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Abstract. We shall summarize two different lectures that were presented
on Beyond Endoscopy, the proposal of Langlands to apply the trace
formula to the principle of functoriality. We also include an elemen-
tary description of functoriality, and in the last section, some general
reflections on where the study of Beyond Endoscopy might be leading.

Mathematics Subject Classification (2010). Primary 22E55, 11F66; Sec-
ondary 22E50.

Keywords. Functoriality, automorphic L-functions, trace formulas, Be-
yond Endoscopy, cuspidal automorphic representations.

Contents

Foreword 1
1. The principle of functoriality 2
2. The trace formula 5
3. A stratification 9
4. Further thoughts 14
References 18

Foreword

This note is a summary of the Simons Symposium lecture from April 2016,
and a lecture a month later at Luminy. We have added some further reflections
in Section 4, and an elementary description of functoriality in Section 1. The
topic is Beyond Endoscopy, the proposal of Langlands for using the trace
formula to attack the general principle of functoriality. Our discussion here
will be brief and largely expository. We refer the reader to the original papers
[L4], [FLN] and [L5] of Langlands (partly in collaboration with Frenkel and
Ngo) for details, and to the expository parts of the articles [Ar4] and [Ar5]
for more expansive discussion.
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1. The principle of functoriality

The principle of functoriality was introduced by Langlands as a series of con-
jectures in his original article [L1]. Despite the fact it is now almost fifty years
old, and that it has been the topic of various expository articles, functoriality
is still not widely known among mathematicians. In our attempt to give an
elementary introduction, we shall describe the central core of functoriality, its
assertion for the unramified components of automorphic representations. One
could in fact argue that the other assertions of functoriality, both local and
global, should be treated as postulates for the separate theory of endoscopy.

Because our goal is only to give some sense of the basic ideas, we shall
not aim for complete generality. In particular, we shall work until Section 4
over the ground field of rational numbers Q, rather than an arbitrary number
field. We take G to be a connected, quasisplit reductive group over Q. Then
G comes with its L-group

LG = Ĝo Gal(E/Q),

where Ĝ is the complex connected dual group of G, and E/Q is any suitable
finite Galois extension through which the canonical action of the Galois group
Gal(Q/Q) on Ĝ factors. For example, we could take G = G(n) = GL(n+ 1),
the general linear group of semisimple rank n over Q. Since G is split in this
case, the action of Gal(Q/Q) on Ĝ = GL(n+ 1,Q) is trivial. We are therefore
free to take E = Q, and

LG = Ĝ = GL(n+ 1,C).

We define an automorphic representation π of G to be an irreducible,
unitary representation π of G(A) that “occurs in” the decomposition of the
unitary representation of G(A), the group of adelic points in G, by right
translation on L2(G(Q) \G(A)). This is an informal definition, which is not
completely precise (because L2(G(Q) \ G(A)) generally has a continuous
spectrum), and somewhat restrictive (since the general definition allows for
nonunitary extensions of the relevant parameters to the complex domain).
(See [L2].) We recall that π is a (restricted) tensor product

π =
⊗
v

πv,

where v ∈ {v∞ = vR, v = vp (p prime)} ranges over the completions of Q, and
πv is an irreducible unitary representation of G(Qv). Because π comes with an
implicit condition of weak continuity, πv is unramified for almost all v. This
means that πv = πvp = πp is determined by a concrete character of induction,

represented by a semisimple conjugacy class c(πp) in LG whose image in
Gal(E/Q) equals the Frobenius class Fp. The automorphic representation
thus comes with a family

c(π) = cS(π) = {cp(π) = c(πp) : p /∈ S}
of semisimple conjugacy classes in LG, where S is a finite set of valuations
that contains the archimedean place ∞.
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The family c(π) of semisimple conjugacy classes attached to π is a con-
crete set of data that is in large part the reason why we are interested in
automorphic representations. It is believed to govern some of the fundamental
workings of the arithmetic world. In recognition of this possibility, and in anal-
ogy with the L-functions Artin had earlier attached to the finite dimensional
representations of a finite Galois group, Langlands was led in [L1] to define
an automorphic L-function. To do so, one would want to have a family of
conjugacy classes in a general linear group GL(N,C), rather than the complex
(disconnected) group LG. An automorphic L-function therefore requires the
datum of a finite dimensional representation

r : LG→ GL(N,C),

as well as an automorphic representation π of G. It is defined in terms of the
characteristic polynomials of the semisimple conjugacy classes r(cv(π)) by an
Euler product

LS(s, π, r) =
∏
p/∈S

Lp(s, π, r) =
∏
p/∈S

det(1− r(cp(π))p−s)−1,

which converges for the real part <(s) of s ∈ C in some right half plane.
Langlands conjectured that for any π and r, the L-function LS(s, π, r)

has analytic continuation to a meromorphic function of s in the complex
plane (with an implicit understanding that the poles and residues could be
determined explicitly), and a functional equation that relates its values at s
and (1− s). His definitions actually presupposed supplementary local factors
Lv(s, π, r) = L(s, πv, r) at the places v /∈ S, with the expectation that the
Euler product over all v would satisfy a particularly simple functional equation.
However, the unramified L-function LS(s, π, r) remains the most important
component, since it is built out of the family cS(π) of conjugacy classes that
contains the fundamental arithmetic data.

The principle of functoriality can be regarded as an identity between
automorphic L-functions for two groups. Suppose that G′ is a second connected
quasisplit group over Q, and that ρ is an L-homomorphism from LG′ to LG,
which is to say a commutative diagram

LG′ LG

Gal(E/Q)

ρ

.

Functoriality asserts that for every automorphic representation π′ of G′, there
is an automorphic representation π of G such that

LS(s, π, r) = LS(s, π′, r ◦ ρ),

for every r. This is essentially the condition

cp(π) = ρ(cp(π
′)), (1.1)
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on the two families of conjugacy classes. Langlands actually introduced func-
toriality more generally for inner twists of quasisplit groups (or in other words,
for arbitrary connected reductive groups), and also for the ramified places
v ∈ S. However, these supplementary assertions are more complex, and are
now seen as part of the theory of endoscopy. The assertion (1.1) can therefore
be regarded as the essence of functoriality.

In addition to defining automorphic L-functions and introducing the
principle of functoriality (before it was so named), Langlands sketched the
following four applications in his seminal paper [L1].

(i) Analytic continuation and functional equation: Langlands pointed out
that the analytic continuation and functional equation for a general
automorphic L-function would follow from functoriality and the special
case that G = GL(N) and r = StN , the standard N -dimensional rep-
resentation of GL(N). This special case (at least for cuspidal π) was
established soon afterwards by Godement and Jacquet [GJ].

(ii) Artin L-functions: We have noted that quasisplit groups are the natural
setting for functoriality. The Galois factor Gal(E/Q) is then an essential
part of the L-group LG. In particular, the construction naturally includes
the seemingly trivial case that G is the 1-element group {1}. Its L-group
will then be an arbitrary finite Galois group Gal(E/Q), while r becomes
simply an N -dimensional representation of Gal(E/Q). The associated
automorphic L-function L(s, π, r) (with π being of course the trivial
1-dimensional automorphic representation of G) is then just the general
Artin L-function LS(s, r). The principle of functoriality can thus be
interpreted as an identity

LS(s, r) = LS(s, π, StN ) (1.2)

between a general Artin L-function and a standard automorphic L-
function for GL(N). This represents a general and completely unexpected
formulation of nonabelian class field theory. It identifies purely arith-
metic objects, Artin L-functions, with objects associated with harmonic
analysis, automorphic L-functions, thereby proving that the arithmetic
L-functions have analytic continuation and functional equation (and
with control over their poles). Abelian class field theory amounts to the
special case that the dimension N of r equals 1. Its original aim was to
establish that abelian Artin L-functions are the Hecke-Tate L-functions
attached to the automorphic representations of GL(1), and thereby have
analytic continuation and functional equation.

(iii) Generalized Ramanujan conjecture: The generalized Ramanujan conjec-
ture asserts that a cuspidal automorphic representation π =

⊗
v πv of

GL(N) is tempered. This means that the character

fv → tr(π(fv)), fv ∈ C∞c (GL(N,Fv)),
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of each local constituent πv of π is tempered, in the sense that it ex-
tends to a continuous linear form on the Schwartz space C(GL(N,Fv))
on GL(N,Fv) defined by Harish-Chandra. We recall that the classical
Ramanujan conjecture applies to the case N = 2, and π comes from the
cusp form of weight 12 and level 1. It was proved by Deligne [D], who
established more generally (for N = 2) that the conjecture holds if π is
attached to any holomorphic cusp form. (The case that π comes from a
Maass form remains an important open problem.) Langlands observed
that functoriality, combined with expected properties of the correspon-
dence π′ → π, would imply the generalized Ramanujan conjecture for
GL(N). His representation theoretic argument is strikingly similar to
Deligne’s geometric proof.

(iv) Sato-Tate conjecture: The Sato-Tate conjecture for the distribution of
the numbers Np(E) of solutions (mod p) of an elliptic curve E over Q
has a general analogue for automorphic representations. Suppose for
example that π is a cuspidal automorphic representation of GL(N). The
generalized Ramanujan conjecture of (iii) asserts that the conjugacy
classes

cp(π) =

cp,1(π) 0
. . .

0 cp,N (π)

/SN ,
have eigenvalues of absolute value 1. The generalized Sato-Tate con-

jecture describes their distribution in the maximal torus U(1)N of the
maximal compact subgroup U(N) of the dual group GL(N,C). If π is
primitive (a notion that requires functoriality even to define, as we will
describe in Section 4), the distribution of these classes should be given
by the weight function in the Weyl integration formula for the unitary
group U(N). Langlands sketched a rough argument for establishing such
a result from general functoriality. Clozel, Harris, Shepherd-Barron and
Taylor followed this argument in their proof of the original Sato-Tate
conjecture, but using base change for GL(N) and deformation results in
place of functoriality. (See [T].)

2. The trace formula

We take G again to be a connected quasisplit group over Q. As above, the
group G(Q) then embeds diagonally in the locally compact group G(A) of
points in G with values in the adele ring A of Q. It is convenient to write

Z+ = AG(R)0,

where AG is the split component of the centre of G over Q. The quotient
Z+G(Q)\G(A) then has finite volume with respect to the right G(A)-invariant
measure. This implies that the discrete spectrum

L2
disc = L2

disc(Z+G(Q) \G(A)) ⊆ L2(Z+G(Q) \G(A))
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in the corresponding Hilbert space of square integrable functions (that is, the
subspace that decomposes discretely under the unitary action of G(A) by
right translation) is nonzero.

The trace formula for G is an identity

Igeom(f) = Ispec(f) (2.1)

between a geometric expansion and a spectral expansion. The terms in the
expansions are distributions in a test function f , which we take to be in the
space

D(G) = C∞c (Z+ \G(A)).

To study Beyond Endoscopy, one will have to work with the stable trace
formula, a refinement of the basic trace formula whose terms are stable
distributions. For general linear groups, however, the stable trace formula
reduces to the standard trace formula. In the interest of simplicity, we assume
until further notice that G is the general linear group G(n) = GL(n+ 1) of
semisimple rank n, in which

Z+ =

{(
r 0

. . .
0 r

)
: r > 0

}
⊂ G(R).

We will then be able to work with the standard trace formula.
The primary terms in the trace formula are those in the elliptic regular

part

Iell,reg(f) =
∑

γ∈Γell,reg(G)

vol(Z+Gγ(Q) \Gγ(A))

ˆ

Gγ(A)\G(A)

f(x−1γx) dx (2.2)

of the geometric side, and include those in the “square integrable” part

I2(f) =
∑

π∈Π2(G)

tr(π(f)) (2.3)

of the spectral side. These terms were reviewed in the papers [Ar4] and [Ar5],
so we can be brief here. We note that Γell,reg(G) is the set of conjugacy classes
γ in G(Q) such that centralizer Gγ of γ in G is an anisotropic torus modulo
AG over Q, while Π2(G) is the set of irreducible representations π of G(A)
that occur in L2

disc. It is known [MW] for the general linear group here that
any such representation occurs with multiplicity 1, so there are no coefficients
in the sum of characters on the right hand side of (2.3).

The core of functoriality concerns the subset Πcusp(G) of cuspidal repre-
sentations in Π2(G). These are the representations of G(A) = GL(n+ 1,A)
in Π2(G) that should be tempered, according to the generalized Ramanujan
conjecture discussed in Section 1. In the other direction, we have the repre-
sentations that give the remaining primary spectral terms. They lie in the
complement of Π2(G) in the set of Πdisc(G) of representations that support
the “discrete part” Idisc(f) of the spectral side of the trace formula. (See [Ar5,
Section 4] for a comprehensive review of Idisc(f).) The remaining terms in
the trace formula lie in the complements of Iell,reg(f) and Idisc(f) in Igeom(f)
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and Ispec(f) respectively. These supplementary terms were reviewed in [Ar4].
They also seem to be important for Beyond Endoscopy, more so perhaps than
has been the case in the theory of endoscopy itself. However, the implications
of the supplementary terms are also more subtle. They are best left for the
future.

One of the fundamental goals of Beyond Endoscopy is to isolate the
contribution of the cuspidal terms

Icusp(f) =
∑

π∈Πcusp(G)

tr(π(f)) (2.4)

to the geometric side. This would entail a study of the difference

Igeom,−(f) = Igeom(f)− I+
spec(f) (2.5)

between the geometric side and the noncuspidal part

I+
spec(f) = Ispec(f)− Icusp(f)

of the spectral side. Ideally, one would like a supplementary geometric expan-
sion for this difference. The identity

Igeom,−(f) = Icusp(f) (2.6)

would then become a more direct formula for the trace of f on the cuspidal
discrete spectrum.

There is an implicit premise of functoriality, which concerns what we
might call the “functorial source” of any cuspidal representation π ∈ Πcusp(G).
By this we mean a minimal pair

(G′, π′), π′ ∈ Πcusp(G′),

such that π is a functorial image of π′ under some L-embedding

ρ′ : LG′ → LG.

The premise is that the functorial source of π should be closely related to the
poles at s = 1 of L-functions LS(s, π, r), as r varies over finite dimensional
representations of LG. Beyond Endoscopy is a strategy for expanding the
trace formula so as to include information about the poles of automorphic
L-functions.

To motivate the proposed constructions, we assume for a moment that
each π ∈ Πcusp(G) does satisfy the principle of functoriality. In particular,
we suppose that the consequences of functoriality described in Section 1 are
valid. Since these include the meromorphic continuation of L-functions, we
then can define an enhanced cuspidal expansion

Ircusp(f) =
∑

π∈Πcusp(G)

mπ(r) tr(π(f)) (2.7)

for any r that is weighted with coefficients equal to the orders

mπ(r) = ress=1

(
− d

ds
logLS(s, π, r)

)
= − ords=1 L

S(s, π, r) (2.8)
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of poles at s = 1 of the relevant L-functions. If r equals the trivial 1-dimensional
representation 1 = 1G of LG, LS(s, π, r) is just the (incomplete) Riemann
zeta function ζS(s) for any π. It of course has a pole of order 1 at s = 1.
In this case, mπ(r) equals 1, and Ircusp(f) reduces to the trace Icusp(f) on

the cuspidal discrete spectrum. Thus, I1
cusp(f) satisfies the trace formula

(2.6), which we are hoping will eventually reduce to something approaching a
reasonable geometric expansion. In the general case, we can ask whether the
enhanced cuspidal expansion Ircusp(f) might also have reasonable geometric
expansion. This would then be a more general trace formula, the “r-trace
formula” attached to any finite dimensional representation r of LG.

Langlands’ idea is to construct the distribution Ircusp(f) from the special
case that r = 1. We can write the test function f ∈ D(G) as the product of a
smooth, compactly supported function on the group

Z+ \G(QS) = Z+ \G(R)×

 ∏
v∈S−{vR}

G(Qv)


with the characteristic function of the compact group

KS =
∏
vp /∈S

G(Zp),

for a finite set of valuations S on Q that contains the archimedean place vR.
Given r, and any valuation vp /∈ S, we define a new function frp ∈ D(G) as in
Section 2 of [Ar4], namely as a product

frp (x) = f(x)hrp(xp), x ∈ G(A), (2.9)

where xp is the component of x in G(Qp), and hrp is the unramified spherical
function on G(Qp) whose Satake transform equals

ĥrp(cp) = tr(r(cp)),

for any Frobenius-Hecke class cp in LGp. We are assuming that each π ∈
Πcusp(G) satisfies the generalized Ramanujan conjecture, as one of the conse-
quences of functoriality. The Euler product

LS(s, π, r) =
∏
p/∈S

det(1− r(c(πp))p−s)−1

of the associated (incomplete) L-function will then converge for <(s) > 1. In
fact, the L-function will satisfy all the conditions of the Tauberian theorem
proved in the appendix of Section 2.1 of [Se]. The order of the pole of LS(s, π, r)
should therefore be equal to

mπ(r) = lim
N→∞

|SN |−1
∑
p∈SN

log(p) tr(r(c(πP ))),

if

SN = {p /∈ S : p ≤ N}.
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It will then follow from the definition of Ircusp(f) and the function frp that

Ircusp(f) = lim
N→∞

|SN |−1
∑
p/∈SN

log(p)Icusp(frp ). (2.10)

(See for example the derivation of the formula (A.2) on p. 253 of [Ar2], from
which the factor log(p) was inadvertently omitted, or the original discussion
from [L4, Section 1.5], which leads to an equivalent limit.)

The limit formula (2.10) should thus be a consequence of the properties
of L-functions implied by functoriality. However, functoriality is the ultimate
goal of Beyond Endoscopy, not something we can assume in trying to carry
it out. We are in no position to assume the meromorphic continuation of L-
functions, or even a definition of orders mπ(r) with which we defined Ircusp(f).
All we can say is that we expect a limit formula (2.10) to be valid. Langlands’
proposal is to try to establish such a formula from the putative geometric
expansion (2.6) of Icusp(f). For if the limit (2.10) were valid, it would also
apply to (2.6). It would then give rise to an enhanced trace formula

Irgeom,−(f) = Ircusp(f), (2.11)

with the left hand side defined as a limit

Irgeom,−(f) = lim
N→∞

|SN |−1
∑
p/∈SN

log(p)Igeom,−(frp ), (2.12)

for any finite dimensional representation r of LG.
We therefore return to our basic setting, with G still being the group

GL(n+ 1), but with no a priori assumption on functoriality. The idea of Lang-
lands is to establish a formula (2.11) directly. We are hoping the distribution
Igeom,−(f) in (2.6) can be expressed by some approximation of a geometric
expansion. One would try to establish (2.11) by applying the limit to each of
the terms in the expansion of Igeom,−(frp ). This would establish the existence
of the spectral limit (2.10). One could then try to use the resulting formula
(2.11) to study it as a spectral expansion in the original function f .

3. A stratification

The strategy for constructing an r-trace formula (2.12) is predicated on the
existence of a geometric-like expansion of Igeom,−(f), the left hand side of the
trace formula (2.6) for Icusp(f). This is a serious matter. The individual terms
in Igeom,−(f) include the nontempered characters from the complement of
Πcusp(G) in Π2(G). For these terms, the analogue of the limit (2.11) will not
exist. As emphasized in [L4], there will have to be some striking cancellations
of terms in the difference (2.5) before one can even consider the possibility of
a limit (2.11). We shall review the main construction from the paper [Ar5],
which represents a conjectural geometric expansion that appears to be closely
related to Igeom,−(f).

The cancellation problem was posed by Langlands in [L4], and made
more explicit in the joint paper [FLN]. A. Altug solved the problem for the



10 Arthur

group GL(2) in his thesis [Al1]. He then published his solution in the later
paper [Al2]. In this section here, we shall give a brief summary of Section 5 of
the paper [Ar5], the aim of which was to describe a conjectural analogue for
GL(n+ 1) of Altug’s solution for GL(2).

The supplementary terms in the trace formula are undoubtedly relevant
to the problem. Some of them were examined in [L4], and were found to
have some interesting new properties. However, a systematic analysis of the
supplementary terms in the context of Beyond Endoscopy has not been
undertaken. We shall follow [Ar5] in ignoring them. That is, we replace
Igeom(f) and Ispec(f), the geometric and spectral sides of the initial trace
formula (2.1), by their primary parts Iell,reg(f) and Idisc(f). We shall then
write

Iell,reg(f) ∼ Idisc(f) (3.1)

in place of (2.1), without any attempt to describe what the approximation
means. The symbol ∼ is to be taken heuristically, and maybe interpreted
loosely as, “pretend they are equal”!

The formula (2.6) becomes the approximation formula

Iell,reg,−(f) ∼ Icusp(f) (3.2)

for Icusp(f) in terms of the difference

Iell,reg,−(f) = Iell,reg(f)− I+
disc(f) (3.3)

between the primary geometric expansion and the noncuspidal part

I+
disc(f) = Idisc(f)− Icusp(f) (3.4)

of the primary spectral expansion. The notation (3.4), incidentally, differs
from that of Section 4 of [Ar5], where we reviewed the representations Πdisc(G)
whose characters support Idisc(G). In [Ar5], we wrote

Idisc(f) =
∑
m

I0
disc(m, f), (m+ 1)|(n+ 1), (3.5)

for the decomposition of Idisc(f) into components supported on characters
of G = GL(n + 1) whose cuspidal source ranges over the smaller general
linear groups GL(m+ 1) (embedded diagonally in GL(n+ 1)) [Ar5, (4.10)].
In particular, we wrote

Icusp(f) = I0
disc(n, f) = I0

disc(f).

The noncuspidal part I+
disc(f) of Idisc(f) here then represents the sum in (3.5)

over proper divisors (m + 1) of (n + 1). In any case, the essential point is
that the left hand side of (3.2) is the difference (3.3) between a geometric
expansion and a spectral expansion. One would like to absorb the spectral
part in the geometric part, leaving what one would hope to be some modified
geometric expansion.

An important change of perspective was introduced in the paper [FLN].
The authors there parametrized the semisimple conjugacy classes that index
terms in geometric expansions by points in the base of the Steinberg-Hitchin
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fibration. In the case G = G(n) = GL(n + 1) we are considering here, the
base of the Steinberg-Hitchin fibration is a product

A(n) = B(n)×Gm
of affine n-space B(n) with the multiplicative group Gm = GL(1). The
proposal in [FLN] in this case is to identify points γ ∈ Γell,reg(G) with their
characteristic polynomials pγ(λ). For there is a bijection γ → a from Γell,reg(G)
onto the subset of Airred(n,Q) of elements

a = (a1, . . . , an, an+1)

in A(n,Q) such that characteristic polynomial

pa(λ) = pγ(λ) = λn+1 − a1λ
n + · · ·+ (−1)nanλ+ (−1)n+1an+1

is irreducible over Q.
We follow [L4], [Al2] and [Ar5] in restricting the test function f . For

simplicity, we take it to be of the form

f = f∞ · f∞ = f∞ · f∞,p · fkp
specified at the beginning of Section 3 of [Ar5]. For this choice, the summand of
γ in (2.2) vanishes unless the irreducible monic polynomial pa(λ) has integral
coefficients, with constant term equal to pk or −pk. We can therefore write

Iell,reg(f) =
∑

b∈B(n,Z)

 ∑
γ∈Γell,reg(b)

vol(γ) Orb(γ, f∞) Orb(γ, f∞)

 , (3.6)

where vol(γ) is the volume term in (2.2), Orb(γ, f∞) and Orb(γ, f∞) are
the local factors of the global orbital integral in (2.2), and Γell,reg(b) is the
preimage of {

a = (b, εpk) : ε ∈ {±1}, pa(λ) irreducible
}

in Γell,reg(G), a set of order 0, 1 or 2. The primary geometric expansion
in thus given by a sum over the lattice B(n,Z) in the real vector space
B(n,R). A key question posed in [FLN] is whether one can apply the Poisson
summation formula to this sum. The question cannot be taken literally, since
the summands contain arithmetic factors that do not extend to functions
B(n,R). The problem is to transform (3.6) into a different expression to which
Poisson summation can be applied.

There are a number of difficulties. In addition to the two arithmetic
factors vol(γ) and Orb(γ, f∞) of the summands in (3.6), there is a purely
arithmetic constraint in the sum itself. It is taken only over elements b ∈ B(n,Z)
such that at least one of the two characteristic polynomials

pa(λ) = p(b,εpk)(λ), ε ∈ {±1}, (3.7)

is irreducible over Q. The various difficulties were discussed in Section 3
of [Ar4], as well as in Section 4.1 of [Al2]. In the case of GL(2), Altug
was able to overcome them all. In particular, he enlarged Iell,reg(f) to an
extended geometric expansion Īell,reg(f) by adding terms for the characteristic
polynomials (3.7) that are reducible. This could only be accomplished after the
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original expansion had been manipulated to accommodate various problems of
convergence. Altug then rearranged the terms in his expression for Īell,reg(f)
so as to be able to apply the one variable Poisson summation formula for the
lattice B(1,Z) = Z in B(1,R) = R. The result is an expansion

Īell,reg(f) =
∑
ξ∈Z

ˆ̄Iell,reg(ξ, f). (3.8)

(See [Al2, Theorem 4.2] and the discussion in Section 3 of [Ar5].)
Having established (3.8), Altug then examined the contribution of the

noncuspidal representations to the right hand side. The noncuspidal part

I+
disc(f) = Idisc(f)− Icusp(f)

of Idisc(f) can be written as a sum

(I2(f)− Icusp(f)) + (Idisc(f)− I2(f)).

Each of the two summands is a scalar multiple of an irreducible character in
f . The first is the character of the trivial 1-dimensional representation, while
the second is a multiple of a singular induced character (the term (vi) on p.
517 of [JL]). Altug showed that each of the summands contributes only to the

term with ξ = 0 in (3.8). In fact, he was able to decompose ˆ̄I(0, f) into a term
that equals the first summand and a term that equals the second summand,
together with an explicit integral that for at least some purposes represents
a manageable error term [Al2, Theorem 6.1, Lemma 6.2]. This is a striking
confirmation (and extension) for GL(2) of the conjecture in [FLN] that for
any G, the trivial 1-dimensional representation should contribute only to the
term with ξ = 0 in the conjectural Poisson summation formula.

What should be the analogue for GL(n+ 1), where there are many more
singular automorphic representations, of the singular term with ξ = 0 in the
expansion (3.8) for GL(2)? We would of course first require an analogue of the
expansion (3.8) itself. This does not yet exist. What is lacking is a suitable
interpretation of the nonarchimedean orbital integrals Orb(γ, f∞) in (3.6), as
discussed in Section 2 of [Ar5]. We shall just assume that we have obtained
an extension

Īell,reg(f) =
∑

ξ∈Ξ(n,Z)

ˆ̄Iell,reg(ξ, f) (3.9)

for G = GL(n+ 1) of Altug’s Poisson formula (3.8). This would include an
approximation Īell,reg(f) of Iell,reg(f), with terms indexed by arbitrary charac-
teristic polynomials. (We have chosen different notation Ξ(n) for affine n-space
here, to suggest that its elements are to regarded as spectral variables.) Does
the noncuspidal part I+

disc(f) of Idisc(f) then have a transparent contribution
to the right hand side of (3.9)? The answer conjectured in [Ar5, Section 5] is
yes. It takes the form of a stratification of Ξ(n), with strata parametrized by
divisors (m+ 1) of (n+ 1).

For every proper divisor (m+ 1) of (n+ 1), we assume inductively that
we have defined an open subset Ξ0(m) of affine m-space Ξ(m). We use this to
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define a locally closed subset

Ξ0(m,n) = {(ξm, 0, ξm, 0, . . . , 0, ξm) : ξm ∈ Ξ0(m)} (3.10)

of Ξ(n), where if
(n+ 1) = (m+ 1)(d+ 1),

the vector in the brackets contains (d + 1)-copies of the smaller vector ξm,
and d-copies of the component 0. The number of components of this vector
therefore equals

m(d+ 1) + d = md+m+ d = (n+ 1)− 1 = n,

so that Ξ0(m,n) is indeed a subset (obviously locally closed) of Ξ(n). We
complete the inductive definition by requiring that Ξ(n) be the disjoint union

Ξ(n) =
∐
m

Ξ0(m,n), (m+ 1)|(n+ 1), (3.11)

over all divisors (m+ 1) of (n+ 1) of the subsets Ξ0(m,n). For it follows from
(3.10) that the remaining ingredient, the open subset Ξ0(n) of Ξ(n), equals
Ξ0(n, n). It is therefore defined by

Ξ0(n) = Ξ0(n, n) = Ξ(n) \
∐
m 6=n

Ξ0(m,n).

The stratification is obviously compatible with the Z-structure on Ξ(n).
That is

Ξ(n,Z) =
∐
m

Ξ0(m,n,Z), (3.12)

where

Ξ0(m,n,Z) = Ξ0(m,n) ∩ Ξ(n,Z)

= {(ξm, 0, ξm, 0, . . . , 0, ξm) : ξm ∈ Ξ0(m,Z)}.
We can therefore apply it to the distribution-valued function

ˆ̄Iell,reg(f) : ξ → ˆ̄Iell,reg(ξ, f), ξ ∈ Ξ(n,Z),

in the putative Poisson expansion (3.9). We obtain a decomposition

ˆ̄Iell,reg(f) =
∑
m

ˆ̄I0
ell,reg(m, f), (m+ 1)|(n+ 1), (3.13)

where
ˆ̄I0
ell,reg(m, f) =

∑
ξ∈Ξ0(m,n,Z)

ˆ̄I0
ell,reg(ξ, f). (3.14)

Observe that (3.13) is completely parallel to the decomposition (3.5) of Idisc(f)
taken from [Ar5].

It is clear that (3.12) is a generalization from 1 to n of Altug’s decomposi-
tion of Ξ(1,Z) = Z in the case of GL(2) into the two subsets Ξ0(0, 1,Z) = {0}
and

Ξ0(1, 1,Z) = Ξ0(1,Z) = {ξ ∈ R : ξ 6= 0}.
As we have noted, he established that the noncuspidal representations in
Idisc(f) contribute entirely to the term in (3.14) for GL(2) with ξ = 0. The
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question is, to what degree does this phenomenon persist in the case of
GL(n + 1). The answer will have to wait until we have a corresponding
Poisson expansion (3.9), the explicit form of which we could study in detail.

4. Further thoughts

I would like to conclude with a few general observations. We have been
discussing the proposal of Langlands for applying the trace formula to the
principle of functoriality. It appears that the general problem breaks rather
cleanly into four subproblems. These are cumulative in that each depends
on the solution of its predecessors. It goes without saying that they are all
difficult! We shall say a few words on each of them in turn.

For this section, we take G to be a general connected, quasisplit group
over a number field F . The discussion for GL(n+ 1) of the last two sections
remains essentially the same for G here, with one significant proviso: the trace
formula for G must be replaced by the stable trace formula. In particular,
the cuspidal trace Icusp(f) has to be replaced by the stable cuspidal trace
Scusp(f), in which multiplicities become stable multiplicities, and cuspidal
automorphic representations become cuspidal automorphic L-packets. This
makes no difference in the case G = GL(n+ 1) above, since the trace formula
reduces to the ordinary trace formula.

The first subproblem would be to find a geometric-like expansion for
Scusp(f), which is to say, for the stable analogue of the expression in (2.6) for
Icusp(f). Our notation Igeom,−(f) for this expression reflects our hope for a
geometric solution, rather than just the definition (2.5) of the expression as
a difference of a geometric expression and a spectral expression. This is the
problem we discussed in Section 3, with both Altug’s solution for GL(2) and
its conjectural extension to GL(n+ 1). Note however that the real problem
demands the stable analogue of the full expression (2.5), and not just of the
primary part (3.3) that we discussed in Section 3. A full solution would require
a comprehensive “Beyond Endoscopic” analysis of the supplementary terms in
the stable trace formula. The scattered remarks in Section 6 of [Ar5] hint at
the seriousness of any such undertaking.

The second subproblem would be to establish a stable r-trace formula
for Srcusp(f), the stable cuspidal trace, weighted for any finite dimensional

representation r of LG according to (2.7). This question was described for
GL(n+ 1) in Section 2. It would require a solution to the first subproblem
in order to study the stable analogue for the limit in (2.12). In fact, one
would need to know specific details of a solution even to think about the
general question. For this reason, no doubt, little is known about the second
subproblem. The papers [Al3] and [Al4] of Altug represent progress in the
case of GL(2).

Trace formulas have been most powerful when they could be compared
with other trace formulas. Beyond Endoscopy will be no exception to this
rule. The third subproblem, which we have not discussed here, would be to
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construct a further trace formula for comparison with the r-trace formula. It
would be a formula for what we called the primitive (stable, cuspidal) trace
Pcusp(f). By this, we mean the contribution to Scusp(f) of those cuspidal
automorphic L-packets whose “functorial source” is G itself, which is to say
that they do not represent proper functorial images. In principle, Pcusp(f)
cannot even be defined without functoriality. In practice, we would try to
establish a “primitization” of the stable trace formula, and more generally of
the r-trace formula, for any r. This would be a decomposition

Srcusp(f) =
∑
G′

ι(r,G′) P̂ G̃
′

cusp(f ′) (4.1)

of the r-cuspidal trace into components parametrized by quasisplit groups
G′ (which are actually supposed to represent “elliptic, beyond endoscopic

data (G′,G′, ξ′) with auxiliary datum (G̃′, ξ̃′)”), where f ′ is a function for

G̃′ attached to f by stable transfer. This speculative formula is described
in Section 2 of [Ar4]. Its statement no doubt calls for further thought and
possible revision. For example, our suggestion in [Ar4] that

ι(r,G′) = m′(r)ι(G,G′) (4.2)

where m′(r) equals the multiplicity of the trivial representation of G′ in r ◦ ξ′
and ι(G,G′) is independent of r, is just an uninformed guess. In any case,
with the specialization of (4.1) to r = 1, we would be able to complete the
inductive definition by setting

Pcusp(f) = Scusp(f)−
∑
G′ 6=G

ι(1, G′)P̂ G̃
′

cusp(f ′). (4.3)

The fourth subproblem would be to deduce functoriality itself from the
primitization (4.1) of the r-trace formula. It is related to the problem that as
r-varies, the dimension data

m′(r) = mG′(r) (4.4)

do not determine G′ uniquely [AYY], [Y]. Something of this question seems
reminiscent of techniques from the global theory of endoscopy in [Ar3]. I made
a couple of remarks to this effect in [Ar4, Section 3, Question VII], but I have
not thought seriously about them. Perhaps this fourth subproblem should
wait until we know more about the earlier three.

One of the aims of the paper [Ar4] was to draw comparisons between the
ideas in Beyond Endoscopy implicit in [L4], [FLN] and [L5] and techniques
from the theory of endoscopy. These analogies work particularly well in the
context of the four subproblems I have described. I shall recall them very
briefly, if for no other reason to try to clarify my own thoughts!

The first subproblem was to establish a geometric formula for the stable
trace Scusp(f). This would be analogous to the original (invariant) trace
formula for G. The second was to establish a geometric formula for the (stable)
r-trace Srcusp(f), for any finite dimensional representation r of LG. This would
be parallel to the twisted trace formula for any automorphism and (abelian)
automorphic character for G. The third was to establish a primitization of the
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trace formula for Scusp(f), and more generally, for Srcusp(f). This is parallel
to the stabilization of the ordinary and twisted trace formulas for G. And
finally, we have the fourth subproblem of trying to deduce functoriality from
the primitization of Scusp(f) and Srcusp(f). This would seem to be parallel to
establishing the endoscopic classification of automorphic representations for
(quasisplit) classical groups G from the stabilization of their trace formulas,
and of the twisted trace formulas for general linear groups.

We have completed our description of four subproblems that make up
Langlands’ proposal of Beyond Endoscopy. The trace formula is clearly at
the centre of each of them. There are also other approaches to functoriality
that are not primarily based on the trace formula. One is to develop ideas of
Braverman and Kazhdan [BK1], [BK2] that are based on Vinberg’s theory of
monoids (See [N1], [N2].) Its goal is to study automorphic L-functions directly.
If one could establish their analytic continuation and functional equation
directly, one might be able to use a converse theorem to establish functoriality.
Another approach is based on relative trace formulas [Sak], [V]. One aim
here is to study generic global L-packets through general analogues of the
Kuznetsov trace formula. This would sidestep the nontempered automorphic
representations, whose removal represents the serious problem discussed in
Section 3 (and described as the first general subproblem above).

It is possible that ideas from several different points of view might
ultimately have to be used together. But it seems to me that the use of the
trace formula will be indispensable if we are to fully understand functoriality.
For our ultimate goal should be a classification of automorphic representations
for any G that goes beyond the principle of functoriality. I am not thinking
of the endoscopic classification of representations, such as was established
for quasisplit classical groups in [Ar3] and [Mok]. It was in terms of global
L-packets, and the functorial transfers from endoscopic groups that govern
the packets. What we would like now is a refined classification of cuspidal
automorphic packets for G in terms of primitive cuspidal automorphic packets
for smaller groups, as in the primitization (4.1) (with r = 1) of the stable
trace formula for Scusp(f). As far as I can see, this would not appear to be
accessible, even in principle, without extensive use of the trace formula.

The primitization of Scusp(f) would also not be enough as it stands.
There are a number of questions to be answered before we could treat (4.1)
(with r = 1) as a well defined decomposition of Πcusp(G) (or rather of the
associated family Φcusp(G) of global, cuspidal automorphic L-packets for G).
They include questions about the orders of poles of L-functions L(s, π, r),
where π represents a packet in Icusp(G). For example, given π, can we find
a datum G′ indexing the sum on the right hand side of (4.1) such that the
nonnegative integers (2.8) and (4.4) satisfy

mG′(r) = mπ(r), (4.5)

for every representation r of LG? This question was raised at the very beginning
of the foundational article [L4]. We had better hope for an affirmative answer,
since any alternative would seem to lead to chaos. A second question concerned
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the uniqueness of G′. However, the later examples in [AYY] and [Y] tell us

that G′ need not be uniquely determined up to Ĝ-conjugacy of LG′ in LG,
or possibly more precisely, up to isomorphism of G′ as a “beyond endoscopic
datum.” (See [Ar4, Section 2]. This notion of isomorphism is presumably
similar to its analogue [KS, p. 18] for endoscopic data.)

We can try to refine the two questions together, as follows.

Refined question: Given π ∈ Πcusp(G) as above, can we find a pair

(G′, c′), (4.6)

such that

(i) the pair (G′, c′) is a functorial source of π,
(ii) G′ and π satisfy (4.5), and
(iii) the pair (G′, c′) is uniquely determined up to isomorphism?

We have used the term “functorial source” only informally up until now.
To say more precisely what we mean in (i) here, G′ represents an “elliptic

beyond endoscopic datum (G′,G′, ξ′) with auxiliary datum (G̃′, ξ̃′)” (as in
(4.1), and as described following [Ar4, (2.3)]), while

c′ = {c′v : v /∈ S}

is a family of semisimple conjugacy classes in G′ whose image ξ′(c) in LG equals

c(π), and whose image c̃′ = ξ̃′(c′) in LG̃′ equals c(π̃′), for a representation

π̃′ ∈ Πcusp(G̃′) that occurs in the decomposition of the representation P G̃
′

cusp.
It is understood that both π and π̃′ are of Ramanujan type, in the sense that
they represent cuspidal global L-packets for G and G̃′.

It would be very nice if the question has an affirmative answer as stated.
I would be content to think that it works in principle, even if my formulation
might not be quite correct. The question does represent a classification of
cuspidal automorphic representations of G, or rather, cuspidal global L-packets
for G. However, it is quite ungainly. There is undoubtedly a better way to
formulate it.

I am thinking of Langlands’ automorphic Galois group LF . According
to [L3], [K] and [Ar1], it is a hypothetical locally compact extension

1→ KF → LF →WF → 1,

where WF is the global Weil group of F , and KF is a compact connected
group that was in fact conjectured to be simply connected in [Ar1]. We expect
the (equivalence classes of) irreducible, unitary N -dimensional representations
of LF to be in canonical bijection with the unitary, cuspidal automorphic
representations of GL(N). More generally, for the quasisplit group G, the
set of (isomorphism classes of) bounded, L-homomorphisms of LF into LG
that are discrete, in the sense that their image is not contained in any
proper parabolic subgroup LP of LG, should be in canonical bijection with
the set of (isomorphism classes of) global L-packets of unitary, cuspidal
automorphic representations of G. It follows from this property, and the
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expected compatibility of LF with the local Langlands groups [Ar1, (1.1)],
that the existence of LF implies the principle of functoriality.

The construction of the hypothetical group LF in [Ar1] is related to the
classification suggested above, but it is simpler. It would be interesting to try
to compare them. In particular, are the hypotheses on cuspidal automorphic
L-packets that support the construction in Section 4 of [Ar1] essentially the
same as those of the refined question above? If so, Langlands’ program for
Beyond Endoscopy, which is based on the trace formula, could be regarded
as a proposal to construct LF as well as to establish the principle of functo-
riality. And indeed, it is not unreasonable to expect that the undiscovered
mathematical path to functoriality, whatever its technical foundation, must
lead also to the automorphic Galois group LF .
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