meromorphic functions of π ∈ Π(M). The functions in this family are analytic at any

representation in the set

Πε(M) =
{
πε : π ∈ Πtemp(M), ε = εP

}
.

Suppose that τ ∈ Tε(M) is represented by a triplet (Mτ , ρτ , rτ ). The induced repre-

sentation π = IRτ
(ρτ ) of M(R) introduced in §5 is a finite direct sum of irreducible

representations πα ∈ Πε(M). The functions

mQ(ζ, τ, P ) = mQ(ζ, π, P ) = mQ(ζ, πα, P )

then depend only on π, and hence τ , rather than the constituent πα of π. They give rise

to a slowly increasing function

mM (τ, P ) = lim
ζ→0

∑
Q∈P(M)

mQ(ζ, τ, P )θQ(ζ)−1

of τ . Let us write

(6.12) IP
M (τ, f) = tr

(
mM (τ, P )IP (τ, f)

)
= mM (τ, P )fM (τ),

for any function f ∈ H(G).

Corollary 6.2. Suppose that f ∈ H(G) and ε = εP are as in the statement of the theorem.

Then

(6.13) lim
T−→

P,r
∞
IM (γT , fT ) =

∫
Tε(M)

θM (γ, τ)IP
M (τ, f)dτ,
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uniformly for γ in the relatively compact subset Γ = TM,G-reg(R)C of TM (R).

Proof. We shall apply the definition (1.4) to the limit formula (6.1) we have just

established. The left hand side of (6.1) equals the sum of the limit on the left hand side

of (6.13) with the sum over L ∈ L(M), L 6= G, of the limits

(6.14) lim
T−→

P,r
∞
ÎL

M

(
γT , φL(fT )

)
.

We shall apply the formula (6.13) inductively to (6.14).

We first write

ÎL
M

(
γT , φL(fT )

)
=

∑
{M1}

∑
u∈U(M,M1)

ÎL
M

(
γT , φL(fuT )

)
,

where {M1} = {M1}G as usual denotes a set of representatives of G(R)-conjugacy classes of

Levi subgroups M1 of G. The group W (M1) acts by left translation on the set U(M,M1) =

UG(M,M1). It follows from the identity (5.17) obtained in the proof of Corollary 5.2 that

∑
{M1}

∑
u

φL(fuT ) =
∑
{M1}

∑
u

k∑
i=1

φL(f)wiuT ,

for any L ∈ L(M). We recall that i indexes a set of representatives M1,i = w̃iM1w̃
−1
i of

the L-conjugacy classes of Levi subgroups of L that lie in the G-conjugacy class of M1. For

any i, the mapping u → wiu is a bijection from UG(M,M1) to UG(M,M1,i). Changing

notation, we can therefore write

ÎL
M

(
γT , φL(fT )

)
=

∑
{M1}L

∑
u∈UG(M,M1)

ÎL
M

(
γT , φL(f)uT

)
.

Consider a summand in which u lies in the complement of UL(M,M1) in UG(M,M1). We

shall estimate it by the inequality (5.16) of Corollary 5.2, with L in place of G, and the

chamber a+
0 ⊂ a+

L∩P0
in place of the cone c0 ⊂ a+

0 . The point T is certainly (a+
0 , uT )-

dominant (relative to L), while the corresponding distance function satisfies

lim
T−→

P,r
∞
dL

a+
0
(T, uT ) = 0.
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It follows from (5.16) that

lim
T−→

P,r
∞
ÎL

M

(
γT , φL(f)uT

)
= 0,

for any u in the complement of UL(M,M1) of UG(M,M1). We see therefore that

lim
T−→

P,r
∞
ÎL

M

(
γT , φL(fT )

)
= lim

T−→
P,r

∞

∑
{M1}L

∑
u∈UL(M,M1)

ÎL
M

(
γT , φL(f)uT

)
= lim

T−→
P,r

∞
ÎL

M

(
γT , φL(f)T

)
.

A small technical complication arises when we apply (6.13) inductively to the last

formula for (6.14). The point is that the mapping φL does not take the space H(G) into

IH(L). However, φL does not map the slightly larger space Hac(G), introduced in [A6], to

its invariant analogue IHac(L) for L. An element in IHac(L) can be regarded as a smooth

function φL on Ttemp(L)× aL that satisfies

φL(τλ, X) = eλ(X)φL(τ,X), λ ∈ ia∗L, X ∈ aL,

and which as a function τ , belongs to the ia∗L-invariant Paley-Wiener space on Ttemp(L).

The distributions JM (γT , fT ) and IM (γT , fT ) each depend only on the restriction of f to

the closed subset

G(R)HG(γ) =
{
x ∈ G(R) : HG(x) = HG(γ)

}
of G(R). For example, the right hand side of the putative formula (6.13) can be written

∫
Tε(M)/ia∗

G

θM (γ, τ)mM (τ, P )fG

(
τ,HG(γ)

)
dτ,

where Tε(M)/ia∗G is the space of ia∗G-orbits in Tε(M), and fG

(
τ,HG(γ)

)
is the integral over

G(R)HG(γ) of the product of f with the virtual character induced from τ . This expression

makes sense if f is replaced by a function in Hac(G). The resulting modification of (6.13)
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can be applied inductively to the function φL(f) in IHac(L), and holds uniformly for γ in

Γ. This leads to an expression∫
Tε(M)/ia∗

L

θM (γ, τ)mM (τ, P ∩ L)φL

(
f, τL,HL(γ)

)
dτ

for the limit (6.14). But φL

(
f, τL,HL(γ)

)
is equal to the integral

JL

(
τL,HL(γ), f

)
=

∫
ia∗

L

JL(τL
λ , f)e−λ(HL(γ))dλ.

It follows from Fourier inversion on the group aL that (6.14) equals∫
Tε(M)

θL
M (γ, τ)mM (τ, P ∩ L)JL(τL, f)dτ.

Let us now add the right hand side of (6.13) to the sum over L 6= G of (6.14). This

yields an expression

(6.15)
∑

L∈L(M)

∫
Tε(M)

θM (γ, τ)mM (τ, P ∩ L)JL(τL, f)dτ.

Applying the usual formula [A3, Lemma 6.3] to the product (5.4) of (G,M)-families, we

see from the definitions (5.7) and (5.8) that

∑
L∈L(M)

mM (τ, P ∩ L)JL(τL, f) = JP
M (τ, f).

It follows that (6.15) equals the right hand side of (6.1). The point of Theorem 6.1 was of

course to establish the equality of the left and right hand sides of (6.1). Given what we

have just proved, this yields the equality of the left and right hand sides of (6.13). The

limit formula (6.13) thus holds, and is uniform for γ in the relatively compact set Γ. �

We have completed the proof of our two asymptotic formulas. The invariant formula

(6.13) of Corollary 6.2 is the result we shall use in the next paper [A13]. We have established

it in the form most suitable for application, rather than aim for optimal generality. There

are three ways in which it could be extended. We shall discuss these in turn, limiting

ourselves in each case to a few sketchy remarks.
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We have taken the torus TM in M to be elliptic. This is a superficial constraint,

imposed only to insure that the set Γ = TM,G-reg(R)C be relatively compact in TM (R).

Suppose that T1 is an arbitrary maximal torus in M over R, and that Γ1 is any subset of

T1,G-reg(R) that is relatively compact in T1(R). The proof of (6.13) we have established

for elliptic TM over the course of the paper works also for T1 and Γ1, with only occasional

changes in notation. Alternatively, one can apply formulas of descent ([A7, Proposition

7.1], [A7, Theorem 8.1]) to reduce the general form of (6.13) to the elliptic case.

We have taken f to be a function in the Hecke algebra. This constraint is more

substantial. There are two steps to be taken in order to obtain a formula that applies to

f in the Schwartz space. The first would be to show that the limit on the left hand side

of (6.13) exists uniformly for f ∈ C(G). The second would be to transform the right hand

side of (6.13) to a tempered linear form in f . Together, they would yield a version of (6.13)

that applies to any f ∈ C(G).

For the first step, it would be necessary to strengthen Lemma 4.3. One would need a

uniform estimate for the limit (4.15) of this lemma that is similar to the estimate (4.17)

of Lemma 4.4. More precisely, one would want to prove the existence of a continuous

seminorm ‖ · ‖1 on C(G) and a positive function c(T ) that approaches 0 as T approaches

infinity in ar
P such that

‖JM (γT , f
uT
1 )− Φu

P (γ)‖ ≤ c(T )‖f1‖, f1 = F∨, u ∈ U(M,M1),

for any (τ, V ), γ ∈ Γ, T ∈ ar
P , and any F ∈ C

(
ia1,Acusp(M1, τ1)

)
that satisfies the

symmetry condition (2.2). (The seminorms ‖ · ‖ and ‖ · ‖1 on each side of this inequality

are meant to follow the conventions of their counterparts in (4.17).) An estimate of this

nature ought to be accessible with a more detailed analysis of the arguments of §2–§4. It

would serve as a companion to the uniform estimate of Lemma 4.4. Together with the

consequence Corollary 5.2 of Lemma 4.4, it would likely yield a proof that the limit on the

left hand side of (6.13) exists uniformly for f ∈ C(G).
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For the second step, we would need to transform the contour of integration on the

right hand side of (6.13). The function τ → mM (τ, P ) in (6.13) has poles of order 1 at

certain singular hyperplanes in Ttemp(M). A deformation of the contour of integration

from Tε(M) to Ttemp(M) would consequently lead to multidimensional residues, thereby

contributing a sum of integrals over subsets of Ttemp(M) of lesser dimension. I have not

analyzed the combinatorics of the process. They are probably simpler than those of the

derivation of the spectral side of the local trace formula, but they also seem to be slightly

different.

The local trace formula incidentally is relevant to the topics of this paper. I was not

able to use it to simplify any of the arguments here. However, a tempered formulation of

(6.13) would have features in common with [A10, (4.1)], a formula obtained directly from

the local trace formula. We recall that [A10, (4.1)] gives qualitative description for the

Fourier transform of IM (γ, f). If for no other reason, it would be worthwhile to carry out

the change of contour in (6.13) in order to be able to compare the structure of the resulting

formula with that of [A10, (4.1)]. Such a comparison might give new interpretations for

the coefficients i(τ) [A10, p. 182] that occur in both the local and global trace formulas.

Finally, we have taken the underlying field to be the real numbers. It would have been

quite feasible to work with an arbitrary local field F of characteristic 0 instead of R. Our

reason for not doing so is twofold. First of all, the application in [A13] uses differential

equations, and therefore works only for real groups. Secondly, the p-adic case seems to

merit closer inspection. Recall that Harish-Chandra’s asymptotic estimates for Eisenstein

integrals are simpler for p-adic groups. For example, a supercuspidal Eisenstein integral is

actually equal to its constant term in some asymptotic region. Do such properties extend

to the asymptotic formulas of this paper? An affirmative answer could conceivably have

implications for the local trace formula. Suppose that one chooses the two test functions

in the local trace formula to be unramified. The spectral side takes its usual simple form,

while the geometric side becomes a sum over Levi subgroups of inner products of unramified
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weighted orbital integrals. Suitable asymptotic formulas might allow one to compute some

of the terms in these inner products.
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