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Foreword

This article is expository. It consists of a short description of the main results of [A2],
namely a characterization of the automorphic discrete spectrum of a quasisplit orthogonal
or symplectic group G. The article [A3] also contains a summary of the results of [A2].
However, we simplified the discussion there by defining global parameters in terms of the
hypothetical global Langlands group LF . Our focus here will be somewhat different. In
particular, we shall formulate the global parameters we need as in the original monograph,
simplified somewhat, but still without recourse to the undefined group LF .

We are assuming for the moment that the field F is global (of characteristic 0). We
recall that the global Langlands group LF is a hypothetical, locally compact extension
of the global Weil group WF by a subgroup KF that is compact, connected and (if we
are prepared to be optimistic) even simply connected. It would be characterized by the
property that its irreducible, unitary, N -dimensional representations parametrize unitary
cuspidal automorphic representations of the general linear group GL(N) over F . However,
its existence is far deeper than any theorems now available. The present role of LF is
therefore confined to one of motivation and guidance.

The global parameters ψ in [A2] were in fact defined crudely in terms of cuspidal auto-
morphic representations of general linear groups (rather than irreducible finite dimensional
representations of the hypothetical group LF ). This leads to a workable substitute Lψ for
LF . But as the notation suggests, it has the unfortunate property of being dependent on
ψ. We would be better off having a group that at the very least is independent of ψ. I had
originally planned to include the construction of such a group in this paper. It is a locally

compact group L̃∗F over WF that is indeed independent of ψ, and which for the purposes
of [A2] should serve as a substitute for the universal group LF . It amounts to an extension
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of the group L̃∗F,reg introduced in [A2, §8.5]. However, the construction of L̃∗F is related
to questions in base change and automorphic induction that, for me at least, require some
further thought. Rather than take the time here, I shall leave it for another paper.

This article will therefore be restricted to our brief survey of results from [A2]. It consists
of three sections, each devoted to its own general theme. We have chosen the title to reflect
these themes, and to draw attention to another difference from the survey [A3]. We have
tried here to motivate the results from a more elementary and explicit point of view. Each
theme leads naturally to the next, until we end in §3 with the global multiplicity formula for
G. I hope that the two surveys will be complementary, despite inevitably having much in
common. In this article we have emphasized the underlying context of the results (including
the role of LF and its possible substitutes), while [A3] was designed more as a guide to
their proofs. In particular, there will be no discussion here of the trace formula for G and
its stabilization, or the twisted trace formula for GL(N), and its conditional stabilization
on which the results still depend.

In §1, we describe automorphic families

c = {cv : v 6∈ S}

of Hecke eigenvalues for G. The general transfer of these objects is perhaps the most
concrete and fundamental manifestation of Langlands’s principle of functoriality. However,
the endoscopic transfer of Hecke eigenfamilies leads immediately to the more complex
question of how automorphic spectra behave under transfer. This question cannot be
framed in the absence of further local information. It forces us to provide a corresponding
local theory of endoscopic transfer.

In §2, we describe the classification of irreducible representations of a localization G(Fv)
of G. These results will be formulated explicitly in terms of irreducible characters, and the
transfer factors of Kottwitz, Langlands and Shelstad. We will then be able to state the
main global theorem in §3. It gives a decomposition of the automorphic discrete spectrum

L2
disc

(
G(F )\G(A)

)
of G in terms of global, “square integrable” parameters ψ ∈ Ψ̃2(G). The data ψ are the
global objects that would be defined naturally in terms of the hypothetical group LF , but
which must in practice be constructed in a more prosaic manner.

The results described in §1–§3 are special cases of Langlands’s conjectural theory of
endoscopy. They also give special cases of the broader principle of functoriality. However,
they occupy a special niche within the general theory. This is because a global parameter

ψ ∈ Ψ̃2(G) is uniquely determined by its associated Hecke eigenfamily

c(ψ) =
{
cv(ψ) = c(ψv) : v 6∈ S

}
,

regarded in fact as a family of conjugacy classes in a complex general linear groupGL(N,C).
In other words, the automorphic representation theory of G is governed by the concrete
objects introduced early in §1. This circumstance is also behind the construction of the

group L̃∗F , which we have postponed for now.
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We conclude the introduction with a review of the relevant groups. We take F to be
a local or global field of characteristic 0, and G to be a quasisplit, special orthogonal or
symplectic group over F . (We assume always that G is “classical”, in the sense that it is
not an outer twist of the split group SO(8) by a triality automorphism.) For the first three
sections of this paper, we follow the conventions from the beginning of [A3]. Then G has

a complex dual group Ĝ, and a corresponding L-group

LG = Ĝo ΓE/F .

We are taking ΓE/F = Gal(E/F ) to be the Galois group of a suitable finite extension E/F .

If G is split, for example, the absolute Galois group Γ = ΓF = ΓF/F acts trivially on Ĝ,

and we often take E = F .
There are three general possibilities for G, whose description we take from page 2 of

[A3]. They correspond to the three infinite families of simple groups Bn, Cn and Dn, and
are as follows.

Type Bn: G = SO(2n+ 1) is split, and Ĝ = Sp(2n,C) = LG.

Type Cn: G = Sp(2n) is split, and Ĝ = SO(2n+ 1,C) = LG.

Type Dn: G = SO(2n) is quasisplit, and Ĝ = SO(2n,C). In this case, we can take LG to
be the semidirect product of SO(2n,C) with ΓE/F , where E/F is an arbitrary extension of
degree 1 or 2 whose Galois group acts by outer automorphisms on SO(2n,C) (which is to
say, by automorphisms that preserve a fixed splitting of SL(2n,C)). The nontrivial outer
autmorphism of SO(2n,C) is induced by conjugation by some element in its complement
in O(2n,C).

The other infinite family of simple groups is of course An. We regard the split (reductive)
group GL(N), with N = n+ 1, as our representative from this family. Its role is different.
For we are treating the representations of GL(N) as known objects, in terms of which we
want to classify the representations of G. We write

θ̃(N) : x −→ J̃(N) tx−1J̃(N)−1, J̃(N) =


0 1

−1

. .
.

(−1)N+1 0

 ,

for the outer automorphism of GL(N) that stabilizes the standard splitting, and

G̃(N)+ = GL(N) o 〈θ̃(N)〉

for the semidirect product of GL(N) with the group (of order 2) generated by θ̃(N). It is
a union of the connected component

G̃(N) = GL(N) o θ̃(N)

and the identity component G̃(N)0 = GL(N). Of special interest are the irreducible

representations of GL(N) that are θ̃(N)-stable, which is to say that they extend to the

group G̃(N)+.
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We have introduced the “minimal” L-group LG = Ĝ o ΓE/F above for simplicity. It
suffices for many purposes. However, one is sometimes forced to take the Galois extension
E/F to be large. For this, it is easiest just to take the “maximal” L-group, either its Galois
form

LG = Ĝo ΓF ,

or its Weil form
LG = ĜoWF .

The former will be used at some point in §3, while the latter is used for the Langlands

group LF and its approximation L̃∗F .
The integers n of course refer to the number of vertices in the relevant Coxeter-Dynkin

diagrams. In the expository interests of this article, we will generally focus on a given
orthogonal or symplectic group G, rather than the set of G attached as twisted endoscopic
data to a given general linear group. In other words, we will usually fix G, and then take
the general linear group GL(N) attached to the standard representation of LG. It will thus
be understood implicitly that N equals 2n, 2n + 1 and 2n in the three cases Bn, Cn and
Dn. Note that if G is of type Cn, and we happen to be working with the maximal, Galois
form

LG = Ĝo ΓF = SO(2n+ 1,C) o ΓF

of the L-group, the standard representation is understood to be trivial on the Galois factor
ΓF . This represents the canonical twisted endoscopic datum forGL(N), whose complement
would be given by the set of embeddings parametrized by characters of ΓF of order 2. (See
[A2, §1.2].)

1. Hecke eigenfamilies

In this section, we take the field F to be global. Our theme will be the families of Hecke
eigenvalues, Hecke eigenfamilies, at the heart of automorphic representations. They are
conjectured to carry information that would characterize much of the arithmetic word,
according to a basic premise of the Langlands program.

We begin with the general linear group GL(N). We shall recall two fundamental theo-
rems for this group. These are the global foundation for the study of automorphic repre-
sentations of the other three families of groups G.

Given N , we consider the set Ψsim(N) = Ψsim

(
GL(N)

)
of triplets consisting of:

(i) a decomposition N = mn, for positive integers m and n;
(ii) an irreducible, unitary, cuspidal automorphic representation µ of the group GL(m);
(iii) the unique irreducible representation ν of the group SU(2) of dimension n.

Theorem 1.1 (Moeglin-Waldspurger [MW]). There is a canonical bijection

(1.1) ψ −→ πψ, ψ ∈ Ψsim(N),

from Ψsim(N) onto the set of irreducible unitary representations of GL(N,A) that occur in
the automorphic, relative discrete spectrum L2

disc

(
GL(N,F )\GL(N,A)

)
of GL(N). More-

over, for any ψ, πψ occurs in the relative discrete spectrum with multiplicity one.
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Moeglin and Waldspurger construct πψ explicitly as a multi-residue of a cuspidal Eisen-
stein series attached to µ. More precisely, a certain Eisenstein multi-residue provides an
intertwining operator from a global Langlands quotient, the global Speh representation πψ
obtained by parabolic induction from the nonunitary representation

(1.2) x −→ µ(x1)| detx1|
n−1
2 ⊗ µ(x2)|detx2|

n−3
2 ⊗ · · · ⊗ µ(xn)| detxn|−

n−1
2

of the standard Levi subgroup

MP (A) =
{
x = (x1, . . . , xn) : xi ∈ GL(m,A)

}
of GL(N,A), to a constituent of the relative discrete spectrum. The deepest part of the
theorem is to show that there is nothing further in the relative discrete spectrum. This
entails a sustained analysis of Chapter 7 of Langlands’s monograph [L1], and the various
supplementary residues that can arise from it.

Corollary 1.2. Let Ψ(N) = Ψ
(
GL(N)

)
be the set of pairs consisting of

(i) a partition N = N1 + · · ·+Nr of N ;
(ii) a formal unordered sum

ψ = ψ1 � · · ·� ψr, ψi ∈ Ψsim(Ni).

There is then a bijection

ψ −→ πψ, ψ ∈ Ψ(N),

from Ψ(N) onto the set of irreducible constituents of the full automorphic spectrum
L2
(
GL(N,F )\GL(N,A)

)
of GL(N).

The corollary is a consequence of Langlands’s general construction of automorphic spec-
tra from relative discrete spectra of Levi subgroups. For the given element ψ ∈ Ψ(N), πψ
is given by parabolic induction of the unitary representation

πψ1(x1)⊗ · · · ⊗ πψr(xr)

of the standard Levi subgroup

MP (A) =
{
x = (x1, . . . , xr) : xi ∈ GL(Ni,A)

}
of GL(N,A).

If we had the hypothetical Langlands group LF at our disposal, Ψ(N) could be identified
with the set of unitary, N -dimensional representations

(1.3) ψ : LF × SU(2) −→ GL(N,C)

of the product of LF with SU(2). The subset Ψsim(N) would then be identified with
the set of irreducible representations in Ψ(N). As matters stand here, the irreducible
representation of ν of SU(2) attached to an element ψ ∈ Ψsim(N) is not explicit in the
construction. One sees only its weights, which are represented by the quasicharacters

| · |
n−1
2 , | · |

n−3
2 , . . . , | · |−

n−1
2
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in (1.2). We often write Φbdd(N) for the subset of elements φ = ψ in Ψ(N) whose simple
factors ψi come with the trivial representation νi = 1 of SU(2). They would of course
correspond to representations (1.3) that are trivial on the factor SU(2).

Suppose that π is an irreducible (admissible) representation of GL(N,A). Then π is
unramified at almost all valuations v of F . We recall that for any v, the Satake transform
gives a canonical bijection

πv −→ c(πv)

from the set of unramified irreducible representations πv of GL(N,Fv) to the set of semisim-
ple conjugacy classes cv in the dual group GL(N,C) of GL(N). The given global repre-
sentation π thus gives rise to a family

c(π) =
{
cv(π) = c(πv) : v 6∈ S

}
of semisimple conjugacy classes in GL(N,C), parametrized by a cofinite set of valuations
v, and taken up to the equivalence relation obtained by setting c ∼ c′ if cv = c′v for almost
all v. We will call c(π) a Hecke eigenfamily. It represents a set of simultaneous eigenvalues
for the action of the factors of the restricted tensor product

HSun(N) =

∼⊗
v 6∈S
Hv,un(N)

of local unramified Hecke algebras

Hv,un(N) = C∞c
(
GL(N,Ov)\GL(N,Fv)/GL(N,Ov)

)
,

relative to the hyperspecial maximal compact subgroup

KS(N) =
∏
v 6∈S

Kv(N) =
∏
v 6∈S

GL(N,Ov)

of GL(N,AS), on the space of KS(N)-invariant vectors of π.
Suppose that ψ belongs to the set Ψ(N) defined in Corollary 1.2. We then obtain a

Hecke eigenfamily

(1.4) c(ψ) = c(πψ) =
{
cv(ψ) = c(πψ,v) : v 6∈ S

}
from the irreducible representation πψ of GL(N,A). This is to be regarded as a concrete
datum, which is attached to the formal object ψ through the automorphic representation
πψ. According to the remarks following the statements of Theorem 1.1 and Corollary 1.2,
c(ψ) is given explicitly in terms of the Hecke eigenfamilies

c(µi) =
{
cv(µi) : v 6∈ S

}
, 1 ≤ i ≤ r,

of the cuspidal components of the constituents ψi of ψ. More precisely, if ψ ∈ Ψsim(N) is
as in Theorem 1.1, then

(1.5) cv(ψ) = cv(µ)⊗ cv(ν) = cv(µ)q
n−1
2

v ⊕ · · · ⊕ cv(µ)q
−n−1

2
v ,

while if ψ ∈ Ψ(N) is a general element as in Corollary 1.2, we have

(1.6) cv(ψ) = cv(πi)⊕ · · · ⊕ cv(πr).



EIGENFAMILIES, CHARACTERS AND MULTIPLICITIES 7

These objects represent explicit conjugacy classes in GL(N,C).
We write

(1.7) C(N) =
{
c(ψ) : ψ ∈ Ψ(N)

}
for the set of Hecke eigenfamilies attached to elements in Ψ(N).

Theorem 1.3 (Jacquet-Shalika [JS]). The mapping

ψ −→ c(ψ), ψ ∈ Ψ(N),

is a bijection from Ψ(N) to C(N).

Historically, Theorem 1.3 predated Theorem 1.1. It applied to a class of automorphic
representations of GL(N) Langlands introduced in [L2], and called isobaric. At the time, it
was not known whether these included the constituents of the automorphic discrete spec-
trum. Theorem 1.1 implies that these constituents are distinct and isobaric. It therefore
yields the interpretation above of the original theorem of Jacquet and Shalika.

The injectivity of the mapping is of course the point of Theorem 1.3. It implies that any
information that might be contained in a constituent πψ of the automorphic spectrum of
GL(N) ought to be reflected somehow in the corresponding Hecke eigenfamily c(ψ). Since
c(ψ) appears to contain less information, the ramified local constituents of πψ being an
obvious gap, and since it is itself just a concrete set of complex parameters, the assertion
is quite remarkable. What about the other half of the problem? Can one characterize the
image C(N) of the mapping within the set of all Hecke eigenfamilies? The question is too
broad as stated, and would not be expected to have a reasonable answer. Langlands’s point
of view was to look instead for reciprocity laws between Hecke eigenfamilies in C(N) and
data obtained from other sources. It is in this context that we can frame the classification
of automorphic representations of the groups G.

The transition from general linear groups GL(N) to our classical groups G begins with
the contragredient involution

π −→ π∨(x) = π(tx−1) ∼=
(
π ◦ θ̃(N)

)
(x), x ∈ GL(N,A),

on irreducible representations π of GL(N,A). This operation also defines a natural invo-
lution ψ → ψ∨ on Ψ(N) such that

πψ∨ = π∨ψ .

It follows from the definitions that

c∨(ψ)
def
== c(ψ∨) =

{
c∨v (ψ) = cv(ψ)−1 : v 6∈ S

}
.

We write
Ψ̃(N) =

{
ψ ∈ Ψ(N) : ψ∨ = ψ

}
and

C̃(N) =
{
c ∈ C(N) : c∨ = c

}
for the subsets of self-dual elements in Ψ(N) and C(N). They are in bijection under the
mapping of the last theorem. As we will see, the automorphic representation theory of the
groups G is governed by these sets.
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Suppose that G is a quasisplit special orthogonal or symplectic group over F , as at the
end of the foreword. Satake transforms and unramified local Hecke algebras are again
defined for G, as they are for any connected reductive group over F . An irreducible
(admissible) representation π of G(A) then yields a Hecke eigenfamily

c(π) =
{
cv(π) = c(πv) : v 6∈ S

}
.

Its components cv(π) are semisimple classes in the L-group LG, which we define as usual

by Ĝ-conjugacy in the case Bn and Cn. If G is of type Dn, however, we agree to define

the classes in LG by O(2n,C) conjugacy (rather than conjugacy by the subgroup Ĝ =
SO(2n,C) of index 2). We continue to regard the family as an equivalence class under the
relation c ∼ c′ defined as for GL(N) above.

Given G, we write C̃(G) for the set of Hecke eigenfamilies c(π), where π ranges over irre-
ducible representation of G(A) that occur in the automorphic spectrum of L2

(
G(F )\G(A)

)
.

Theorem 1.4. The embedding of LG into GL(N,C) gives a canonical mapping

(1.8) C̃(G) −→ C̃(N).

The theorem asserts that the Hecke eigenfamily for GL(N) attached to an automorphic
Hecke eigenfamily for G is automorphic for GL(N). This is essentially Proposition 3.4.1 of
[A2], particularly the ensuing Corollary 3.4.3. The corollary actually applies to the discrete
spectrum of G, but an easy comparison of Levi subgroups of G and GL(N), together with
Langlands’s construction of continuous spectra by Eisenstein series, leads to the general
result.

It is easy to see that the mapping (1.8) is injective. (See the elementary analysis of [A2,

§1.2], with the group ΛF there taken to be infinite cyclic.) We can therefore regard C̃(G)

as a subset of C̃(N). One can actually characterize this subset. To do so, however, would
require some of the deeper results of [A2], so we shall put the matter aside for the moment.

Our main focus is the automorphic representation theory of G. We have just seen
that the Hecke eigenfamilies attached to automorphic representations of G are among the
automorphic Hecke eigenfamilies for GL(N). This is a reciprocity law of the sort mentioned
earlier. It represents a proof of a small part of Langlands’s principle of functoriality (so
called “weak functoriality” for the pair G and GL(N), and the standard embedding of LG
into GL(N,C)).

To understand the automorphic representation theory of G, we need to supplement the
reciprocity law. We would like to make it the foundation for a broader description of the

contribution of any element c in C̃(N) (a set whose objects we are regarding as known) to
the automorphic spectrum of G. It is enough just to consider the discrete spectrum, by the
theory of Eisenstein series. We can therefore pose the problem more precisely as follows.

Given any element ψ ∈ Ψ̃(N), and any irreducible representation π in the set{
π ∈ Π

(
G(A)

)
: c(π) = c(ψ)

}
,

find an explicit formula for the multiplicity

mψ(π) = mG,ψ(π)
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of π in the automorphic discrete spectrum of G. This of course would give information

about the subset C̃(G) of Ψ̃(N). For if mψ(π) is nonzero for any such π, the Hecke

eigenfamily c(ψ) lies in C̃(G). However, the most significant implication of the problem is
that it demands an understanding of local representation theory.

In the next section we will describe the local theory of endoscopy for the completions
G(Fv) of G. We will formulate results for irreducible representations πv of G(Fv) explicitly
in terms of their characters. This will allow us to describe the answer of the multiplicity
question in §3.

2. Local character relations

Throughout this section, we take the field F to be local. We fix a quasisplit special
orthogonal or symplectic group G, as at the end of the foreword. The local Langlands
group LF is given by a simple prescription, unlike its hypothetical global counterpart. By
definition, we have

LF =

{
WF , if F is archimedean,

WF × SU(2), if F is p-adic,

where WF is the (local) Weil group of F . We are therefore free to define local parameters
as L-homomorphisms from LF to the L-group LG.

In [A3, §1], we introduced four families of local parameters for G, and four families of

irreducible representations of G(F ). These give four pairs
(
Φ(G),Π(G)

)
,
(
Φ̃(G), Π̃(G)

)
,(

Φ̃bdd(G), Π̃temp(G)
)

and
(
Ψ̃(G), Π̃unit(G)

)
of loosely associated objects. In the first pair,

Φ(G) is the set of L-homomorphisms

φ : LF −→ LG,

taken up to Ĝ-conjugacy, and Π(G) is the set of irreducible representations of G(F ), taken
up to the usual notion of equivalence. The second pair is a quotient(

Φ̃(G), Π̃(G)
)

=
(
Φ(G)/ ∼, Π(G)/ ∼

)
of the first. The equivalence relation ∼ is trivial in case G is of type Bn or Cn, and is defined
by conjugation of LG by O(2n,C) and G(F ) by O(2n, F ) (rather than by SO(2n,C) and

SO(2n, F )) in case G is of type Dn. In the third pair, Φ̃bdd(G) is the set of (equivalence

classes of) parameters in Φ̃(G) of bounded image, and Π̃temp(G) is the set of (equiva-

lence classes of) tempered representations in Π̃(G). In the fourth pair, Ψ̃(G) is the set of
equivalence classes of L-homomorphisms

(2.1) ψ : LF × SU(2) −→ LG

such that the restriction of ψ to LF lies in Φ̃bdd(G), and Π̃unit(G) is the subset of unitary

representations in Π̃(G).
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Parameters ψ in the last set Ψ̃(G) can be extended analytically to the larger domain
LF × SL(2,C). For any such ψ, we write

φψ(u) = ψ

u,
|u|12 0

0 |u|−
1
2

 , u ∈ LF ,

where |u| is the pullback to LF of the canonical absolute value on WF . We obtain a
mapping

ψ −→ φψ, ψ ∈ Ψ̃(G),

from Ψ̃(G) to Φ̃(G), which is easily seen to be injective. Since we can regard Φ̃bdd(G) as

the subset of parameters in Ψ̃(G) that are trivial on the factor SU(2), we obtain canonical
embeddings

Φ̃bdd(G) ⊂ Φ̃(G) ⊂ Φ̃(G).

Similar definitions apply to the group GL(N). We write Φ(N) = Φ
(
GL(N)

)
, Φbdd(N) =

Φbdd

(
GL(N)

)
, Π(N) = Π

(
GL(N)

)
, Πtemp(N) = Πtemp

(
GL(N)

)
, and so on. The quotient

sets (for groups of type Dn) denoted by a tilde are not relevant to general linear groups.
We shall instead use the notation as in §1 to denote subsets of self-dual objects for GL(N).

Theorem 2.1 (Langlands [L3], Harris-Taylor [HT], Henniart [He], Scholze [Sch]). There
is a unique bijection

φ −→ πφ, φ ∈ Φ(N),

from Φ(N) onto Π(N) that is compatible with Rankin-Selberg L-functions and ε-factors,

with the automorphism θ̃(N) of GL(N), and with tensor products by 1-dimensional rep-
resentations, and that transforms determinants to central characters. Furthermore, the
mapping restricts to a bijection between the subsets Φbdd(N) and Πtemp(N) of Φ(N) and

Π(N), and restricts further to a bijection between the subsets Φ̃bdd(N) and Π̃temp(N) of
self-dual elements in Φbdd(N) and Πtemp(N).

Theorem 2.1 establishes a strong form of the local Langlands correspondence for the
group GL(N). For us, it will be the starting point of a local theory of endoscopy for the
group G. In this regard, its role amounts to a local analogue of that played by the two
global Theorems 1.1 and 1.3.

We return to our group G over F . For any parameter ψ in the subset Ψ̃(G) of Ψ̃(N),
we can define the centralizer

(2.2) Sψ = Cent
(
im(ψ), Ĝ

)
in Ĝ of its image, a complex reductive subgroup of Ĝ. We can then form the quotient

(2.3) Sψ = Sψ/S
0
ψZ(Ĝ)ΓE/F

where Z(Ĝ)ΓE/F is the subgroup of ΓE/F -invariants in the centre of Ĝ. For our group G
here, Sψ is a finite, abelian 2-group.
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Theorem 2.2. (a) For any ψ ∈ Ψ̃(G), there is a finite “multi-set” Π̃ψ in Π̃unit(G) (or

more precisely, a finite set over Π̃unit(G)), together with a canonical mapping

π −→ 〈·, π〉, π ∈ Π̃ψ,

from Π̃ψ to the group Ŝψ of linear characters on Sψ, both determined by twisted character
relations from GL(N).

(b) Suppose that ψ = φ lies in the subset Φ̃bdd(G) of Ψ̃(G). Then the elements in Π̃φ

are tempered and multiplicity free (so that Π̃φ is a subset of Π̃temp(G)). Moreover, the

mapping from Π̃φ to Ŝφ is injective, and bijective if F is p-adic. Finally, the set Π̃temp(G)

is a disjoint union over φ ∈ Φ̃bdd(G) of the packets Π̃φ.

The theorem is stated in [A2, §1.5] as Theorem 1.5.1. It is proved together with its
quantitive analogue, which we will state here as Theorem 2.3, in Chapters 6 and 7 of [A2].
The methods are global, specifically, a multifaceted comparison of global trace formulas.
However, Theorem 2.1 for GL(N) is an indispensable local ingredient. It allows us to

attach representations of GL(N,F ) to parameters ψ ∈ Ψ̃(G) through the mapping

Ψ̃(G) −→ Ψ̃(N),

which is defined by the embedding of LG into GL(N,C). Since the mapping is injective

(see [A2, §1.2]), we can identify Ψ̃(G) with a subset of Ψ̃(N), and hence with a set of
self-dual unitary representations of GL(N,F ). This transforms the proof of the theorem
to a series of questions in harmonic analysis, which centre around the problem of attaching
packets of representations of G(F ) to certain self-dual representations of GL(N,F ).

Part (b) of Theorem 2.2 is essentially the local Langlands correspondence for G, while

part (a) is a weaker assertion for the more general parameters ψ ∈ Ψ̃(G). Taken as a whole,
the theorem is to be regarded as a qualitative theory of local endoscopy for G. To have an
explicit form of the theory, however, we need to specify the endoscopic character relations
of (a). These will be formulated as the quantitative supplement Theorem 2.3 mentioned
above.

Characters are remarkable objects, which are at the heart of local harmonic analysis.
Their importance is of course tied to the fact that they determine the representations from
which they are derived. As functions that are complex valued rather than matrix valued,
they are more explicit, and more amenable to techniques in harmonic analysis.

Character theory for groups over local fields is a centrepiece of the work of Harish-
Chandra. Suppose that π is an irreducible (admissible) representation of G(F ). Harish-
Chandra proved first that the mapping

f −→ fG(π) = tr
(
π(f)

)
, f ∈ C∞c

(
G(F )

)
,

is defined, and is a distribution on G(F ). He then established the much deeper theorem
that is a function [Ha1], [Ha4]. More precisely,

fG(π) =

∫
G(F )

ΘG(π, x)f(x)dx,
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for a locally integrable function

ΘG(π, x), x ∈ G(F ),

whose restriction to the open dense subset Greg(F ) of (strongly) regular points in G(F ) is
analytic. It is this function that is the character of π. Its integral against any f depends
only on its restriction to Greg(F ), which is in turn invariant under conjugation. We can
therefore write

(2.4) fG(π) =

∫
Γreg(G)

IG(π, γ)fG(γ)dγ, f ∈ C∞c
(
G(F )

)
,

where Γreg(G) is the set of G(F )-conjugacy classes in Greg(F ), equipped with the measure
dγ defined by a set of Haar measures on the maximal tori

Gγ(F ) = Cent
(
γ,G(F )

)
,

while

(2.5) IG(π, γ) = |D(γ)|
1
2 ΘG(π, γ),

for the Weyl discriminant D(γ) of G, and

fG(γ) = |D(γ)|
1
2

∫
Gγ(F )\G(F )

f(x−1γx)dx

is the orbital integral of f at γ, defined by the quotient dx of a fixed Haar measure on
G(F ) and the chosen measure on Gγ(F ).

The function IG(π, γ) is known as the normalized character of π. We have included
it in the discussion in order to make a point. We are trying to demonstrate that the
theorems we quote describe interesting, concrete objects, which can sometimes be quite
explicit. This is particularly so for normalized characters. Suppose for example that F is
archimedean and that π is tempered. Then Harish-Chandra shows that if γ is restricted to
a connected component in the intersection of Greg(F ) with a maximal torus in G over F ,
then IG(π, γ) is a linear combination of exponential functions of γ, with complex coefficients
that can be described explicitly [Ha2], [Ha3]. This may be regarded as an analogue of
the Weyl character formula for compact connected groups, which is particularly striking
if we replace the irreducible character by a stable character (2.11). If F is p-adic, the
normalized character IG(π, γ) is deeper. It seems to be some combination of a finite germ
expansion near the singular set (with coefficients and germs of functions concrete but highly
complex objects), modulated by some unknown Gauss sums at intermediate distance from
the singular set, followed by a function that in some cases is again like an analogue of the
Weyl character formula. All of this is very interesting, but unlike the archimedean case, far
from known. Our view of normalized p-adic characters will sometimes be more like that
of global Hecke eigenfamilies. Rather than trying to calculate them explicitly, we would
search for reciprocity laws among normalized characters on different groups.
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There are three variants of these definitions we need to mention. The first is the nor-
malized character

(2.6) ĨG(π, γ) =
∑
π∗

IG(π∗, γ), π ∈ Π̃(G), γ ∈ Γ̃reg(G),

of an element π ∈ Π̃(G). It is a sum of irreducible characters, taken over the set Π(π) (of
order 1 or 2) of irreducible representations π∗ in the equivalence class π. The summands
depend on γ as an element in Γreg(G), but the sum itself can be regarded as a function of
γ in the obvious geometric analogue

Γ̃reg(G) = Γreg(G)/ ∼

of the spectral quotient Π̃(G) = Π(G)/ ∼. Once again, ĨG(π, γ) equals IG(π, γ) unless G
is of type Dn.

The second variant is a twisted character on GL(N). Suppose that ψ belongs to Ψ̃(N).
Then Theorem 2.1 gives rise to a representation πψ of GL(N,F ) that is self-dual, and

that therefore has an extension π̃ψ to the group G̃(N,F )+ generated by G̃(N,F ). There
is in fact a canonical extension determined by the theory of Whittaker models. (If ψ = φ

lies in the subset Φ̃bdd(N) of Ψ̃(N), for example, one takes Π̃ψ to be the extension that
stabilizes a Whittaker vector for πψ. In general, πψ does not have a Whittaker model, but
one can still work with the standard induced representation of which πψ is the Langlands
quotient. See [A2, §2.2].) Clozel has extended the Harish-Chandra character theorem to
nonconnected reductive groups. One can therefore write the distribution

f̃N (ψ) = tr
(
π̃ψ(f̃)

)
, f̃ ∈ C∞c

(
G̃(N,F )

)
,

as

(2.7) f̃N (ψ) =

∫
Γ̃reg(N)

ĨN (π̃ψ, γ̃)f̃N (γ̃)dγ̃,

for a smooth function ĨN (π̃ψ, γ̃) of γ̃ in the set Γ̃reg(N) of strongly regular, GL(N,F )-orbits

in G̃(N,F ). This function is the normalized twisted character of π̃ψ.

The third variant is a stable character for G. Suppose that ψ belongs to the subset Ψ̃(G)

of Ψ̃(N). We then define a smooth function

(2.8) S̃G(ψ, δ) =
∑

γ̃∈Γ̃reg(N)

ĨN (π̃ψ, γ̃) ∆(δ, γ̃)

of δ in the stable version

∆̃reg(G) = ∆reg(G)/ ∼
of the set Γ̃reg(G). The elements in ∆reg(G) are thus stable conjugacy classes in G(F ).
In other words, they are the equivalence classes under the relation on Γreg(G) defined by

G(F )-conjugacy (rather than the relation of G(F )-conjugacy that defines Γreg(G)). The
coefficients

∆(δ, γ̃), δ ∈ ∆̃reg(G), γ̃ ∈ Γ̃reg(N),
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in the sum are Kottwitz-Shelstad twisted transfer factors [KS], for the automorphism θ̃(N)
of GL(N) and the twisted endoscopic group G. They are functions that are simple enough
to be quite explicit, yet deep enough to be very interesting.

There is one other point, which for us pertains to ordinary endoscopy for G (rather than
twisted endoscopy for the group GL(N)). It concerns a bijective correspondence

(2.9) (G′, ψ′) ↔ (ψ, s), ψ ∈ Ψ̃(G), s ∈ Sψ,ss,

where G′ is an endoscopic group for G, and ψ′ belongs to the corresponding set Ψ̃(G′).
This entirely elementary construction can be regarded as an implicit foundation for the
theory. If s belongs to the set Sψ,ss of semisimple elements in the centralizer Sψ, G′ has
the property that

Ĝ′ = Cent(s, Ĝ)0.

The Galois action on Ĝ′ that suffices to define G′ as a quasisplit group over F is then
determined in a natural way by the parameter ψ. Once we have G′, the corresponding

parameter ψ′ is defined as the natural preimage of ψ. Now the connected centralizer Ĝ′ is
a product of general linear groups with a pair of complex special orthogonal or symplectic
groups. The quasisplit group G′ is therefore given by a similar product. The stable
character

S̃′(φ′, δ′) = S̃G
′
(φ′, δ′), δ′ ∈ ∆̃G-reg(G′),

on G′(F ) attached to φ′ is consequently a product of functions of the kind we have de-

fined. Indeed, the factors for the orthogonal or symplectic components of Ĝ′ are given by
analogues of (2.8), while the factor for any general linear group, in which stable conjugacy
reduces to ordinary conjugacy, is just an irreducible character.

Ordinary endoscopy of course also comes with transfer factors

∆(δ′, γ), δ′ ∈ ∆̃G-reg(G′), γ ∈ Γ̃reg(G).

These are the original factors of Langlands and Shelstad [LS]. They were suggested by
Shelstad’s earlier work for real groups, which was in turn motivated by Harish-Chandra’s
work [Ha2], [Ha3] on characters and orbital integrals. Like their twisted variants above,
they are also defined by very interesting, explicit formulas.

For simplicity, we shall state our refined supplement of Theorem 2.2 for parameters

ψ = φ in the subset Φ̃bdd(G) of Ψ̃(G).

Theorem 2.3. Suppose that φ is a local parameter in the set Φ̃bdd(G), that ξ is a character

on the abelian 2-group Sφ, and that π is the element in the packet Π̃φ such that

ξ(x) = 〈x, π〉, x ∈ Sφ.

Then the character of π is given by the formula

(2.10) Φ̃G(π, γ) = |Sφ|−1
∑
x∈Sφ

∑
δ′∈∆̃reg(G′)

ξ(x)−1S̃′(φ′, δ′)∆(δ′, γ),
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for any γ ∈ Γ̃reg(G). On the right hand side, (G′, φ′) is the preimage of (φ, s), for any s ∈
Sφ,ss that maps to the given index of summation x ∈ Sφ, while S̃′(φ′, δ′) is the corresponding
stable character, and ∆(δ′, γ) is the Langlands-Shelstad transfer factor for G and G′.

It is clear that Theorem 2.3 characterizes the objects of Theorem 2.2 uniquely in terms

of the characters Φ̃G(π, γ). If F equals R, the result was established for general groups by

Shelstad. (See [S2].) In this case, the mapping from Π̃φ to Ŝφ is only injective. If ξ lies in
the complement of its image, π is to be interpreted simply as 0, and the assertion of the
lemma becomes a vanishing formula.

It is also clear that the theorem gives reciprocity laws among local characters on different
groups. It relates characters on G with twisted characters on general linear groups. In fact,

it does more. If we sum each side of (2.10) over ξ ∈ Ŝφ, we observe that the summand of
any x 6= 1 on the right vanishes. Since the transfer factor for the endoscopic group G′ = G
can be taken to be 1, this gives the familiar formula

(2.11) S̃G(φ, δ) =
∑
π∈Π̃φ

ĨG(π, δ)

for a stable character. If we substitute its analogue for G′ back into (2.10), and apply
Fourier inversion for the group Sφ, we obtain reciprocity laws among characters on G and
its endoscopic groups G′.

Theorem 2.3 is essentially Theorem 2.2.1 of [A2], with its interpretation [A2, §8.3] in
terms of normalized characters. It is actually the special case for elements ψ = φ in

the subset Φ̃bdd(G) of Ψ̃(G). However, one can easily state the general result, again in
terms of normalized characters. The character formula (2.10) will remain valid for an

arbitrary element ψ ∈ Ψ̃(G) provided that we make two small changes. We must replace
the irreducible character π on the left hand side by the reducible sum

σ =
⊕
π

π

over the preimage in Π̃ψ of the given character ξ ∈ Ŝψ; we also must replace the factor
ξ(x)−1 on the right hand side with its translate ξ(sψx)−1 by the point

sψ = ψ

(
1,

(
−1 0
0 −1

))
in Sψ. The general form of Theorem 2.3 is then just the amended version

(2.12) Φ̃G(σ, γ) = |Sψ|−1
∑
x∈Sψ

∑
δ′∈∆̃reg(G′)

ξ(sψx)−1S̃′(ψ′, δ′)∆(δ′, γ)

of (2.10). We observe that the analogue for the stable character of ψ of the sum (2.11),
whose value at ψ′ appears on the right hand side of the general form (2.12) of (2.10),
becomes

S̃G(ψ, δ) =
∑
σ

〈sψ, σ〉ĨG(σ, γ) =
∑
π∈Π̃ψ

〈sψ, π〉ĨG(π, δ).
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We also note that the representations σ above are indeed often reducible. However, in the

p-adic case, Moeglin [M] has shown that the packet Π̃ψ is a subset of Π̃(G), so the reducible
representations σ are at least multiplicity free.

We make one other observation on Theorem 2.3, in preparation for the global discussion
of the next section. It represents a straightforward extension of the theorem, needed to
account for the possible failure of the generalized Ramanujan conjecture for GL(N).

Let Ψ̃+(G) be the set of equivalence classes of all L-homomorphisms (2.1). It is thus

composed of mappings ψ whose restriction to LF need not lie in the subset Φ̃bdd(G). Using

complex parameters in Ĝ, one sees that Ψ̃+(G) is a complex manifold, of which Ψ̃(G) is a

real submanifold. One observes also that the preimage Ψ̃+
S (G) in Ψ̃+(G) of any complex

reductive subgroup S of Ĝ (taken up to conjugacy), under the mapping

ψ −→ Sψ, ψ ∈ Ψ̃+(G),

is a locally closed submanifold of Ψ̃+(G). If Ψ̃+
S (G) is nonempty, its subset

Ψ̃S(G) = Ψ̃+
S (G) ∩ Ψ̃(G)

is a nonempty, real analytic submanifold of Ψ̃+
S (G). Suppose that ξ is a character on the

abelian 2-group

S = S/S0Z(Ĝ)ΓE/F .

Each side of (2.12) is then defined as a real analytic function of ψ ∈ Ψ̃S(G), which can be

analytically continued to the larger space Ψ̃+
S (G). The formula (2.12) therefore holds for any

ψ ∈ Ψ̃+
S (G), and hence for any parameter in the general set Ψ̃+(G). The price we pay for

this extension is that the constituents of a more general packet Π̃ψ become representations
induced from a nonunitary parameter, which no longer need to be irreducible or unitary.
(See the more explicit description in [A2, p. 45–46].) We will use this extended form of
Theorem 2.3 to construct global packets in the next section.

3. Global multiplicities

In this section we return to the case that the field F is global. We shall state the global
multiplicity formula in terms of objects formulated in the first two sections. The set Ψ(N)
is again the family of global objects attached to GL(N) in the statement of Corollary 1.2.
For each valuation v of F , we write Ψv(N), Πv(N), Ψ+

v (N), etc. for the sets of local objects
attached to Fv in the last section.

For any v, there is a localization mapping

ψ −→ ψv, ψ ∈ Ψ(N),

from Ψ(N) to the local set Ψ+
v (N). It is given by the composition

ψ −→ πψ −→ πψ,v −→ ψv,

where the left hand arrow is the bijection of Corollary 1.2, the middle arrow is given by
the local Fv-constituent of the representation πψ, and the right hand arrow is the inverse
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of the bijection of Theorem 2.1 (or rather, its extension to the larger domain Ψ+
v (N)).

We are interested in the analogue of this mapping for our quasisplit special orthogonal or
symplectic group G over F .

We have not yet attached a global subset Ψ̃(G) of Ψ̃(N) to G. For the moment, we
introduce only the smaller set

(3.1) Ψ̃sim(G) =
{
ψ ∈ Ψ̃sim(N) : c(ψ) ∈ C̃(G)

}
.

This is the essential case. We did define the local set Ψ̃(Gv) in §2. We also noted that

the mapping of Ψ̃(Gv) into Ψ̃v(N) given by the embedding of LGv into GL(N,C) is itself

an embedding. The same also being true of the larger sets Ψ̃+(Gv) and Ψ̃+
v (N), we can

regard the local set Ψ̃+(Gv) as a subset Ψ̃+
v (N).

Proposition 3.1. If ψ belongs to the subset Ψ̃sim(G) of Ψ̃(N), its localization ψv lies in

the subset Ψ̃+(Gv) of Ψ̃+
v (N). In other words, ψv maps the group LFv × SU(2) into the

subgroup LGv of GL(N,C).

This is essentially Theorem 1.4.2 of [A2]. Along with its purely global companion The-
orem 1.4.1, it is the starting point for many of the constructions of [A2], including that of

the sets Ψ̃(G). Theorems 1.4.1 and 1.4.2 are carried as induction hypotheses throughout
[A2]. These induction assumptions are not completely resolved until §8.2 of [A2], at which

point one would finally be able to see how the set Ψ̃(G) constructed in [A2, §1.4] is related

to the set C̃(G) of Hecke eigenfamilies we have defined in §1 here.
To describe the automorphic discrete spectrum of G, we need to introduce a global

subset Ψ̃2(G) of Ψ̃(N) that contains Ψ̃sim(G). It consists of the set of formal, unordered
direct sums

ψ = ψ1 � · · ·� ψr, ψi ∈ Ψsim(Ni),

as in the statement of Corollary 1.2, but which satisfy the following three supplementary
conditions:

(i) the constituents ψi of ψ are self-dual and distinct ;

(ii) for each i, ψi lies in the subset Ψ̃sim(Gi) of Ψ̃sim(Ni) attached to a special orthogonal

or symplectic group Gi over F , such that Ĝi and Ĝ are of the same type, either both
orthogonal or both symplectic;

(iii) The central character ηψ of the automorphic representation πψ of GL(N) equals the
product

ηψ1 · · · ηψr
of the central character of the representations πψi of GL(Ni).

If we were using the inductive definition of the subset Ψ̃(G) of Ψ̃(N) from [A2, §1.4], it

would follow immediately that Ψ̃2(G) is contained in this subset. We will return to the
question after stating the next theorem.

Suppose that ψ belongs to Ψ̃2(G). There is then a canonical embedding

Ĝ1 × · · · × Ĝr ↪→ Ĝ,
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up to conjugation by Ĝ in the cases Bn and Cn and by the group O(2n,C) in case Dn.
This follows from condition (ii). The condition (iii) leads to an embedding of L-groups.
However, we must formulate it in terms of the broader form

LG = Ĝo ΓF , Γ = ΓF = ΓF/F ,

of the L-group, rather than the abbreviated version introduced for simplicity at the end

of the introduction. (The action on Ĝ of the absolute Galois group ΓF factors through
the quotient ΓE/F of ΓF of order 1 or 2, which is why the simpler version of the L-group
suffices for many purposes.) The L-group of the product G1 × · · · × Gr becomes a fibre
product

L(G1 × · · · ×Gr) =

r∏
i=1

( LGi → ΓF )

of L-groups over ΓF . The condition (iii) then implies that the embedding of dual groups
above extends to an L-embedding

(3.2) L(G1 × · · · ×Gr) ↪→ LG

of L-groups.
The embedding (3.2) of L-groups leads directly to an object that governs the global

multiplicity formula. It is the centralizer

(3.3) Sψ = Cent
(
L(G1 × · · · ×Gr), Ĝ

)
in Ĝ of the image of the embedding. This is a finite abelian 2-group, as is the quotient

(3.4) Sψ = Sψ/Z(Ĝ)Γ = Sψ/Z(Ĝ)ΓE/F .

If v is any valuation, we can apply Proposition 3.1 to any of the groups Gi. We see that the
localization ψv of ψ maps the product LFv × SU(2) into the subgroup L(G1 × · · · ×Gr) of
LG. In particular, ψv belongs to the subset Ψ̃+(Gv) of Ψ̃+

v (N). We thus obtain a mapping

x −→ xv, x ∈ Sψ,
from Sψ to the centralizer quotient attached in the last section to the localization ψv.
Letting v vary, we form a global packet

(3.5) Π̃ψ =

{
π =

∼⊗
v

πv : πv ∈ Π̃ψv

}
,

where the restricted tensor product is over products π such that the character 〈·, πv〉 on

Sψv equals 1 for almost all v. Any π ∈ Π̃ψ then restricts to a character

(3.6) 〈x, π〉 =
∏
v

〈xv, πv〉, x ∈ Sψ,

on Sψ.

The global packet Π̃ψ is a set of irreducible representations of G(A) if G is of type Bn

or Cn. If G is of type Dn, however, the global packet is a set of global objects whose



EIGENFAMILIES, CHARACTERS AND MULTIPLICITIES 19

local constituents are elements in the set Π̃ψv over Π̃(Gv), which means that they are to
be regarded as orbits of irreducible representations of G(Fv) under the group

O(N,Fv)/SO(N,Fv) ∼= Z/2Z, N = 2n.

The underlying reason for this (and the other variants we have already encountered) is the
comparison with GL(N), which we will not discuss in this paper, but which is nonetheless
at the heart of the proofs. It leads naturally to representations of the group O(N,Fv) rather
than SO(N,Fv), which amount to orbits of representation of SO(N,F ). To describe the
decomposition of the discrete spectrum, we have consequently to introduce the locally
symmetric Hecke algebra

H̃(G) =

∼⊗
v

H̃(Gv).

It consists of functions on G(A) in the ordinary Hecke algebra

H(G) =

∼⊗
v

H(Gv)

that on each subgroup G(Fv) are unrestricted in the cases Bn and Cn, but that are sym-

metric under the automorphism θ̃(N) in case G is of type Dn. We recall that H(Gv)
equals the algebra C∞c

(
G(Fv)

)
of smooth (which is to say, locally constant) functions of

compact support if Fv is nonarchimedean, but is the subalgebra of Kv-finite functions in
C∞c

(
G(Fv)

)
if Fv is archimedean. Our use of the Hecke algebra rather than C∞c

(
G(A)

)
is

a minor matter in this context, which need not concern us.

Theorem 3.2. There is an H̃(G)-module isomorphism

(3.7) L2
disc

(
G(F )\G(A)

) ∼= ⊕
ψ∈Ψ̃2(G)

⊕
π∈Π̃ψ(εψ)

mψπ,

where mψ equals 1 or 2, while
εψ : Sψ −→ {±1}

is a linear character defined explicitly in terms of symplectic ε-factors, and

(3.8) Π̃ψ(εψ) =
{
π ∈ Π̃ψ : 〈·, π〉 = εψ

}
is the subset of the global packet Π̃ψ attached to εψ.

This is Theorem 1.5.2 of [A2], which was not established completely until near the
end [A2, §8.2] of the volume. It asserts that any constituent of the automorphic discrete
spectrum of G must lie in a global packet of the form

Π̃ψ, ψ ∈ Ψ̃2(G).

It also asserts that for any such packet, an element π ∈ Π̃ψ occurs in the discrete spectrum
if and only if the associated character 〈·, π〉 on Sψ equals εψ, in which case π occurs with
multiplicity 1 or 2. The objects εψ and mψ have explicit formulas, which we shall discuss
presently.
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At the suggestion of the referee, let me add a further comment on the case of Dn. If
G belongs to the complementary cases of type Bn and Cn, the assertion of the theorem
is clear. It is a precise formula for the multiplicity of a given irreducible representation
π in the automorphic discrete spectrum of G. But if G is of type Dn, the formula is
slightly weaker. In this case, it gives only a sum of multiplicities, taken over all irreducible
representations π′ of G(A) in the equivalence class

π =
⊗
v

πv, πv ∈ Π̃(Gv),

defined by products of orbits (of order 1 or 2) in G(A). The equivalence class could contain
infinitely many irreducible representations π′, but only finitely many of them will occur
with nonzero multiplicity. The question is related to the integer mψ, on which we will
comment at the end of the paper.

We have not been emphasizing proofs in this article. In fact, we have sometimes left out
critical remarks on a given proof in our attempt to state the result as vividly as possible.
The multiplicity formula (3.7) is a case in point. It is closely related to another fundamental
global result, which we call the stable multiplicity formula [A2, Theorem 4.1.2], and which
we apply to the preimage (G′, ψ′) of a global pair

(ψ, s), ψ ∈ Ψ̃2(G), s ∈ Sψ,ss,
under the global analogue of the bijective correspondence discussed briefly in the last
section. Combined with the global transfer of functions from G to G′, this leads to a
formula [A2, Corollary 4.1.3] that includes reciprocity laws among Hecke eigenfamilies for
G and its elliptic endoscopic groups G′. These complement the reciprocity laws between
Hecke eigenfamilies for G and GL(N) given by Theorem 1.4.

The global arguments are complex. But very roughly speaking, the multiplicity formula
(3.7) follows from the stable multiplicity formula (as expressed in Corollary 4.1.3 of [A2]),
and the ψ-component of the stabilization of the trace formula of G, for any element ψ ∈
Ψ(N) [A2, (4.1.2)]. As we have said, they are resolved only in §8.2 of [A2].

Theorem 1.5.2 could perhaps be regarded as the central result of [A2], especially con-
sidering that it requires the local results even to state. Formulated as Theorem 3.2, it is
certainly the culmination of the discussion in this paper. It is the third and last step in
our attempt to present the classification of automorphic representations of G. We recall
that the first step was the reciprocity law of Theorem 1.4. It tells us that the Hecke eigen-
family attached to any automorphic representation of G is among the automorphic Hecke
eigenfamilies for GL(N), objects we are taking to be understood. This raised the question
we have just answered with Theorem 3.2, given its interpretation as an explicit description
of the contribution of a Hecke eigenfamily to the discrete spectrum of G. The theorem was
in turn founded on the results of §2. As we recall, they consist of the explicit local transfer
of characters provided by Theorems 2.2 and 2.3.

In §1, we raised the question of describing the set C̃(G), as defined prior to Theorem 1.4,

explicitly as a subset of C̃(N). We can now give an answer. Let us first define the subset

Ψ̃(G) of global objects in Ψ̃(N) that are attached to G.
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A general (standard) Levi subgroup of G takes the form

M ∼= GL(N ′1)× · · · ×GL(N ′r′)×G−,

for positive integers N ′1, . . . , N
′
r′ and N− such that

2N ′1 + · · ·+ 2N ′r′ +N− = N.

The factor G− is a special orthogonal or symplectic group relative to GL(N−) such that

Ĝ− and Ĝ are of the same type, either both orthogonal or both symplectic, and such that
the quadratic character ηG− that defines G− as a quasisplit outer twist equals its analogue

ηG for G. Given M , we write Ψ̃M (G) for the set of elements

(3.9) ψ = (ψ1 � · · ·� ψr′ � ψ∨r′ � · · ·� ψ∨1 ) � ψ−,

where ψi ∈ Ψsim(Ni) and ψ− ∈ Ψ̃2(G−). We then define Ψ̃(G) to be the union over M of

the subsets Ψ̃M (G) of Ψ̃(N). This becomes quite explicit if we take account Theorem 1.5.3
of [A2], an important global result we have not yet mentioned. It characterizes the subset

Ψ̃sim(G) of simple objects ψ ∈ Ψ̃sim(N) in terms of their self-dual cuspidal components
µ, according to whether it is the symmetric square L-function or the skew-symmetric L-
function of µ that has a pole at s = 1. (See the remarks on p. 33–34 of [A2] as well as
the statement of Theorem 1.5.3.) Applied to the simple summands of ψ−, this gives an

explicit description of the subset Ψ̃2(G) of Ψ̃(G). The general definition (3.9) then leads

to an explicit characterization of the subset Ψ̃(G) of Ψ̃(N).

The set Ψ̃(G) is obviously closely related to the subset C̃(G) of C̃(N). We might expect

that C̃(G) is just the set

(3.10)
{
c(ψ) : ψ ∈ Ψ̃(G)

}
,

but this is not quite the case. For it is conceivable that there could be elements ψ in Ψ̃2(G)

such that the set Π̃ψ(εψ) of Theorem 3.2 is empty. There would then be no contribution
of ψ to the discrete spectrum of G, and by application of Theorem 1.3 to the definition
(3.9), no contribution of ψ to any part of the spectrum. Examples of this phenomenon
were found some years ago by Cogdell and Piatetskii-Shapiro [CP], by different methods.
The general question depends of course on the definition of the sign character, which we
have not yet discussed. In any case, the function (3.6) represents a mapping

(3.11) Π̃ψ −→ Ŝψ

of the global packet of ψ to the finite group of linear characters on Sψ. We write Ψ̃2,aut(G)

for the subset of elements ψ ∈ Ψ̃2(G) such that the sign character εψ lies in the image of
this mapping. It is then clear that the collection

C̃2(G) =
{
c(ψ) : ψ ∈ Ψ̃2,aut(G)

}
is the subset of Hecke eigenfamilies in Ψ̃(N) of the form c(π), where π ranges over irreducible
representations of G(A) that occur in the automorphic discrete spectrum of G. More
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generally, the original set from Theorem 1.4 is given by

(3.12) C̃(G) =
{
c(ψ) : ψ ∈ Ψ̃(G), ψ− ∈ Ψ̃2,aut(G−)

}
.

It can be characterized explicitly as a subset of Ψ̃(N) according to the remarks above.

The slightly ungainly description (3.12) is forced on us by the definition of C̃(G) prior to

the statement of Theorem 1.4. We could instead have defined C̃(G) simply as the larger set
(3.10). This would make sense from the perspective of the volume [A2], where the family

Ψ̃(G) was defined [A2, §1.4] early in the process. The understanding would then be that for

some elements c = c(ψ) in C̃2(G) say, every element π in the corresponding global packet

Π̃ψ could have multiplicity 0 in the automorphic discrete spectrum of G. However, such a
convention would not be in keeping with this article, and our emphasis on the reciprocity
laws satisfied by Hecke eigenfamilies. The point does not arise if ψ = φ lies in the subset

Φ̃bdd(G) of Ψ̃(G). For there is always an element πv ∈ Π̃ψv such that 〈 ·, πv〉 = 1, for any
v, and it is easy to see that εψ = εφ = 1 in this case. The discrepancy, which is relatively
rare in any case, can only occur then if the global parameter ψ is among those for which
Ramanujan’s conjecture is known to fail.

Incidentally, the image of the mapping (3.11) is related to a completely different question
from the volume [A2]. It concerns the refinements for groups of type Dn studied in §8.4
of [A2]. The problem is to characterize the irreducible representations π′ of G(A) in an

orbit π from a global packet Π̃ψ that occur in the automorphic discrete spectrum of G.

The problem was solved in the special case that ψ = φ lies in the subset Φ̃bdd(G), and the
mapping (3.11) is surjective, and in fact, under the weaker condition that the mapping

Sφ −→ SφA =
∏
v

Sφv

is injective.
It remains to say something about mψ and εψ, the essential numerical ingredients of the

theorem. The integer mψ is easily defined. It equals 1 unless G equals SO(2n) and the
integers Ni attached to the constituents ψi of ψ are all even, in which case mψ = 2. This
integer obviously bears on the question of the multiplicity with which an irreducible repre-
sentation π′ occurs in the automorphic discrete spectrum, but one also needs information

about the local packets Π̃ψv attached to ψ. For a full statement, once again in the case

that ψ = φ lies in the subset Φ̃bdd(G) of Ψ̃(G), see [A3, §3 (vii)].
The sign character εψ would also be straightforward to define, except that we would first

have to describe some internal structure of the group L(G1 × · · · × Gr) we used to define
Sψ. In [A2, §1.4], we attached a complex group Lψ over ΓF to the cuspidal factors µi of
the constituents ψi. There is then an L-embedding

Lψ × SL(2,C) −→ L(G1 × · · · ×Gr),

the centralizer in Ĝ of whose image in LG equals that of L(G1 × · · · × Gr), namely the
group Sψ. The character εψ is defined [A2, §1.5 and §4.6] in terms of global Rankin-Selberg
L-functions L(s, µi × µj) that are symplectic.
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