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Abstract. Induced representations and intertwining operators give rise to
distributions that represent critical terms in the trace formula. We shall de-
scribe a conjectural relationship between these distributions and the Langlands-
Shelstad-Kottwitz transfer of functions

Our goal is to describe a conjectural relationship between intertwining oper-
ators and the transfer of functions. One side of the proposed identity is a linear
combination of traces

tr
(
RP (πw) ◦ IP (π, f)

)
,

where IP (π, f) is the value of an induced representation at a test function f , and
RP (πw) is a standard self-intertwining operator for the representation. Distribu-
tions of this sort are critical terms in the trace formula. The other side is defined
by the transfer of f to an endoscopic group. The endoscopic transfer of functions
represents a sophisticated theory, some of it still conjectural, for comparing trace
formulas on different groups [L2]. This is a central theme in the general study of
automorphic forms.

There are a number of relatively recent ideas of Langlands, Shelstad and Kot-
twitz, which will have to be taken for granted in the statement of such an identity.
On the other hand, induced representations and intertwining operators go back
many years. They were lifelong preoccupations of George Mackey [M1]–[M5],
whose investigations anticipated their future role as basic objects in modern rep-
resentation theory. It is therefore fitting to devote the first part of the article to a
historical introduction. I shall try to describe in elementary terms how Mackey’s
initial ideas are reflected in some of the ways the later theory developed. I hope
that this compensates in some measure for the technical and rather sketchy nature
of the remaining part of the article.
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1. Induced representations

Suppose that H is a locally compact topological group, and that S is a closed
subgroup. Induction is a process that attaches a representation of H to a represen-
tation of S. George Mackey formulated the induction operation in this setting, and
established many of its basic properties ([M1], [M2], [M3]). Induced representa-
tions now occupy a central place, often implicit, in much of representation theory
and automorphic forms.

In the case of finite groups, induction had been introduced earlier by Frobenius.
Since one usually takes the representation σ of S to be irreducible, we can assume
that it is finite dimensional in this case. The induced representation IS(σ) of the
finite group H then acts on the finite dimensional vector space HS(σ) of functions
φ from H to Vσ , the complex vector space on which σ acts, such that

φ(sx) = σ(s)φ(x), s ∈ S, x ∈ H.

It is defined by right translation
(
IS(σ, y)φ

)
(x) = φ(xy), φ ∈ HS(σ), x, y ∈ H.

We can assume that σ is unitary with respect to a Hermitian inner product (·, ·)σ

on Vσ . Then IS(σ) is unitary with respect to the inner product

(φ1, φ2) = |S\H |−1
∑

x∈S\H

(
φ1(x), φ2(x)

)
σ

on HS(σ).
The general case is more complicated. For example, it was not clear how to

define IS(σ) so that it would be unitary if σ were unitary. Mackey dealt with this
problem and others by introducing the notion of a quasi-invariant measure on S\H .

Let δH(x) be the modular function ofH , namely the Radon-Nikodym derivative
of the right Haar measure drx on H with respect to the left Haar measure d`x. It
is known that there is a right invariant Borel measure on S\H if and only if the
restriction of δH to S equals δS . This condition fails in many important cases. But
according to Mackey, one can always define a quasi-invariant measure dqx on S\H .

One first chooses a positive Borel function q on H that extends δSδ
−1
H , in the sense

that
q(sx) = δS(s)δH (s)−1q(x), s ∈ S, x ∈ H.

The measure is then defined by the condition that

(1.1)

∫

S\H

(∫

S

φ(sx)drs
)
dqx =

∫

H

φ(x)q(x)drx,

for any φ ∈ Cc(H). Quasi-invariant here means that for any fixed y ∈ H , the
measure

dq,yx = dq(xy)

on S\H is equivalent to dqx, in the sense that either measure is absolutely continu-
ous with respect to the other. The Radon-Nikodym derivative of dq,yx with respect
to dqy is given explicitly as

dq,yx = qy(x)dqx,

for the function
qy(x) = q(xy)q(x)−1, x ∈ S\H,

on S\H .
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Suppose that σ is an irreducible unitary representation of S on a Hilbert space
Vσ . Given q, we take HS(σ) to be the Hilbert space of Borel functions φ from H
to Vσ such that

φ(sx) = σ(s)φ(x), s ∈ S, x ∈ H,

and

‖φ‖2
2 =

∫

S\H

‖φ(x)‖2
σdqx <∞.

We then set (
IS(σ, y)φ

)
(x) = φ(xy)qy(x)

1

2 , φ ∈ HS(σ).

It follows easily from the definitions that IS(σ) is a unitary representation of H .
Moreover, if q is replaced by another function q′, the corresponding induced rep-
resentations are unitarily equivalent. Mackey’s construction is therefore essentially
independent of the choice of q.

We shall be concerned here with the case that H = G(F ), where G is a con-
nected reductive algebraic group over a local field F of characteristic 0. This is the
setting for the local harmonic analysis developed by Harish-Chandra, with which he
eventually established the Plancherel formula for G(F ) [H1], [H2], [W2]. We take
S to be the subgroup P (F ) of G(F ), where P is a parabolic subgroup of G with
fixed Levi decomposition P = MNP over F . Since the unipotent radical NP of P
is normal in P , any unitary representation π of the Levi component M(F ) pulls
back to P (F ), and can thereby be regarded as a representation of P (F ). Recall
that we have the real vector space

aM = Hom
(
X(M)F ,R

)

attached to M , and the familiar homomorphism

HM : M(F ) −→ aM

defined by
〈
HM (m), χ

〉
= log |χ(m)|, m ∈ M(F ), χ ∈ X(M)F .

It allows us to form the twist

πλ(m) = π(m)eλ(HM (m)), m ∈ M(F ), λ ∈ a
∗
M,C,

of π by any complex-valued linear form λ on aM .
The reductive group G(F ) is unimodular. However P (F ) is not (so long as it

is proper in G(F )). Its modular function equals

δP (mn) = e2ρP (HM (m)), m ∈ M(F ), n ∈ NP (F ),

where ρP ∈ a∗M is the real linear form defined by the usual half-sum of positive
roots (counted with multiplicity). Mackey’s induction depends on an extension q
of the function

δP (p)δG(p)−1 = δP (p), p ∈ P (F ),

to G(F ). This is provided by a suitable choice of maximal compact subgroup of
G(F ).

Let K be a fixed maximal compact subgroup of G(F ) such that G(F ) =
P (F )K. Given K, we define a continuous function

HP : G(F ) −→ aM
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by setting

HP (mnk) = HM (m), m ∈M(F ), n ∈ NP (F ), k ∈ K.

We then set
q(x) = e2ρP (HP (x)), x ∈ G(F ).

Using this to define Mackey’s quasi-invariant measure dqx as above, we obtain the
induced representation IP (F )(π) on the Hilbert space HP (F )(π). (In following what
seemed to be the most logical notation, we have ended up with three uses of the
symbol H : the locally compact group H = G(F ), the function HP , and the Hilbert
space HP (F )(π). I hope that this does not cause confusion.)

In this setting, it is customary to work with functions on K rather than
Mackey’s space of P (F )-equivariant functions on G(F ). More precisely, if π is
a unitary representation of M(F ) on a Hilbert space Vπ , let ρπ be the restriction
mapping from HP (F )(π) to a space of Vπ valued functions on K. In the special
case that π is the trivial one-dimensional representation, ρπ transforms the quasi-
invariant measure dqx on P (F )\G(F ) to a Haar measure dk on K (or rather, its
projection to P (F )∩K\K). This follows from the fact that if dqx is replaced by dk
on the left hand side of (1.1), each side of this identity represents the linear form on
Cc

(
G(F )

)
defined by a left Haar measure on G(F ). In general, ρπ is an isometric

isomorphism from HP (F )(π) onto the Hilbert space HP (π) of functions φ from K
to Vπ such that

φ(pk) = π(p)φ(k), p ∈ P (F ) ∩K, k ∈ K,

and

‖φ‖2
2 =

∫

K

‖φ(k)‖2dk <∞.

The conjugate

IP (π, y) = ρπ ◦ IP (F )(π, y) ◦ ρ
−1
π , y ∈ G(F ),

is then a unitary representation of G(F ) on HP (π). The advantage of this formalism
is that the space HP (π) remains the same under twists πλ of π. In particular, we
can regard IP (πλ, y) as an entire function of λ ∈ a∗M,C with values in the fixed

Hilbert space HP (π). As a function of y, it is a nonunitary representation of G(F )
if λ does not lie in the imaginary subspace ia∗M of a∗M,C.

2. Intertwining operators

Mackey was also concerned with the analysis of intertwining operators between
induced representations IS(σ) and IS′(σ′) of H . These are operators

J(σ′, σ) : HS(σ) −→ HS′(σ′)

such that
J(σ′, σ)IS(σ) = IS′(σ′)J(σ′, σ).

They are obviously an important part of any study of induced representations. The
space of self-intertwining operators of IS(σ), for example, governs the decomposi-
tion of this representation into irreducible constituents.

Suppose again that H is a finite group. In this case, Mackey gave a com-
plete description of the vector space of intertwining operators between two induced
representations IS(σ) and IS′(σ′). Consider a function

A : H −→ Hom(Vσ , Vσ′)
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such that

(2.1) A(s′xs) = σ′(s′)A(x)σ(s), s ∈ S, s′ ∈ S′.

If φ is any function in HS(σ), set

(JAφ)(x) =
∑

u∈S\H

A(xu−1)φ(u), x ∈ H.

It is clear from the definitions that the summand is indeed invariant under left
translation of u by S, that JAφ belongs to HS′(σ′) as a function of x, and that as
a linear transformation from HS(σ) to HS′(σ), JA satisfies

JAIS(σ, y) = IS′(σ′, y)JA, y ∈ H.

Mackey’s result is as follows:

Proposition 2.1 (Mackey[M1]). The correspondence

A −→ JA

is an isomorphism from the vector space of linear transformations that satisfy (2.1)
to the vector space of intertwining operators from IS(σ) to IS′(σ′).

The proof of the proposition is elementary. Despite its simplicity, however,
the correspondence A → JA can be seen as a model for later work that is now
at the heart of representation theory. This includes Harish-Chandra’s theory of
the Eisenstein integral, an important part of local harmonic analysis, Langlands’
theory of Eisenstein series, which led to the general theory of automorphic forms,
and the work of a number of people on the intertwining operators among the induced
representations {IP (π)}. It is the last of these three topics that will be our concern
here.

The domain of Mackey’s correspondence is easy to characterize. As a vector
space, it is a direct sum of subspaces indexed by the set of double cosets S ′\H/S.
The subspace attached to a given double coset S ′wS is of course the space of
functions A with support on S ′wS. It is isomorphic to the space of linear operators
A(w) from Vσ to Vσ′ which have the intertwining property

(2.2) A(w)σ(w−1s′w) = σ′(s′)A(w), s′ ∈ S′ ∩ wSw−1.

Assume therefore that A is supported on the double coset S ′wS. Changing vari-
ables, we can write

(JAφ)(x) =
∑

u

A(u−1)φ(ux),

for a sum taken over elements u in the set

S\(S′wS)−1 = S\Sw−1S′ = w−1(S′ ∩ wSw−1)\S′.

We can therefore write

(2.3) (JAφ)(x) =
∑

s′∈(S′∩wSw−1)\S′

σ′(s′)−1A(w)φ(w−1s′x).

We return to the case that H equals the locally compact group G(F ). We
fix parabolic subgroups P = MNP and P ′ = M ′NP ′ of G, and irreducible unitary
representations π and π′ ofM(F ) andM ′(F ). Our interest is in the formal analogue
of Mackey’s formula, with S = P (F ), S ′ = P ′(F ), σ = π (inflated to P (F )) and
σ′ = π′ (inflated to P ′(F )). Condition (2.2) requires an intertwining operator A(w)
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between restrictions to P ′(F ) ∩ wP (F )w−1 of representations wπ and π′. There
is not much that can be said here about the restriction of either π or π′ to proper
subgroups of M(F ) or M ′(F ). Fortunately, this case is not particularly relevant
to the basic problems in harmonic analysis. We therefore assume that w has the
property that M ′ = wMw−1. We assume also that the representation

(wπ)(m′) = π(w−1m′w), m′ ∈M ′(F ),

is equivalent to π′, and that A(w) is an intertwining operator from wπ to π′. It
follows from our condition on w that

S′ ∩ wSw−1\S′ ∼= NP ′(F ) ∩ wNP (F )w−1\NP ′(F ).

Since the restriction of π′ to the space on the right is trivial, the formal analogue
of (2.3) becomes the integral

(JAφ)(x) =

∫

NP ′ (F )∩wNP (F )w−1\NP ′ (F )

A(w)φ(w−1nx)dn, φ ∈ HP (F )(π).

Integrals of this sort play a central role in both harmonic analysis and automor-
phic forms. They have been studied by Kunze and Stein [KuSt], Knapp and Stein
[KnSt], Harish-Chandra [H1],[H2], Langlands [L1],[L2], Shahidi [Sha], and oth-
ers.

The problem is that the integral does not coverge. Following §1, we first form
the conjugate

JP ′|P (w, π) = ρπ′ ◦ JA ◦ ρ−1
π

of JA, in order to study the twists

πλ, λ ∈ a
∗
M,C,

of π. Then JP ′|P (w, πλ) is, at least formally, a linear operator from the Hilbert

space HP (π) to HP ′(π′). If the real part of λ lies in the translate ρP + (a∗P )+

of the chamber in a∗M attached to P , JP ′|P (w, πλ) is defined by an absolutely
convergent integral. One of the main results in the theory is that as a function of
λ, JP ′|P (w, πλ) has meromorphic continuation to the complex vector space a∗

M,C.

(See the first three references above, and also [A1].)
The analytic continuation solves the problem, but it immediately leads to an-

other difficulty. This is the fact that the meromorphic function JP ′|P (w, πλ) can
easily have a pole at λ = 0. The solution of the supplementary problem is to nor-
malize the operators. We are assuming that π is unitary. With this condition, one
can write

JP ′|P (w, πλ) = rP ′|P (w, πλ)RP ′|P (w, πλ),

where rP ′|P (w, πλ) is a meromorphic scalar-valued function, and RP ′|P (w, πλ) is
analytic at λ = 0. We can then define RP ′|P (w, π) to be the value of RP ′|P (w, πλ)
at λ = 0. It is in this way that one makes sense of the generalization of Mackey’s
original formula (2.3). We note that an appropriate choice of functions rP ′|P (w, πλ)
also makes the normalized operators RP ′|P (w, πλ) transitive relative to (P ′, P )
and multiplicative relative to w, properties not shared by the original operators
JP ′|P (w, πλ).

There are many ways to choose normalizing factors rP ′|P (w, πλ). However,
Langlands has proposed a canonical construction [L1, p. 281–282], which depends
only on the choice of a nontrivial additive character ψF for F , and is based on the
local L-functions and ε-factors of the representations π. It has been shown that
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Langlands’ proposed normalization yields the desired properties if F = R [A1]
and in some cases if F is p-adic [Sha]. However, local L-functions and ε-factors
have not been defined for general representations of p-adic groups, so Langlands’
normalization remains conjectural in this case. We assume it in what follows.

Suppose now that P ′ = P and π′ = π. Then w represents an element in the
Weyl group

W (M) = Norm(G,M)/M,

which stabilizes the equivalence class of π. Langlands’ conjectural normalizing
factors in this case depend only on the image of w in W (M). On the other hand,
the original integral JP |P (w, πλ) does depend on w as an element in G(F ), in two

ways actually, the left translation of the argument by w−1, and the intertwining
operator A(w) from π to wπ. However, if we require that

A(wm) = A(w)π(m), m ∈ M(F ),

the two kinds of dependence cancel, and JP |P (w, πλ) also depends on w only as an
element in W (M). The best way to represent this condition on A(w) is to take

A(w) = πw(w),

where πw is an extension of π to a representation of the group generated by the
subset Mw(F ) = M(F )w of G(F ). With this understanding, we write

RP (πw) = RP |P (w, π).

The choice of extension πw is of course not unique, but it does serve as a convenient
way to represent the mildly noncanonical nature of the operator RP (πw).

For simplicity, we shall confine ourselves to the case that π belongs to the
relative discrete series Π2(M) of M(F ). Since P ′ = P and π′ = π, RP (πw) is
a self-intertwining operator of IP (π). It tells us something about the irreducible
constituents of this induced representation. In fact, a well known theorem of Harish-
Chandra [H1, Theorem 38.1] asserts that the set

RP (πw), w ∈W (M),

spans the space of all self-intertwining operators of IP (π). A further theorem of
Knapp and Stein [KnSt, Theorem 13.4] and Silberger [Sil] singles out a basis
of this space in terms of the R-group of π, thereby characterizing the irreducible
constituents of IP (π).

Our interest is in a related question. Suppose that f belongs to the Hecke
algebra H(G) of functions in C∞

c

(
G(F )

)
that are left and right K-finite. The

operator

IP (π, f) =

∫

G(F )

f(y)IP (π, y)dy

on HP (π) is then of trace class.

Problem. Given π ∈ Π2(M) and w ∈W (M) with wπ ∼= π as above, compute

(2.4) tr
(
RP (πw)IP (π, f)

)
, f ∈ H(G),

The linear form (2.4) is obviously a linear combination of characters of ir-
reducible constituents of IP (π). The problem is to determine their coefficients.
However, the problem is not well posed as stated, since the extension πw of π is
not uniquely determined. There is also the fact that Langlands’ normalizing factor
depends on the choice of additive character. Although these ambiguities amount
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only to a scalar multiple of (2.4), the matter is serious. For among other things,
the scalar ambiguities will obviously proliferate as w, π and F vary.

The linear form (2.4) is the main local term on the spectral side of the global
trace formula [A5]. It drives basic questions on how one is to interpet the auto-
morphic discrete spectrum, especially as the underlying group varies. The theory
of transfer is supposed to govern relations among representations as G varies. It is
therefore natural that we turn to this theory in trying to resolve the ambiguities
inherent in (2.4).

3. Transfer

The reader will note that we had stepped up the pace of discussion by the end of
the last section. We shall have to do so in a more serious way here, since we cannot
give much of a review of the theory of transfer. I ought really to say endoscopic
transfer, since the heart of the theory is a correspondence f → f ′ from functions
on G to functions on endoscopic groups G′ for G. It is due to Langlands, Shelstad
and Kottwitz [L2], [LS], [KoSh]. The expected properties of the correspondence
have been established for real groups [She] (at least in the untwisted case), but
remain largely conjectural in the p-adic case. I shall assume a familiarity with the
main points of the theory, both established ones and those that are conjectural.

I recall that an endoscopic group G′ for G is a quasisplit group over F , which

comes with an embedding Ĝ′ ⊂ Ĝ of its complex dual group into that of G. It
represents a larger structure (G′,G′, s′, ξ′), known as an endoscopic datum [LS, p.
224]. The group G comes with a finite set of endoscopic data, taken up to the
relevant notion of isomorphism. The simplest interesting example is perhaps the
case that G equals the split group SO(2n + 1). We take s′ to be a semisimple

element in Ĝ = Sp(2n,C) whose centralizer in Ĝ is a product

Ĝ′ = Sp(2m,C)× Sp(2n− 2m,C).

It yields an endoscopic datum, represented by the split group

G′ = SO(2m+ 1) × SO(2n− 2m+ 1).

There are no further choices to be made in this case. We take G ′ to be the L-
subgroup Ĝ′ ×WF of the Weil form of the L-group LG = Ĝ ×WF of G, and ξ′

to be the identity L-embedding of LG′ into LG. In this way, we obtain a set of
representatives of the isomorphism classes of endoscopic data for G that are elliptic,
in the sense that the image of G ′ under ξ′ in LG is contained in no proper parabolic
subgroup.

More generally, we have the notion of a twisted endoscopic datum (G′,G′, s′, ξ′)
attached to an automorphism θ of G over F [KoSh, p. 17]. For example, consider
the standard outer automorphism θ(g) = tg−1 of the split group G = GL(2n+ 1).

We take s′ to be a semisimple element in the coset Ĝoθ̂ whose connected centralizer

in Ĝ = GL(2n+ 1,C) is a product

Ĝ′ = SO(2m+ 1,C) × Sp(2n− 2m,C).

(Here θ̂ is a dual automorphism, which in this case can be taken to be the automor-
phism in the inner class of θ that preserves the standard splitting of GL(2n+1,C).)
This gives rise to an endoscopic datum represented by the split group

G′ = Sp(2m) × SO(2n− 2m+ 1).
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We can still take G′ to be the L-group LG′ = Ĝ′×WF , but there is a supplementary
choice to be made here in the L-embedding ξ′ of G′ into LG. This is because the

full centralizer of s′ in Ĝ is the product of the full orthogonal group O(2m+ 1,C)
with Sp(2n− 2m,C). The choice is that of a homomorphism

η′ : WF −→ O(2m+ 1,C)/SO(2m+ 1,C) = Z/2Z,

which is to say a character on WF (or equivalently ΓF = Gal(F/F )) with (η′)2 = 1.
It allows us to take ξ′ to be the L-embedding

g′ × w −→ g′η(w) × w, g′ ∈ Ĝ′, w ∈ WF ,

of G′ into LG. In this way, we obtain a set of representatives of the isomorphism
classes of elliptic, θ-twisted endoscopic data for G.

A reader unfamiliar with these notions can play with the slightly more com-
plicated examples of G = Sp(2n) (for ordinary endoscopy) and G = GL(2n) (for

θ-twisted endoscopy). In both of these cases, Ĝ′ has a factor SO(2m,C), while
the corresponding factor of the full centralizer of s′ is the full orthogonal group
O(2m,C). Unlike in the case of O(2m + 1,C) above, the nonidentity component
of O(2m,C) acts by outer automorphism on SO(2m,C). The required choice of η′

then defines the factor SO(2m, η′) of G′ as a quasisplit outer twist over F of the
split group SO(2m), as well as the L-embedding ξ′ of the group

G′ = LG′ = Ĝ′
oWF

into LG. Slightly more complicated still is the example that G is a quasisplit group
SO(2n, η). In this case,

Ĝ′ = SO(2m,C) × SO(2n− 2m,C)

and
Ĝ′ = SO(2m, η′) × SO(2n− 2m, η′′),

for characters η′ and η′′ with η′η′′ = η.

In the general case, G ′ is always a split extension of WF by Ĝ′, but it may
not be L-isomorphic with the L-group of G′. Even if it is, it may not come with
a preferred L-isomorphism. For these reasons, one has in general to equip the

endoscopic datum represented by G′ with an auxiliary datum (G̃′, ξ̃′). The first

component is a suitable central extension G̃′ of G′ over F . The second is an L-

embedding ξ̃′ of G′ into LG̃′. (See [KoSh, §2.2].) This is the setting, namely an

endoscopic datum G′ (twisted or otherwise) with auxiliary datum (G̃′, ξ̃′), for the
transfer f → f ′ of functions.

We take the first function f to be in the Hecke module H(Gθ) on the space

Gθ(F ) = G(F ) o θ

(relative to the fixed maximal compact subgroup K of G(F )). The image f ′ = f G̃′

of f is a function on the set of strongly G-regular, stable conjugacy classes δ̃′ in

G̃′(F ). It is defined as a sum

f ′(δ̃′) = f ′
∆(δ̃′) =

∑

γ

∆(δ̃′, γ)fG(γ)

over the set of strongly G(F )-regular conjugacy classes γ in Gθ(F ). The linear form

fG(γ) is the invariant orbital integral of f over the G(F )-orbit of γ, while ∆(δ̃′, γ)

is a Langlands-Shelstad-Kottwitz transfer factor for θ, G′ and (G̃′, ξ̃′). We note
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that for a given δ̃′, ∆(δ̃′, γ) is supported on the finite set of classes γ of which δ̃′ is
a norm [KoSh, p. 29] (or an image, in the language of [LS, p. 226]).

The Langlands-Shelstad-Kottwitz conjecture asserts that f ′ is the image of a

function in a Hecke algebra on G̃′(F ). More precisely, f ′(δ̃′) should be the stable

orbital integral at δ̃′ of a fixed function in the equivariant Hecke algebra H(G̃′, η̃′),

where η̃′ is a character on the kernel C̃ ′(F ) of G̃′(F ) → G′(F ) determined by the

L-embedding ξ̃′. In other words, f ′ should belong to the space

S(G̃′, η̃′) =
{
hG̃′

: h ∈ H(G̃′, η̃′)
}
,

where hG̃′

is the function of δ̃′ given by the stable orbital integral of h. This is
one of the properties Shelstad has established for real groups (at least when θ is
trivial). For p-adic groups (again with θ trivial), it follows from the recent proof
[N] by Ngo of the fundamental lemma, and the earlier paper [W1] of Waldspurger.
We assume it in general in what follows.

The transfer factor ∆(δ̃′, γ) on which the mapping f → f ′ rests is an explicit
function (albeit one that is sophisticated enough to be pretty complicated). It is
determined up to a nonzero multiplicative constant. It also depends on the choice of

auxiliary datum (G̃′, ξ̃′). However, a change in this datum amounts to a change in

∆(δ̃′, γ) that multiplies it by a linear character in δ̃′. There is a similar equivariance

property of ∆(δ̃′, γ) under automorphisms of (G′, δ̃′). From this it is not hard to

show that the set of pairs (∆, δ̃′), where ∆ includes the choice of auxiliary datum

(G̃′, ξ̃′), determines a principal U(1)-bundle over the set of isomorphism classes
of pairs (G′, δ′), where δ′ is simply a strongly G-regular element in G′(F ), and
isomorphism is in the sense [KoSh, p. 18] of endoscopic data. (See [A5].) This

allows us to interpret the transfer f ′(δ′) = f ′
∆(δ̃′) of f as a section of the dual line

bundle.
I should point out that in the twisted case there are a couple of minor differences

here with the setting of [KoSh]. For example, the general case in [KoSh] is compli-
cated by the existence of a 1-cocycle zσ from WF to a finite group Zsc,θ. When this

cocycle is nontrivial, the corresponding transfer factor ∆(δ̃′, γ) has a mild equiv-

ariance condition under stable conjugation of the first variable δ̃′ [KoSh, (5.4)]. It
seems to me that the cocycle could be removed with an appropriate choice of the

auxiliary datum (G̃′, ξ̃′). I have not checked this point, but in any case, there is no
harm in simply assuming here that the cocycle is trivial.

In [KoSh], the second variable for ∆ is actually a (G, θ)-twisted conjugacy class
in G(F ), rather than a G(F )-orbit in Gθ(F ). However, the mapping γ → γθ−1,
γ ∈ Gθ(F ), is a bijection between the two kinds of classes. Our description here
does therefore match that of [KoSh]. Observe that the variety Gθ is a G-bitorsor
over F , in the sense that it comes with commuting left and right G-actions

x1(xo θ)x2 =
(
x1x θ(x2)

)
o θ, x1, x2, x ∈ G,

over F that are each simply transitive. Since it also has an F -rational point, Gθ(F )
is a G(F )-bitorsor.

We shall need a slightly different perspective. Suppose that G∗ is any G-
bitorsor over F that has a rational point. Then for any point τ ∈ G∗(F ), we obtain
an automorphism τ of G over F by setting

τ (x)τ = τx, x ∈ G.
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Suppose that G′ is an endoscopic datum for G∗ (relative to any τ), with auxiliary

datum (G̃′, ξ̃′), and that ∆(δ̃′, γ) is a function of a strongly G-regular stable conju-

gacy class δ̃′ in G̃′(F ) and a strongly G-regular G(F )-conjugacy class γ in G∗(F ).

We shall say that ∆ is transfer factor for G, G′ and (G̃′, ξ̃′) if there is a point
τ ∈ G∗(F ) such that the function

(δ̃′, xo τ) −→ ∆(δ̃′, xτ), x ∈ G(F ),

is a transfer factor for τ , G′ and (G̃′, ξ̃′). The point τ is of course not unique. For
example, we can replace it by a translate τz, for any z in the center Z

(
G(F )

)
of

G(F ). In other words, if ∆ is a transfer factor for G∗, so is the function

(z∆)(δ̃′, γ) = ∆(δ̃′, γz).

Observe that z∆ equals ∆ if z is of the form z−1
1 τ(z1) for some z1 ∈ Z

(
G(F )

)
. It

follows that the action ∆ → z∆ factors through the quotient

Z
(
G(F )

)
∗

= Z
(
G(F )

)
/
{
z−1
1 τ (z1) : z1 ∈ Z

(
G(F )

)}

of Z
(
G(F )

)
. In fact, it can be shown that the set of pairs (∆, δ̃′), where ∆ is a

transfer factor for G∗ (which comes with the data G′ and (G̃′, ξ̃′)), determines a
principal U(1)×ZG(F )∗-bundle over the set of isomorphism classes of pairs (G′, δ′),
where δ′ is simply a strongly G-regular element in G′(F ).

We are assuming the Langlands-Shelstad-Kottwitz transfer conjecture. The
correspondence f → f ′ is defined in geometric terms, which is to say by means of
orbital integrals. However, it also has a conjectural spectral interpretation. We will
be assuming this as well.

The spectral analogues of stable orbital integrals are parametrized by tempered
Langlands parameters. These are L-homomorphisms

φ : LF −→ LG

from the local Langlands group

LF =

{
WF , if F is archimedean,

WF × SU(2), if F is p-adic,

to LG, whose image projects to a relatively compact subset of Ĝ. Langlands con-

jectured that these parameters, taken up to Ĝ-conjugacy, index a partition of the
set of irreducible tempered representations of G(F ) into finite packets Πφ. He also
conjectured that a certain linear combination

fG(φ) =
∑

π∈Πφ

dπfG(π), f ∈ H(G),

of the characters

fG(π) = tr
(
π(f)

)

in the packet of a given φ should be stable, in the sense that it depends only on
the set of stable orbital integrals of f . The coefficients dπ are meant to be positive
integers, which are in fact equal to 1 if F is archimedean.

Suppose now that G′ is a twisted endoscopic datum for G (relative to an auto-
morphism θ, or if one prefers, a G-bitorsor G∗). Suppose also that

φ′ : LF −→ G′
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is an L-isomorphism with relatively compact image in Ĝ′. Then the composition
φ = ξ′ ◦ φ′ is a tempered Langlands parameter for G. (We are assuming that

all L-embeddings are of unitary type, so that the image of φ in Ĝ is indeed rela-

tively compact.) Similarly, if (G̃′, ξ̃′) is an auxiliary datum for G′, the composition

φ̃′ = ξ̃′ ◦ φ′ is a tempered Langlands parameter for G̃′. Suppose that f ′ = f ′
∆ is

the image in S(G̃′, η̃′) of f ∈ H(G), relative to a given transfer factor ∆. Since the

stable linear form attached to φ̃′ depends only on the image in S(G̃′, η̃′) of a given

test function in H(G̃′, η̃′), our assumptions imply the existence of a well defined
linear form

f ′(φ′) = f ′(φ̃′), f ∈ H(G∗),

on H(G). What is it?
We are dealing here with the remaining part of Langlands’ conjectural char-

acterization of the packets Πφ. In the untwisted case, the assertion is that f ′(φ′)
is again a linear combination of characters of representations π ∈ Πφ, but with
nontrivial coefficients ∆(φ′, π) that depend in the appropriate way on the choice
of ∆. There is in fact a conjectural interpretation of these coefficients in terms of
characters on a natural finite group attached to φ, but this need not concern us
here.

What does concern us is the twisted analogue of this conjectural assertion. We
assume now that we are working with a general bitorsor G∗. Then G∗ determines
a permutation π → ∗π on the set of (equivalence classes of) irreducible representa-
tions of G(F ), defined by setting

(∗π)(x) = π
(
τ−1(x)

)
, x ∈ G(F ),

on any τ ∈ G(F ). There is a dual permutation on the set of tempered Langlands
parameters that leaves φ fixed, since φ′ factors through the twisted endoscopic
datum G′. This means that the L-packet Πφ will be preserved by the original
permutation. Let Π∗

φ be the subset of representations π ∈ Πφ such that ∗π = π.

Then π belongs to this subset if and only if it has an extension π∗ to G∗(F ), which
is to say, a mapping π∗ of G∗(F ) into the set of unitary operators on the space on
which π acts such that

π∗(x1τx2) = π(x1)π∗(τ)π(x2), τ ∈ G∗(F ), x1, x2 ∈ G(F ).

(We are using the fact here that a tempered representation π is unitary.) The
extension π∗ is of course not unique. The fibres of the mapping π∗ → π are U(1)-
torsors, under the obvious action

(uπ∗)(τ) = uπ∗(τ), u ∈ U(1), τ ∈ G∗(F )

of the group U(1).
We can now describe the general conjectural expansion of the linear form above.

It is

(3.1) f ′(φ′) =
∑

π∈Π∗

φ

∆(φ′, π∗)fG(π∗), f ∈ H(G),

for coefficients ∆(φ′, π∗) that vary in the appropriate way with respect to the orig-
inal transfer factor ∆, and that satisfy

∆(φ′, uπ∗) = ∆(φ, π∗)u
−1, u ∈ U(1).

Observe that the summand in (3.1) depends only on π, and not the extension π∗.
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As the notation suggests, f ′(φ′) depends only on φ′. In other words, it is

independent of the choice of auxiliary datum (G̃′, ξ̃′). A variation in the choice of

ξ̃′, for example, is compensated by a corresponding variation in the composition

φ̃′ = ξ̃′ ◦ φ′. However, f ′(φ′) = f ′
∆(φ′) does still depend on the choice of transfer

factor ∆. We can think of ∆ as a family of transfer factors, one for each choice

of (G̃′, ξ̃′), which satisfy natural compatibility conditions as these choices vary.
Moreover, we have

f ′
z∆(φ′) = χφ′(z)f ′

∆(φ′), z ∈ Z
(
G(F )

)
∗
,

for a character χφ′ on Z
(
G(F )

)
∗

attached to φ′. One way to say this is that the

set of pairs (∆, φ′) determines a principal U(1)-bundle over the set of isomorphism
classes of pairs (G′, φ′).

4. Refinement of the problem

We return to the question at the end of §2. We shall state a conjectural formula
that relates the intertwining trace expression (2.4) with the transfer of functions
(3.1).

The expression (2.4) comes with a Levi subgroupM ⊂ G ofG and an irreducible
representation π of M(F ). We are treating only the simplest of cases, in which π
belongs to the relative discrete series Π2(M) of M . In particular, π lies in the
L-packet ΠφM

of a tempered Langlands parameter φM for M .
We fix a Levi subgroup LM ⊂ LG of LG that is dual to M . In other words,

we fix an L-isomorphism of the L-group of M with a Levi subgroup of LG. This
also provides us with an isomorphism of the Weyl group W (M) with W ( LM), the

subgroup of elements in the Weyl group W (M̂) that commute with the L-action of

ΓF on M̂ . Let φ be the composition of φM with the L-embedding of LM into LG.
Then φ is a tempered Langlands parameter for G.

We write

Sφ = Sφ/Z(Ĝ)ΓF ,

where Sφ is the centralizer in Ĝ of the image of (a representative of) φ, and Z(Ĝ)ΓF

is the subgroup of elements in the center of Ĝ that are invariant under the Galois
group ΓF . Then Sφ is a complex (not necessarily connected) reductive group, which
plays an important role in the spectral interpretation of endoscopic transfer. Let

Tφ be a fixed maximal torus in the connected component S
0

φ of 1 in Sφ. There is
then a commutative diagram
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1 1
y

y

W 0
φ W 0

φy
y

1 −−−−→ S1
φ −−−−→ Nφ −−−−→ Wφ −−−−→ 1
∥∥∥

y
y

1 −−−−→ S1
φ −−−−→ Sφ −−−−→ Rφ −−−−→ 1

y
y

1 1

of finite groups, defined as in [A2, §7]. Thus,

Nφ = Nφ/Tφ = π0(Nφ),

where Nφ is the normalizer of Tφ in Sφ, while S1
φ is the subgroup of components in

Nφ that commute with Tφ, and Wφ = Nφ/S
1
φ in the Weyl group of (Sφ, Tφ). There

is also a surjective mapping from Nφ onto the group of connected components

Sφ = Sφ/S
0

φ = π0(Sφ)

of Sφ, whose kernel is the Weyl group W 0
φ of (S

0

φ, Tφ). The quotient

Rφ = Sφ/S
1
φ = Wφ/W

0
φ

is called the R-group of φ. It governs the reducibility of induced representations

IP (π), π ∈ ΠφM
.

The expression (2.4) also comes with a Weyl element w ∈W (M). This element
represents a coset ofM in G, which we regard as anM -bitorsorMw. We can assume
that wπ ∼= π, since the trace in (2.4) would otherwise vanish. It follows from the

fact that π belongs to ΠφM
that the dual element ŵ of w in W (M̂) stabilizes

the Langlands parameter φM . In other words, ŵ belongs to the group Wφ in the
diagram. Its preimage in Nφ is then a coset S1

φŵ of S1
φ in Nφ. It is not hard to

show that T φ is isomorphic to Z(M̂)ΓF /Z(Ĝ)ΓF , a fact that allows us to identify
S1

φ with the group

SφM
= π0(SφM

) = π0

(
SφM

/Z(M̂)ΓF
)

attached to φM .
Suppose that s′w belongs to SφM

ŵ. Then s′w represents a semisimple coset of

Z(M̂)ΓF in Ĝ. We write M̂ ′ for its connected centralizer in M̂ . We then let ξ′w be
the identity L-embedding of the L-subgroup

M
′ = M̂ ′ φM (LF )

into LM . Finally, we take M ′ to be a quasisplit group over F that is in duality

with M̂ ′ (with respect to the L-action determined by M′). Then M ′ represents
a twisted endoscopic datum (M ′,M′, s′w, ξ

′
w) for M , relative to the bitorsor Mw.
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We write φ′w for the L-homomorphism from LF to M′ whose composition with ξ′w
is φM . According to the discussion at the end of §3, we can attach a finite linear
combination of traces

∑

π∈Πw
φM

∆w(φ′w , πw)tr
(
RP (πw), IP (π, f)

)

to any transfer factor ∆w for Mw and M ′. As in (3.1), the summand of π is
independent of the choice of extension πw of π to Mw(F ). It is a part of the
conjectural spectral interpretation of endoscopic transfer (the part we did not state,
having to do with the group SφM

) that by varying s′w, we can invert the matrix
of coefficients {∆w(φ′w , πw)}. The original problem is then equivalent to finding a
formula for this linear combination.

Given M ′, we shall introduce a family of (ordinary) endoscopic data EM ′(G)
for G. Suppose that s′ is an element in the subset

s′wTφ = s′wZ(M̂)ΓF /Z(Ĝ)ΓF

of Ĝ/Z(Ĝ)ΓF . Copying the construction above, we take Ĝ′ to be the connected

centralizer of s′ in Ĝ, ξ′ to be the identity embedding of the L-subgroup

G′ = Ĝ′
M

′ = Ĝ′φ(LF )

into LG, and G′ to be a quasisplit group over F that is duality with Ĝ′ (with
respect to the L-action defined by G ′). Then G′ represents an endoscopic datum
(G′,G′, s′, ξ′) for G. We define EM ′(G) to be the set of endoscopic data G′ for G
obtained in this way, as s′ ranges over Tφs

′
w. For any G′ in EM ′(G), we write φ′

for the L-homomorphism from LF to G′ whose composition with ξ′ equals φ.

Refined Problem. Suppose that M , φM , w, and M ′ are fixed as above, and that
G′ belongs to EM ′(G). Show that there is a natural mapping

∆ −→ ∆w,

from transfer factors ∆ for G and G′ to transfer factors ∆w for Mw and M ′, and
an explicit constant

c(φM,w),

such that

(4.1) f ′
∆(φ′) = c(φM , w)

∑

π∈Πw
φM

∆w(φ′w , πw)tr
(
RP (πw)IP (π, f)

)
,

for any f ∈ H(G).

The existence of a twisted transfer factor ∆w would put a number of difficulties
to rest. It would free the earlier conjecture stated in [A2, §7] from its problemati-
cal dependence on Whittaker models. It would also leave each side of the putative
formula (4.1) in perfect balance, relative to the extension πw of π and to the result-
ing dependence of each side on the choice of ∆. The constant c(φM , w) should of
course be independent of ∆. It ought to be easy enough to write down, given what
is expected for Whittaker models [A2, §7], but I have not done so. Whatever its
form, it will have to depend on an additive character ψF of F , in order to cancel the
corresponding dependence of the Langlands normalizing factor in RP (πw). Finally,
a global product of local identities (4.1) should have the desired global form [A3,
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(5.4)], since the product of local transfer factors leads to a canonical pairing, and
the product of the constants c(φM , w) should be 1.

At the moment, I do not have any idea how to construct a mapping ∆ → ∆w.
Whatever form it might take, it would have to reduce to that of the special case
that w = 1. In this case, M ′ represents an ordinary elliptic endoscopic datum
for M . The associated set EM ′(G) of endoscopic data for G is familiar for its role
in the stabilization of parabolic terms in the trace formula. (See [A4, §3], for
example.) We can identify M ′ with a Levi subgroup of any given G′ ∈ EM ′(G), and
then ∆ → ∆w = ∆M is just the usual restriction mapping of Langlands-Shelstad
transfer factors to Levi subgroups. In general, we would want the mapping ∆ → ∆w

to have a reasonable geometric formulation. If so, it will presumably also be some
kind of restriction operation. Perhaps the second variable of ∆ should range over
points

umwn, u ∈ NP (F ), m ∈ M(F ), n ∈ w−1NP (F )w ∩NP (F )\NP (F ),

modeled on the original intertwining integral, with u and n being in general position
and n also being close to 1. The paper [K] is suggestive, but I am afraid I have not
given the question sufficient thought.

In the case of quasisplit classical groups, one can work with Whittaker models
for general linear groups. The arguments are global. They rely on a generalization
of the fundamental lemma and the stabilization of the twisted trace formula for
GL(N), both of which have yet to be established. These granted, one can establish
an analogue of (4.1) for quasisplit orthogonal and symplectic groups. The resulting
formula does not depend explicitly on transfer factors, which can be normalized
according to the convention of [KoSh, (5.3)]. The formula is part of a long global
argument, in both proof and application, despite its local nature. In particular,
the analogue of (4.1) obtained for quasisplit orthogonal and symplectic groups is
an essential part of the global classification of automorphic representations of these
groups.
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