
A (very brief) History of the Trace Formula

James Arthur

This note is a short summary of a lecture in the series celebrating
the tenth anniversary of PIMS. The lecture itself was an attempt to
introduce the trace formula through its historical origins. I thank Bill
Casselman for suggesting the topic. I would also like to thank Peter
Sarnak for sharing his historical insights with me. I hope I have not
distorted them too grievously.

As it is presently understood, the trace formula is a general identity

(GTF)
∑
{geometric terms} =

∑
{spectral terms}.

The spectral terms contain arithmetic information of a fundamental
nature. However, they are highly inaccessible, “spectral” actually, in
the nonmathematical meaning of the word. The geometric terms are
quite explicit, but they have the drawback of being very complicated.

There are simple analogues of the trace formula, “toy models” one
could say, which are familiar to all. For example, suppose that A =
(aij) is a complex (n × n)-matrix, with diagonal entries {ui} = {aii}
and eigenvalues {λj}. By evaluating its trace in two different ways, we
obtain an identity

n∑

i=1

ui =

n∑

j=1

λj.

The diagonal coefficients obviously carry geometric information about
A as a transformation of Cn. The eigenvalues are spectral, in the precise
mathematical sense of the word.

For another example, suppose that g ∈ C∞

c (Rn). This function
then satisfies the Poisson summation formula

∑

u∈Zn

g(u) =
∑

λ∈2πiZn

ĝ(λ),

where

ĝ(λ) =

∫

Rn

g(x)e−xλdx, λ ∈ Cn,

is the Fourier transform of g. One obtains an interesting application
by letting g = gT approximate the characteristic function of the closed
ball BT of radius T about the origin. As T becomes large, the left
hand side approximates the number of lattice points u ∈ Zn in BT .
The dominant term on the right hand side is the integral
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ĝ(0) =

∫

Rn

g(x)dx,

which in turn approximates vol(BT ). In this way, the Poisson summa-
tion formula leads to a sharp asymptotic formula for the number of
lattice points in BT .

Our real starting point is the upper half plane

H =
{
z ∈ C : Im(z) > 0

}
.

The multiplicative group SL(2, R) of (2× 2) real matrices of determi-
nant 1 acts transitively by linear fractional transformations on H. The
discrete subgroup

Γ = SL(2, Z)

acts discontinuously. Its space of orbits Γ\H can be identified with a
noncompact Riemann surface, whose fundamental domain is the famil-
iar modular region.
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More generally, one can take Γ to be a congruence subgroup of SL(2, Z),
such as the group

Γ(N) =
{
γ ∈ SL(2, Z) : γ ≡ I(mod N)

}
.

The space Γ\H comes with the hyperbolic metric

ds2 =
dx dy

y2
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and the hyperbolic Laplacian

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
.

Modular forms are holomorphic sections of line bundles on Γ\H.
For example, a modular form of weight 2 is a holomorphic function
f(z) on H such that the product

f(z)dz

descends to a holomorphic 1-form on the Riemann surface Γ\H. The
classical theory of modular forms was a preoccupation of a number
of prominent nineteenth century mathematicians. It developed many
strands, which intertwine complex analysis and number theory.

In the first half of the twentieth century, the theory was taken to
new heights by E. Hecke (∼ 1920–1940)1. Among many other things,
he introduced the notion of a cusp form. As objects that are rapidly
decreasing at infinity, cusp forms represent holomorphic eigensections
of ∆ (for the relevant line bundle) that are square integrable on Γ\H.

The notion of an eigenform of ∆ calls to mind the seemingly sim-
pler problem of describing the spectral decomposition of ∆ on the space
of functions L2(Γ\H). I do not know why this problem, which seems
so natural to our modern tastes, was not studied earlier. Perhaps it
was because eigenfunctions of ∆ are typically not holomorphic. What-
ever the case, major advances were made by A. Selberg. I will attach
his name to the first of three sections, which roughly represent three
chronological periods in the development of the trace formula.

I. Selberg

(a) Eisenstein series for Γ\H (∼ 1950).

Eisenstein series represent the continuous spectrum of ∆ on the
noncompact space Γ\H. In case Γ = SL(2, Z), they are defined by
infinite series

E(λ, z) =
∑

(c,d)=1

(Im z)
1

2
(λ+1)

|cz + d|λ+1
, z ∈ Γ\H, λ ∈ C,

that converge if Re(λ) > 1. Selberg2 introduced general techniques,
which showed that E(λ, z) has analytic continuation to a meromorphic
function of λ ∈ C, that its values at λ ∈ iR are analytic, and that these
values exhaust the continuous spectrum of ∆ on L2(Γ\H). One can
say that the function

E(λ, z), λ ∈ iR, z ∈ Γ\H,
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plays the same role for L2(Γ\H) as the function eλx in the theory of
Fourier transforms.

(b) Trace formula for Γ\H (∼ 1955).

Selberg’s analysis of the continuous spectrum left open the question
of the discrete spectrum of ∆ on L2(Γ\H). About this time, examples
of square integrable eigenfunctions of ∆ were constructed separately
(and by very different means) by H. Maass and C.L. Siegel. Were
these examples isolated anomalies, or did they represent only what
was visible of a much richer discrete spectrum?

A decisive answer was provided by the trace formula Selberg created
to this end. The Selberg trace formula is an identity

(STF)
∑

i

aig(ui) =
∑

j

bj ĝ(λj) + e(g),

where g is any symmetric test function in C∞

c (R), {ui} are essentially3

the real eigenvalues of conjugacy classes in Γ, and {λi} are essentially3

the discrete eigenvalues of ∆ on L2(Γ\H). The coefficients {ai} and
{bj} are explicit nonzero constants, and e(g) is an explicit error term
(which contains both geometric and spectral data). The proof of (STF)
was a tour de force. The function g gives rise to an operator on
L2(Γ\H), but the presence of a continous spectrum means that the
operator is not of trace class. Selberg had first to subtract the con-
tribution of this operator to the continuous spectrum, something he
could in principle do by virtue of (a). However, the modified operator
is quite complicated. It is remarkable that Selberg was able to express
its trace by such a relatively simple formula.

Selberg’s original application of (STF) came by choosing g so that ĝ
approximated the characteristic function of a large symmetric interval
in R. The result was a sharp asymptotic formula

∣∣∣
{

Λj = 1
4
− λ2

j ≤ T
}∣∣∣ ∼

π

2
vol(Γ\H)T

for the number of eigenvalues Λj in the discrete spectrum. This is an
analogue of Weyl’s law (which applies to compact Riemannian mani-
folds) for the noncompact manifold Γ\H. In particular, it shows that
the congruence arithmetic quotient Γ\H has a rich discrete spectrum,
something subsequent experience has shown is quite unusual for non-
compact Riemannian manifolds.

Ramifications (∼ 1955–1960).

(i) Selberg seems to have observed after his discovery of (STF) that
a similar but simpler formula could be proved for any compact Riemann
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surface Γ′\H. (and indeed, for any compact, locally symmetric space).
For example, one could take the fundamental group Γ′ to be a congru-
ence group inside a quaternion algebra Q over Q with Q(R) ∼= M2(R).
The trace formula in this case is similar to (STF), except that the
explicit error term e(g) is considerably simpler.

(ii) Selberg also observed that (STF) could be extended to the Hecke

operators

{Tp : p prime}

on L2(Γ\H). These operators have turned out to be the most signif-
icant of Hecke’s many contributions. They are a commuting family
of operators, parametrized by prime numbers p, which also commute
with ∆. The corresponding family of simultaneous eigenvalues {tp,j}
carries arithmetic information. They can be regarded as the analytic
embodiment of data that govern fundamental arithmetic phenomena.
Selberg’s generalization of (STF) includes terms on the right hand
side that quantify the numbers {tp,j}. It also holds more generally
if L2(Γ\H) is replaced by the space of square integrable sections of
a line bundle on Γ\H. In this form, it can be applied to the space
of classical cusp forms of weight 2k on Γ\H. It yields a finite closed
formula for the trace of any Hecke operator on this space.

(iii) Selberg also studied generalizations of Eisenstein series and
(STF) to some spaces of higher dimension.

II. Langlands

(a) General Eisenstein series (∼ 1960–1965).

Motivated by Selberg’s results, R. Langlands set about constructing
continuous spectra for any locally symmetric space Γ\X of finite vol-
ume. Like the special case Γ\H, the problem is to show that absolutely
convergent Eisenstein series have analytic continuation to meromorphic
functions, whose values at imaginary arguments exhaust the continu-
ous spectrum. The analytic difficulties were enormous. Langlands was
able to overcome them with a remarkable argument based on an inter-
play between spectral theory and higher residue calculus. The result
was a complete description of the continuous spectrum of L2(Γ\X) in
terms of discrete spectra for spaces of smaller dimension.

(b) Comparison of trace formulas (∼ 1970–1975).

Langlands changed the focus of applications of the trace formula.
Instead of taking one formula in isolation, he showed how to establish
deep results by comparing two trace formulas with each other. He
treated three different kinds of comparison, following special cases that
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had been studied earlier by M. Eichler and H. Shimizu, Y. Ihara, and
H. Saito and T. Shintani. I shall illustrate each of these in shorthand,
with a symbolic correpondence between associated data for which the
comparison yields a reciprocity law. In each case, the left hand side
represents some form of the trace formula (STF), while the right hand
side represents another trace formula.

(i) (Γ\H) ↔ (Γ′\H)

{λj, tp,j} ↔ {λ′

j, t
′

p,j}.

Here Γ′\H represents a compact Riemann surface attached to a con-
gruence quaternion group Γ′. The reciprocity law, established by Lang-
lands in collaboration with H. Jacquet, is a remarkable correspondence
between spectra of Laplacians on two Riemann surfaces, one noncom-
pact and the other compact, and also a correspondence between eigen-
values of associated Hecke operators.

(ii) (Γ\H) ↔ (Γ\H)p

{tp,j} ↔ {Φp,j}.

Here (Γ\H)p represents an algebraic curve over Fp, obtained by re-
duction mod p of a Z-scheme associated to Γ\H. The relevant trace
formula is the Grothendieck-Lefschetz fixed point formula, and {Φp,j}
represent eigenvalues of the Frobenius endomorphism on the `-adic co-
homology of (Γ\H)p. The reciprocity law illustrated in this case gives
an idea of the arithmetic significance of eigenvalues {tp,j} of Hecke
operators

(iii) (Γ\H) ↔ (ΓE\HE)

{λj, tp,j} ↔ {λE,j, tp,j}.

Here, (ΓE\HE) is a higher dimensional locally symmetric space at-
tached to a cyclic Galois extension E/Q, and p denotes a prime ideal
in OE over p. The relevant formula is a twisted trace formula, attached
to the diffeomorphism of ΓE\HE defined by a generator of the Galois
group of E/F . The reciprocity law it yields (and its generalization
with Q replaced by an arbitrary number field F ) is known as cyclic
base change. It has had spectacular consequences. It led to the proof
of a famous conjecture of E. Artin on representations of Galois groups,
in the special case of a two dimensional representation of a solvable
Galois group. This result, known as the Langlands-Tunnell theorem,
was in turn a starting point for the work of A. Wiles on the Shimura-
Taniyama-Weil conjecture and his proof of Fermat’s last theorem.

My impressionistic review of the three kinds of comparison is not to
be taken too literally. For example, it is best not to fix the congruence
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subgroup Γ of SL(2, R). The correspondences are really between a
(topological) projective limit

lim
←−
Γ

(Γ\H)

and its three associated analogues. Moreover, the group SL(2) should
actually be replaced by GL(2). Nevertheless, the basic idea is as stated,
to compare a formula like (STF) with something else. One deduces
relations between data on the spectral sides from a priori relations
between data on the geometric sides. We recall that the geometric
terms in (STF) are indexed by conjugacy classes in the discrete group
Γ.

Before going to the next stage, I need to recall some other founda-
tional ideas of Langlands. To maintain a sense of historical flow, I shall
divide these remarks artificially into two time periods.

Between II(a) and II(b) (∼ 1965–1970).

During this period, Langlands formulated the conjectures that came
to be known as the Langlands programme. Many of these are subsumed
in his principle of functoriality. This grand conjecture consists of a col-
lection of very general, yet quite precise, relations among spectral data
{λj, tp,j} attached to arbitrary locally symmetric spaces Γ\X (of con-
gruence type). It also includes striking relations between these data
and arithmetic data attached to finite dimensional, complex represen-
tations of Galois groups.

Among other things, Langlands’ ideas altered definitively the lan-
guage of modular forms (and its generalizations). He formulated his
conjectures in terms of the adeles, a locally compact ring

A = R×
rest∏

p

Qp,

which contains Q diagonally as a discrete subring. This point of view
itself has an interesting history, which went through a series of refine-
ments with C. Chevalley, J. Tate, I. Gelfand and T. Tamagawa. In the
present setting, the basic observation is that there are natural isomor-
phisms

L2
(
SL(2, Z)\H

)
∼= L2

(
SL(2, Z)\SL(2, R/SO(2, R)

)

∼= L2
(
SL(2, Q\SL(2, A)/SO(2, R)K0

)
,
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for the compact subgroup

K0 =
∏

p

SL(2, Zp)

of SL(2, A). A removal of K0 from the last quotient causes the first
space to be replaced by a direct limit

lim
−→
Γ

L2(Γ\H) = L2
(

lim
←−
Γ

(Γ\H)
)
.

If one removes SO(2, R) from the quotient, one obtains a Hilbert space
that includes the square integrable sections of line bundles that define
classical cusp forms. Thus, the classical objects we have discussed
can all be combined together into the single Hilbert space of square
integrable functions on SL(2, Q)\SL(2, A).

To treat the general case of spaces of higher dimension, one simply
replaces SL(2) by a general reductive algebraic group G over Q. One
then studies the irreducible decompositon of the representation of G(A)
by right translation on the Hilbert space

H = L2
(
G(Q)\G(A)

)
.

Irreducible representations of G(A) obtained in this way are known as
automorphic representations. They carry all the information contained
in the spectral decomposition.

After II(b) (∼ 1975–1985).

Having established striking results by comparing the trace formula
for GL(2) with three other trace formulas, Langlands gave careful
thought to what might happen in general. There was no general trace
formula, at least initially, but it was still possible to make predictions.
The result was Langlands’ conjectural theory of endoscopy. This theory
offers a general strategy for comparing trace formulas attached to ar-
bitrary reductive groups G. It is founded largely on conjugacy classes,
both in G(Q) and any of its completions G(Qv) ∈ {G(R), G(Qp)}. The
theory is based on the critical observation that elements in G(Q) (or
G(Qv)) need not be conjugate even if they are conjugate over the al-
gebraic closure G(Q̄) (or G(Q̄v)). This phenomenon is absent in the
special case G = GL(2), but it would obviously be an essential consid-
eration in any general comparison of geometric terms in trace formulas.
The theory of endoscopy represents a precise measure, in both geomet-
ric and spectral terms, of the failure of geometric conjugacy to imply
conjugacy.
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III. Arthur4

(a) The general trace formula (∼ 1975–1985).

One takes G to be a reductive group over Q, as above. Any func-
tion f ∈ C∞

c

(
G(A)

)
then provides a convolution operator R(f) on the

Hilbert space H = L2
(
G(Q)\G(A)

)
, which in turn has an orthogonal

decomposition

R(f) = Rdisc(f)⊕ Rcont(f),

relative to the discrete and continuous spectra. The general trace for-
mula (GTF) is a formula for the trace5 of the operator Rdisc(f). It can
be written as a sum of relatively simple terms, indexed by Q-elliptic
conjugacy classes in G(Q), with more complicated “error” terms. The
error terms come from hyperbolic conjugacy classes in G(Q), which are
parametrized by elliptic conjugacy classes in Levi subgroups M of G,
and continuous spectra, which are parametrized by discrete spectra of
Levi subgroups.

(b) Endoscopy for classical groups (∼ 1995–present).

The problem is to classify automorphic representations of classical
groups G (such as the split groups SO(2n + 1), Sp(2n) and SO(2n))

in terms of automorphic representations of general linear groups G̃ =
GL(N). In the symbolic shorthand of II(b), the comparison takes the
form

G(Q)\G(A) ↔ G̃(Q)\G̃(A),

{λj, tp,j} ↔ {λ̃j, t̃p,j}.

However, the situation here is more subtle than that of II(b). On the
left, one has to take the stable trace formula for G, a refinement of the
ordinary trace formula that compensates for the failure of geometric
conjugacy to imply ordinary conjugacy. One also has to treat several
G together, taking appropriate linear combinations of terms in their
stable trace formulas. On the right, one takes the twisted trace formula

of G̃, relative to the standard outer automorphism x→ tx−1.
Despite the difficulties, it appears that this comparison of trace

formulas will lead to precise information about automorphic represen-
tations of classical groups. I mention three of what are likely to be
many applications.

(i) A classification of the automorphic representations of the split
classical groups G ought to lead to a sharp analogue of Weyl’s law6 for
the associated noncompact symmetric spaces

XΓ = Γ\X = Γ\G(R)/KR.
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(ii) In cases that XΓ has a complex structure (such as for G =
GSp(2n)), the classification gives important information about the L2-
cohomology H∗

(2)(XΓ). It leads to a decomposition of H∗

(2)(XΓ) that
clearly exhibits the Hodge structure, the cup product action of a Kähler
class, and the action of Hecke operators.

(iii) The theory of endoscopy for classical groups includes some
significant cases of functoriality. It also places automorphic L-functions
of classical groups on a par with those of GL(N).

IV. The Future

(a) Principle of functoriality (2007–?).

Many cases of the principle of functoriality lie well beyond what
is implied by the theory of endoscopy (which itself is still conjectural
in general). Langlands has recently proposed a strategy for applying
the trace formula (GTF) to the general principle of functoriality. The
proposal includes a comparison of trace formulas that is completely dif-
ferent than anything attempted before. It remains highly speculative,
and needless to say, is completely open.

(b) Motives and automorphic representations (2007–?).

As conceived by A. Grothendieck, motives are the essential building
blocks of algebraic geometry. If one thinks of algebraic varieties (say,
projective and nonsingular) as the basic objects of everyday life, mo-
tives represent the elementary particles. In a far-reaching generaliza-
tion of the Shimura-Taniyama-Weil conjecture, Langlands has proposed
a precise reciprocity law between general motives and automorphic
representations. It amounts to a description of arithmetic data that
characterize algebraic varieties in terms of eigenvalues {tp,j} of Hecke
operators attached to general groups G. This conjecture is again com-
pletely open. It appears to be irrevocably intertwined with the general
principle of functoriality.

Footnotes

1. These dates, like others that follow, are not to be taken too literally.

They are my attempt to approximate the relevant period of activity,

and to orient the reader to the development of the subject.

2. These results were actually first established by H. Maass, whose

work was later applied to more general discrete subgroups of SL(2, R)
by W. Roelke. However, Selberg’s techniques have been more in-

fluential, having shown themselves to be amenable to considerable

generalization.
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3. For example, the eigenvalues {Λj} are related to the numbers {λj}
by the formula Λj = 1

4
− λ2

j .

4. I was following a suggestion to divide the history of the trace formula

into three periods of development, indexed by three names!

5. The proof that Rdisc(f) is of trace class is due to W. Muller.

6. A general noncompact form of Weyl’s law has been established re-

cently by E. Lindenstrauss and A. Venkatesh. In the case of classical

groups above, the goal would be to establish the strongest possible

error term.


