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Introduction 
This paper, along with a subsequent one, is an attempt to generalize the 

Selberg trace formula to an arbitrary reductive group G defined over the ratio- 
nal numbers. Our main results have been announced in the lectures [l(c)]. 

In his original papers [8(a), (b)], Selberg gave a novel formula for the trace of 
a certain operator associated with a compact quotient of a semisimple Lie 
group and a discrete subgroup. When the discrete subgroup is arithmetic, the 
situation is essentially equivalent to the case that the group G is anisotropic. 
Then G(A) is a locally compact topological group and G(Q) is a discrete sub- 
group such that G(Q)\G(A), the space of cosets (with the quotient topology), 
is compact. The operator is convolution on L2(G(Q)\G(A)) by a smooth, com- 
pactly supported function f on G(A). 

Let us recall how to derive the formula in this case. To understand the idea, it 
is not necessary to be an expert in algebraic groups, or even to be familiar with 
the notion of adeles. If (A E LWQ)\G(A),  define 

Then R is a unitary representation of G(A), and the convolution operator is 
defined by, 

(R(f)+)(x) can be written 
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by changing the variable of integration twice. Thus, R( f )  is an integral operator. 
Its kernel equals 

where 0 is the set of conjugacy classes in the group G(Q),  and 

On the other hand, there is an even more formal way to write the kernel. It is 
not hard to show that R decomposes into a direct sum of irreducible representa- 
tions of G(A),  each occurring with finite multiplicity. In other words 

where 3C is a set of unitary equivalence classes of irreducible representations 
of G(A),  and the restriction of the representation R to the subspace 
L2(G(Q)\G(A);, is equivalent to a finite number of copies of x. For each x â 2, 
let % be a suitable orthonormal basis of L2(G(Q)\G(A));,. Then 

is a second formula for the kernel of R ( f ) .  The Selberg trace formula comes 
from integrating both formulas for the kernel over the diagonal. (The necessary 
convergence arguments are easily established.) Thus 

where J. , ( f )  is the integral over x in G(Q)\G(A) of 

and J x ( f )  is the integral of 
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kx(x, f )  = Kx(x, 4. 
If {y} stands for a set of representatives of the conjugacy classes in G(Q), and 
G(y) denotes the centralizer of y in G, the formula can be written 

Thus, by simple formal manipulations, the trace of the operator R(f) has been 
expressed as a sum of integrals off over conjugacy classes. 

If G is not anisotropic, G(Q)\G(A) is no longer compact and everything 
breaks down. Selberg suggested a program for obtaining a formula and studied 
some special cases. Further progress has since been made by others, but the 
program has been carried out completely for only a small number of groups, 
essentially just GLz and related groups. 

What are the difficulties in the noncompact setting? In general R(f)  is still 
an integral operator. However, the natural definition of 0 seems to be the 
equivalence classes composed of those elements in G(Q) whose semisimple 
components are G(Q)-conjugate. If G is anisotropic, all the elements in G(Q) 
are semisimple so this relation is then just conjugacy. With KAx, y) defined as 
above, the kernel of R(f) can again be written 

One of the main complications in the noncompact setting is that R no longer 
decomposes discretely. R contains a continuous family of representations for 
every parabolic subgroup of G defined over Q. The intertwining operators are 
provided by Eisenstein series, whose main properties we recall in $3.  

We now have to define the set 3Â£ If G = GLn and investigations of Jacquet, 
Shalika and Piatetskii-Shapiro proceed as expected, 3Â could be defined as the 
classes of irreducible unitary representations of G(A) relative to a certain rela- 
tion, weaker than unitary equivalence. Otherwise, 3Â must be defined as in $3, 
in terms of cuspidal automorphic representations of Levi components of para- 
bolic subgroups of G. At any rate we obtain an identity 

in $4 by equating two different formulas for the kernel of R(f). We can now set 
x = y and ask whether the various functions on each side are integrable. 

It turns out that K(x,  x) is integrable precisely when o intersects no group 
P(Q), with P a proper parabolic subgroup defined over Q. The more parabolic 
subgroups that meet o, the worse will be the divergence of the integral. The 
integral of Kx(x, x) behaves in the same sort of way. We are therefore forced in 
$5 to modify the identity of adding suitable correction terms to each side. The 
correction terms are indexed by the conjugacy classes of proper parabolic sub- 
groups, P, of G, and they also depend on a point Tin a positive Weyl chamber. 
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The construction of the correction terms proceeds as follows: one multiplies 
the identity 

(the analogue for P of (2)), by the characteristic function of a subset of 
P(Q)\G(A) associated to T.  The product is then summed over P(Q)\G(Q) to 
make the functions left G(Q)-invariant. We denote the corrected functions by 
kzx, f )  and k;(x, f )  and obtain a new identity 

When T is large the correction terms all vanish on a large compact subset of 
G(Q)\G(A). On this set, kr(x,  f )  equals Ko(x, x). Moreover, if o does not inter- 
sect any proper parabolic subgroup, kxx, f )  equals Ko(x, x) everywhere. Simi- 
lar remarks apply to the functions on the right. 

Our main goal will be to show that each side of the new identity (3) is in- 
tegrable and that the integrals may be taken inside the sums. If Wf) and J^(f) 
stand for the integrals of the summands, we will then have a formula 

which generalizes the Selberg trace formula for compact quotient. 
In this paper we will deal with the left hand side of (3). We prove the in- 

tegrability in $7. The argument is partly geometric and partly combinatorial. It 
is a standard technique in classical reduction theory to partition the upper half 
plane modulo SLfl) into a compact region and a noncompact region whose 
topological properties are particularly simple. Imitating a construction in Lang- 
lands' manuscript on Eisenstein series, we introduce a similar partition of 
G(Q)\G(A). This partition and other geometric facts are discussed in $6. We 
begin $7 with some manipulations that yield different formulas for the functions 
k(x ,  f). This amounts to studying the components of k(x,  f )  on various sub- 
sets of the domain of integration. It turns out that all the components which are 
not integrable on a given subset cancel. What remains can be estimated by the 
Poisson summation formula as in GLv [5, Â§XVI] and is at length shown to be 
integrable. 

The classes o which do not meet any proper parabolic subgroup contain only 
semisimple elements, and are actual conjugacy classes. Thus Ĵ  f )  is independ- 
ent of T and can be expressed as an orbital integral as on the left hand side of 
(1). In $8 we study the distributions J^ for a wider collection of o, the classes we 
will term unramified. We will show that Wf) can still be expressed as an orbit- 
al integral of f. However, it will be the orbital integral with respect to a measure 
which is not invariant, but weighted by a function obtained by taking the vol- 
ume of a certain convex hull. It has been shown [I(^)] that this particular 
weighted orbital integral can be evaluated explicitly for certain special func- 
tions f. 
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The main use of the trace formula would be to obtain information about the 
right hand side from knowledge of the left hand side. One hopes that it will 
someday shed light on Langlands' functoriality conjecture, perhaps the funda- 
mental problem in the whole area. Three special cases of this conjecture have 
already been solved [5], [6 (c ) ] ,  [7], by using the trace formula for GL2. In each 
case, a trace formula for one group G was compared with the trace formula for 
G' = GL2. An arbitrary funciton f  on G(A)  was used to define a function f '  on 
G1(A)  so as to make the left hand sides of the two formulas equal. The corre- 
spondence between automorphic representations was then extracted from the 
resulting equality of right hand sides. The formula (4), whose proof we will 
complete in the next paper, is not as explicit as the trace formula for GLz [5, pg. 
516-5171. For example, if o is the class consisting of unipotent elements, we 
cannot express Ĵ  f )  as a weighted orbital integral. Nevertheless, I believe that 
(4) can eventually yield the same kind of results for general G.  One would 
characterize the distributions J7'. and Jl by the properties required by the appli- 
cations rather than by their explicit formulas. 

5 1. Preliminaries 
Let G be a reductive algebraic group defined over Q. We shall fix, for once 

and for all, a minimal parabolic subgroup Po, and a Levi component, M p ,  of P(,, 
both defined over Q. In this paper we shall work only with standard parabolic 
subgroups of G ;  that is, parabolic subgroups P ,  defined over Q, which contain 
PO. Let us agree to refer to such groups simply as "parabolic subgroups." Fix 
P. Let N p  be the unipotent radical of P and let Mp be the unique Levi com- 
ponent of P which contains M p .  Denote the split component of the center of 
M p  by Ap. N p ,  M p  and A p  are all defined over Q. Let X(Mp)Q be the group of 
characters of M p  defined over Q. Then 

ap = Horn ( ~ ( M P ) ~ ,  R) 

is a real vector space whose dimension equals that of An. Its dual space is 

a'p = X(Mp)Q (8 R. 

We shall denote the set of simple roots of ( P ,  A )  by Ap. They are elements in 
X(Ap)Q and are canonically embedded in a$. The set A. = A p  is a base for a 
root system. In particular, we have the co-root a^ in a p  for every root a â Ap. 

Suppose that Pi and P2 are parabolic subgroups with PI C P2. a $  comes with 
an embedding into (A, while ap2 is a natural quotient vector space of dp,. The 
group M p  D PI  is a parabolic subgroup of M p  with unipotent radical 

N;: = N ~ ,  n M ~ ; .  

The set, A&, of simple roots of (Mp2 n P I ,  Ap l )  is a subset of Apl. As is well 
known, P2 -* A;: is a bijection between the set of parabolic subgroups Ps which 
contain Pi, and the collection of subsets of Apt. Identify a p  with the subspace 

{ H  â ap, : a(H)  = 0 ,  a â Afe}. 
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If c& is defined to be the subspace of a P  annihilated by a h ,  then 

The subspace, (a%)*, of a$, spanned by A$: is in natural duality with afe and we 
have 

a:, = (a$:)* @ a:,. 

The space afe also embeds into a^, and 

Any root a â A& is the restriction to afe of a unique root f3 â Afe. Define ĉ  to 
be the projection onto a& of the vector fS^ in afc. Then 

is a basis of afe. Let 

A& = {ma : a E A&} 
be the corresponding dual basis for (a&)*. If m â A;!, define mV â afe by 

a(mV)=m(&), a Â £ A &  

Then {v̂ } and {a} is another pair of dual bases for afe and (afe)*. 
If Pi is a parabolic subgroup, and Pi appears in our notation as a subscript or 

a superscript, we shall often use only i, instead of Pi,  for the subscript or super- 
script. For example, 

If the letter P alone is used, we shall often omit it altogether as a subscript. 
Thus, P = NM, A is the set of simple roots of (P, A), and so on. G itself is a 
parabolic subgroup. We shall often write Z for Ac, and g for do. 

The following proposition is trivial to prove. However, it will be the ultimate 
justification for much of this paper so we had best draw attention to it. 

PROPOSITION 1.1. Suppose that Pi and Pz are parabolic subgroups, with 
Pi C Pi. Then 

Y (- l)(dim(A/A,) = 
{P : P, c P c P,) 

(The sum is, of course, over parabolic subgroups 
mined by P.) 

if Pi = Pa 
otherwise. 

P;  A = Ap is uniquely deter- 

Proof. The sum can be regarded as the sum over all subsets of A?. The 
result follows from the binomial theorem. 

Let A (resp. Ac) be the ring of adeles (resp. finite adeles) of Q. Then 
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is the restricted direct product over all valuations v, of the groups G(Qv). Fix, 
for once and for all, a maximal compact subgroup 

of G(A) so that the following properties hold: 
(i) For any embedding of G into GLn, defined over Q ,  K,, = GLJo,,) n G(Qv) 

for almost all finite places v. 
(ii) For every finite v, Kv is a special maximal compact subgroup. 

(iii) The Lie algebras of Ky and Ao(R) are orthogonal with respect to the 
Killing form. 

Suppose that P is a parabolic subgroup. If m = V\mv lies in M(A), define a 
vector H d m )  in ap by v 

Hu is a homomorphism of M(A) to the additive group up. Let M(A)l be its 
kernal. Then M(A) is the direct product of M(A)l and A(R)O, the component of 1 
in A(R). By our conditions on K, G(A) = P(A)K. Any x E G(A) can be written 
as 

nmak, n E MA), m E M(A)l, a â A(R)O, k â K. 

We define Hp(x) = H(x) to be the vector Hu(ma) = Hu(a) in an. Notice that if 
PI C P2, a& is the image of Mp2(A)l under Hpl. 

We shall denote the restricted Weyl group of (G, An) by fl.  f l  acts on a. and 
a% in the usual way. For every s â f l  we shall fix a representative ws in the 
intersection of G(Q) with the normalizer of An. w. is determined modulo Mo(Q). 
If Pi and P2 are parabolic subgroups, let fl(al, a2) denote the set of distinct 
isomorphisms from a, onto a, obtained by restricting elements in H to dl. Pi 
and P2 are said to be associated if fl(ai, a,) is not empty. If s1 belongs to 
fl(al, a2), there is a unique element s in f l  whose restriction to al is sl and such 
that s l a  is a positive root (that is to say, a root of (Po, An)) for every a E A$i. 
Thus, H(al, az) can be regarded as a subset of fl;  in particular, ws. is an element 
in G(Q) for every sl E fl(al,  a2). 

We shall need to adopt some conventions for choices of Haar measures. For 
any connected subgroup, V, of No, defined over Q ,  we take the Haar measure 
on V(A) which assigns V(Q)\V(A) the volume one. Similarly, we take the Haar 
measure of K to be one. Fix Haar measures on each of the vector spaces an. On 
the spaces a$ we take the dual Haar measures. We then utilize the isomorphisms 

to define Haar measures on the groups Ap(R)O. Finally, fix a Haar measure on 
G(A). For any P ,  let 
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and 

There is a vector pp  in a$ such the modular function 

on P(A) equals e-̂. Here rip stands for the Lie algebra of Np. There are 
unique Haar measures on M(A) and M(A)l such that for any function 
h E Cp(G(A)), 

- - h(nmak) e - 2 P ~ ( H ~ ( a ) )  dndadmdk. 

We should recall some properties of height functions associated to rational 
representations of G. Let V be a vector space defined over Q. Suppose that 
{v,, + . ., vn} is a basis of V(Q). If & â V(Qt;), and 

define 

if v is finite, and 

if v = R.  An element f = fl ti, in V(A) is said to be primitive if l l & l l i '  = 1 
u 

for almost all v, in which case we set 

I is called the height function associated to the basis {vl,  . ., vn}. Suppose 
that 

is a homomorphism defined over Q .  Let KA be the group of elements k E K 
such that llA(k)vII = Hull for any primitive v E V(A).  It is possible to choose the 
basis {vl ,  ., vn} such that K A  is of finite index in K, and also so that for each 
a â Ac, the operator A(a) is diagonal. We shall always assume that for a given 
A, the basis has been chosen to satisfy these two conditions. From our basis on 
V(Q) we obtain a basis for the vector space of endomorphisms of V(Q). Every 
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element in G(A) is primitive with respect to the corresponding height function 
and for every primitive v E V(A), and every x â G(A), 

If t > 0, define 

Gt = {x â G(A) : IIA(x)ll :s t}. 

Suppose that A has the further property that G, is compact for every t. It is 
known that there are constants C and N such that for any t, the volume of Gt 
(with respect to our Haar measure) is bounded by CtN. For the rest of this paper 
we shall simply assume that some A, satisfying this additional property, has 
been fixed, and we shall write llxll for IIA(x)ll. This "norm" function on G(A) 
satisfies 

llxll 2 1, 

\\k,xk211 = llxll, 

llxyll :s llxll-llyll, 
and 

for constants C and N, elements x,  y â G(A), and ki, k2 belonging to a subgroup 
of finite index in K. 

Once 1 1  1 1  has been fixed, we shall want to consider different rational represen- 
tations A of G. In particular, suppose that the highest weight of A is A ,  for some 
element A in a:. Then there are constants cl and cg such that 

for all x â G(A). By varying the linear functional A, we can then show that for 
any Euclidean norm 1 1 - 1 1  on we can choose a constant c so that 

\\Ho(x)\\ :s c(l  + log llxll), x â G(A). 

Suppose that P is a parabolic subgroup. Recall that there is a finite number of 
disjoint open subsets of a ,  called the chambers of a.  Their union is the com- 
plement in a of the set of hyperplanes which are orthogonal to the roots of 
(P, A). a+ is one chamber. According to Lemma 2.13 of [6(b)] the set of cham- 
bers is precisely the collection, indexed by all P' and s â fl(a, a'),  of open 
subsets s l ( a ' ) + .  We shall write n(A) for the number of chambers. More gener- 
ally, if Pi C P,  let np(Al) be the number of connected components in the orthog- 
onal complement in al of the set of hyperplanes which are orthogonal to the 
roots of (Pi fl M, Al). 

$2. The kernel Kp(x, y) 
Let R be the regular representation of G(A)l on L2(G(Q)\G(A)'). The map 

which sends f to the operator 
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gives us a representation of any reasonable convolution algebra of functions f 
on G(A)l. For example, we could take Cc(G(A)l), which is defined as the topo- 
logical direct limit over all compact subsets T of G(A)l, of the spaces of continu- 
ous functions on G(A)l supported on T. 

We shall be more interested in the smooth functions on G(A)l. For any place 
v, let G(QV)l denote the intersection of G(QÃˆ with G(A)l. Then G(R)l contains 
the connected component of 1 in G(A)l. Notice that for any v, Kv is contained in 
G(Qv)l. Suppose that KO is an open compact subgroup of G(AfY. Then the 
double coset space Ko\G(A)l/K0 is a discrete union of countably many copies 
of G(R)l. In particular it is a differentiable manifold. Suppose that T is a com- 
pact subset of G(A)l such that 

Let Cm(G(A)l, F, KO) be the algebra of smooth functions on Ko\T/Ko which are 
supported on T. %(g(R)l @ C), the universal enveloping algebra of the com- 
plexification of the Lie algebra of G(R)l, acts on this space on both the left and 
the right. We shall denote these actions by the convolution symbol. The semi- 
norms 

indexed by elements X, Y â %(g(R)l@ C), define a topology on Cm(G(A)l, F, KO). 
Let C%G(A)l) be the topological direct limit over all pairs (T, KO), of the 
spaces Cm(G(A)l, F, KO). If r is any positive integer we can define C m )  the 
same way, except that we of course take only those seminorms for which the 
sum of the degrees of X and Y is no greater than r. Finally, any subgroup L of 
G(A)l acts on C;(G(A)l) by 

We shall write CXG(A)l)L (or for that matter, we will write XL, if X is any set on 
which L acts) for the set of L-invariant elements. 

Suppose that f E C':(G(A)l). R(f) is an integral operator on G(Q)\G(A)l 
with kernel 

If we had the Selberg trace formula for compact quotient in mind, we would be 
inclined to decompose the formula for K(x, x) into terms corresponding to con- 
jugacy classes in G(Q). It turns out, however, that an equivalence relation in 
G(Q), weaker than conjugacy, is more appropriate to the non-compact setting. 
Any y â G(Q) can be uniquely written as ysyu, where y, is semi-simple, yu is 
unipotent, and the two elements commute. We shall say that elements y and y' 
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in G(Q) are equivalent if ys and y; are G(Q)-conjugate. Let 0 be the set of 
equivalence classes. Every class in 0 contains one and only one conjugacy 
class of semi-simple elements in G(Q). 

If y is in G(Q), and H is a subgroup of G, defined over Q, let H(y) be the 
centralizer of y in H. Both H(y) and its identity component, H(y)O, are defined 
over Q. If R is any ring containing Q, let H(R, y) be the centralizer of y in H(R). 
Now suppose that o is a class in 0. It is clearly possible to choose a parabolic 
subgroup P and a semisimple element y in o such that y belongs to M(Q), but 
such that no M(Q)-conjugate of y lies in Pl(Q), for Pl a parabolic subgroup of 
G, Pl 5 P. In other words, y lies is no proper parabolic subgroup of M, defined 
over Q. Elements in M(Q) with this property are called elliptic elements. M(y)O 
is a reductive group, defined over Q, which is anisotropic modulo A. The group 
P i s  not uniquely determined by o. However if (MI, y') is another pair, associat- 
ed to o as above, then y' = w y w l  for some element w â G(Q). Since A' is the 
split component of the center of G(yl)O, it equals wAwP1. Therefore w = wsq, 
for s â n(a ,  a'), and 7 â M(Q). It follows that there is a bijection from 0 onto 
the set of equivalence classes of pairs (M, c), where P = NM is a parabolic 
subgroup and c is a conjugacy class in M(Q) of elliptic elements, two pairs 
(M, c) and (MI, cl) being defined to be equivalent if c' = wscw;l for some s in 
O(a, a'). 

Suppose that o is a class in 0 and that P and y are as above. Let S denote the 
set of roots of (P, A). S determines a decomposition 

of the Lie algebra of N. Let S(y) be the set of roots a in S such that the central- 
izer of y in na is not zero. The elements in S(y) are, of course, characters on A. 
Let A' be the intersection of their kernels. We can choose parabolic subgroups 
Pl C P2, and an element s E fl(a, dl), such that A2 = wSA'w;l. Set 
y, = wsywsl. It is an elliptic element in Mi@). Az is the split component of the 
center of G(y1)O, and P1(yl)O is a minimal parabolic subgroup of G(y1)O. Notice 
that Pl and P, are equal if and only if every element in the class o is semisimple. 
In general, any element in o is conjugate to ylvl, where v l  is a unipotent element 
in P1(y1)O. vl must lie in the unipotent radical of P1(yl)O, so in particular it be- 
longs to Nl(Q). 

LEMMA 2.1. Suppose that P = NM is a parabolic subgroup defined over 
Q. Suppose that p is in M(Q). Then if (A â Cc(N(A)), 

Proof. Neither side of the putative formula changes if p is replaced by an 
M(Q)-conjugate of itself. After noting that the previous discussion can be ap- 
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plied to classes in M(Q) as well as G(Q) ,  we can assume that there is a parabolic 
subgroup P i ,  with Pi C P ,  such that y,  E M i @ ) ,  and yu â M(Q, 7 , )  H Nl(Q) .  
Now the Lie algebra of N can be decomposed into eigenspaces under the action 
of A l .  It follows that there exists a sequence 

of normal yS-stable subgroups of N which are defined over Q and satisfy the 
following properties: 

(i) Nk + l\Nk is abelian for each k. 
(ii) If 8  â N k ,  and T )  either belongs to N or equals y,,, T ) - ~ ~ " ' T ) S  belongs to 

Nk + 1 .  

We shall show that for all k ,  0 5 k  5 r ,  

equals 

(2.2) s y ^(y-'8-^8). 
8 N(Q,y,)\N(Q) T )  6 N(Q.y.) 

The assertion of the lemma is the case that k = 0. The equality is immediate if 
k = r .  B y  decreasing induction on k ,  we assume that (2.2) equals 

- - I 1 4 ( ~ - ~ 8 ; ~ 8 ; ~ ~ ~ ) 8 ~ 8 1 ) .  
82 Â NI.I.Q.Y.W~ + ,(Q)\Nk(Q) 7 

For fixed E Nk(Q),  we change variables in the sum over T ) .  We find that 

where 
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is a compactly supported function on the discrete set 

Nk(Q,  Y S )  N k  + i(Q)\Nk(Q). 

The map 

y -  ̂Nk(')'s)Nk + 1 y'sly^ysy, Y Nk(~s)Nk + 

is an isomorphism from Nk(y,,)Nk + l\Nk onto itself which is defined over Q. 
Therefore 

It follows from the lemma that if o E 0, and if y E o l"l M(Q), then yy be- 
longs to o for each y in N(Q).  In other words 

A similar remark holds for the intersection of o with any parabolic subgroup of 
M. 

LEMMA 2.2 Under the hypotheses of Lemma 2.1, 

Proof. The proof can be transcribed from the proof of Lemma 2.1 by re- 
placing each sum over a set of rational points by the integral over the corre- 
sponding set of A-valued points. 0 

If o E 0, define 

Then 

K(x,  Y )  = S KO(x, Y ) .  
0 

More generally, if P is a parabolic subgroup, define 

Then 
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equals 

This is just the kernel of Rp(f), where Rp is the regular representation of G(A)l 
on L2(N(A)M(Q)\G(A)l). 

53. A review of Eisenstein series 
In this section we shall recall those results on Eisenstein series which are 

needed for the trace formula. They are due to Langlands; the main ideas are in 
the article [6(a)] while the details appear in [6(b)]. Suppose that P is a parabolic 
subgroup. Recall that the space of cusp forms, LEusp (M(Q)\M(A)I), on M(A)I 
is the space of functions 4 in L2(M(Q)\M(A)l) such that for any parabolic 
subgroup Pi,  with Pl S P ,  

where p ranges over all irreducible unitary representations of M(A)l, and each 
Vp is an M(A)I-invariant subspace of L& (M(Q)\M(A)'), isomorphic under 
the action of M(A)l to a finite number of copies of p. An irreducible unitary 
representation p of M(A)l is said to be cuspidal if Vp + 0. Suppose that P' is 
another parabolic subgroup, and that pr  is an irreducible unitary cuspidal repre- 
sentation of Mt(A)l. We shall say that the pairs (M, p )  and (MI, p') are equiva- 
lent if there is an s E Sl(a, a t )  such that the representation 

is unitarily equivalent to p t .  Let ^? be the set of equivalence classes of pairs. 
Then corresponding to any x E ^?we have a class, Px, of associated parabolic 
subgroups. If P is any parabolic subgroup and x E ^?, set 

LEusp (M(Q)\M(AI1)x = (D VP. 
{P:(M,P)  â X )  

This is a closed M(A)l-invariant subspace of LLso (M(Q)\M(A))I), which is 
empty if P does not belong to Px. We have 
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Again suppose that P is fixed and that x â SK. Suppose first of all that there is 
a group Pi in % which is contained in P. Let \li be a smooth function on 
Nl(A)Ml(Q)\G(A) such that 

vanishes for a outside a compact subset of Al(Q)\Al(A), transforms under KR 
according to an irreducible representation W, and as a function of m,  belongs to 
L&(M1(Q)\Ml(A)l). One of the first results in the theory of Eisenstein series 
is that the function 

is square integrable on M(Q)\M(A)l, ( [6(a) ,  Lemma I]). We define 
LYM(Q)\M(A)l),/ to be the closed span of all functions of the form @, where 
PI runs through those groups in Sftv which are contained in P ,  and W is allowed 
to vary over all irreducible representations of KR.  If there does not exist a group 
Pi â g?,/ which is contained in P ,  define L2(M(Q)\M(A)l),/ to be {O} .  It follows 
from [6(a) ,  Lemma 21, that L2(M(Q)\M(A)l) is the orthogonal direct sum over 
all x â E of the spaces L2(M(Q)\M(A)l),/. 

For any P ,  let II(M) denote the set of equivalence classes of irreducible uni- 
tary representations of M(A). If t, â a; and 'n â II(M), let 'n{, be the product of 
'n with the quasicharacter 

If t, belongs to /a*, IT{ is unitary, so we obtain a free action of the group ia* on 
II(M). II(M) becomes a differentiable manifold whose connected components 
are the orbits of ia*. We can also transfer our Haar measure on ia* to each of 
the orbits in II(M); this allows us to define a measure d'n on II(M). If Pz 3 P, let 
I I p 2 ( M )  be the space of orbits of iai on II(M). IPqM) inherits a measure from 
our measures on II(M) and ia i .  

For 'n â II(M), let Xj? be the space of smooth functions 

which satisfy the following conditions: 
(i) 4 is right K-finite. 
(ii) For every x E G(A) ,  the function 

is a matrix coefficient of 'n. 

Let Xp('n) be the completion of Y@('n). It is a Hilbert space. If 4 â 3Vp('n), and 
t, â a;, define 
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and 

Then Zp(7rr) is a representation of G(A) which is unitary if ( E ia*. Notice that 
Xp(7r) = { O }  unless there is a subrepresentation of the regular representation of 
M(A)l on L^M(Q)\M(A)l) which is equivalent to the restriction of 7r to M(A)l. 

Given x â 3Â£ let Xp(7r)), be the closed subspace of Xp(7r) consisting of those 
4 such that for all x the function 

belongs to LWQ^M(A)l)), .  Then 

(I do not know whether Xp(7r)x can be nonzero for more than one x.) Suppose 
that KO is an open compact subgroup of G(Ac) and that W is an equivalence class 
of irreducible representations of Ka. Let %p(7r)xxo be the subspace of functions 
in Xp(,TT\ which are invariant under KO n K ,  and let SVpWxXojw be the space of 
functions in Xp(7r)xa which transform under KR according to W. It is a con- 
sequence of the decomposition of the spaces L2(M(Q)\M(A)l)),, established by 
Langlands in $7 of [6(b)], that each of the spaces %p(7r)x80,w is finite dimension- 
al. We shall need to have ortho-normal bases of the spaces SVpWx. Let us fix 
such a basis, SQp(7r)),, for each 7r and x such that 

and such that every 4 â 9 p W X  belongs to one of the spaces Xp(7r)xxo,w. We 
shall need these bases in the next section, when we give a second formula for 
the kernal K(x, y) in terms of Eisenstein series. 

Suppose that 7r â II(M),  E Pp(7r), t, E a;,= and s â n(a,  a'). If Re i, be- 
longs to pp + (a$)+, the Eisenstein series and global intertwining operators are 
defined by 

1 

E(x, 4 ~ )  = V<i)i(8x) . 8~(8xy,  
6 â P(Q)\G(Q) 

and 
1 

(Mb, ~r)<br)(x) = (b^wynx) - 8p(w2nx)2 
N'(A) r l  w,N(A)w;'\N'(A) I 

1 

aP(x) dn. 

The properties that we will need are all contained, at least implicitly, in [6(b)] 
(see especially Appendix 11), and have been summarized in [l(c)]. For the con- 
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venience of the reader, we shall recall them again here. 
E(x, <bf) and M(s, ~ r ~ ) d ) ~  can be continued as meromorphic functions in t, to 

a;. If t, â ia*, E(x, A) is a smooth function of x, and M(s, TT{) is a unitary 
operator from Xp(irg) to Xpi(sirr). There is an integer N such that for any 4 ,  

sup (ll~ll-~lE(x, +Â£)I 
x â G(A) 

is a locally bounded function on the set of t, â a: at which E(x, c$~) is regular. If 
h â CJG(A))" and t â l I(ar ,  a"), the following functional equations hold: 

(ii) E(x, M(s, -n-)d)) = E(x, 4). 
(hi) M(ts, ir) = M(t, sir) M(s, Tr). 

Let Sft be a class of associated parabolic subgroups. Let L9 be the set of collec- 
tions F = {Fp : P â Sfi} of functions 

such that 
(i) Fp,(sir) = M(s, i r )Fp(4,  s â 0 ( a ,  a'),  

(ii) IIF1I2 = n(A)-I IIFp(ir)l12dir < w. 
P I -  9 

Then the map which sends F to the function 

defined for F i n  a dense subspace of Ly, extends to a unitary map from onto 
a closed, G(A)-invariant subspace Lj,(G(Q)\G(A)) of L2(G(Q)\G(A)). More- 
over, there is an orthogonal decomposition 

L2(G(Q)\G(A)) = @ &(G(Q)\G(A)). 
9 

We could equally well have defined subspaces L;(G(Q)\G(A)l) of 
L?(G(Q)\G(A)l). The only change in the formulation would be to integrate 
over WAf) instead of H(M). This would allow us to decompose the representa- 
tion R into a direct integral of the representations Ip(ir) (Let us agree to denote 
the restriction of the representation Zp(ir) to G(A)l by Zp(7r) as well.) If x â 2, 
we could replace L9 by a space of collections F = {Fp : P E Sft} such that Fp(ir) 
belongs to ^ p ( ~ ) ~  for each ir. We would obtain a decomposition of the space 
L^Q^G(A)l)^. More generally, if P C P2, and if t, is a suitable point in a;, 
define 
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The discussion above holds if the functions E(x) are replaced by Ep2(x). It then 
amounts to a description of the decomposition of the representation Rp, into a 
direct integral of { Z p ( 7 r )  : P c P2}. 

We shall end this section with some simple remarks on representations of the 
universal enveloping algebra. %(go' 0 C )  acts, through the representation 
Ip(7r), on the vector space ^Â¤{7r )  There are two involutions of %(g(R)l 0 C ) .  
The first, 

x +  x, 
is just conjugation with respect to the real form g ( R ) l .  The second, (actually an 
anti-involution), 

x + x * ,  

is the adjoint map. For any TT E W M ) ,  X, Y E %(g(R)l 0 C ) ,  and 
h e CÂ¡Â¡(G(A)l 

and 

(We also have 

where h*(x) = h(xP1).)  We shall denote the left invariant differential operator 
associated to X by R(X). If we wish to emphasize the fact that we are dif- 
ferentiating with respect to a variable x,  we shall write Rx(X).  Then 

It follows that for every E ̂(-n) and X E % ( g ( R ) l  î C )  that there a locally 
bounded function c({ ) ,  defined on the set of points t, E a* at which E(x, <^) is 
regular, such that 

4 .  The second formula for the kernel 
The theory of Eisenstein series yields another formula for K(x,  y).  The equal- 

ity of this formula with that of $2 is what will eventually lead to our trace 
formula. The following result is essentially due to Duflo and Labesse [2]. 

LEMMA 4.1. For any m 2 1 we can choose elements gg E I Z ~ ( G ( A ) ~ ) ~ R ,  
g; E Q(G(R)KR and Z E %g(R)l 63 CKR such that Z * & + g; is the Dirac dis- 
tribution at the identity in G(R)l. 

Proof. Let A be any elliptic element in %(g(R)l 0 ClKR. For example, A 
could be obtained as a linear combination of the Casimir operators of G(R)l and 
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KR. We can assume that A is KR-invariant. Let f l  be a small open KR-invariant 
neighborhood of 1 in G(R)l. By the existence of a fundamental solution [4, Pg. 
1741 we can find, for any n > 0, a function h on f l  such that An * h is the Dirac 
distribution. By the elliptic regularity theorem, we can choose n so large that h 
belongs to Cm(fl). Since A is KR-invariant, we can assume that h â Cm(fl)^. 
Moreover, h is infinitely differentiable away from the identity. Let $I be any 
function in C;(fl)^ which equals 1 in a neighborhood of the identity. Then 
A * h$I equals the Dirac distribution in a neighborhood of the identity, and is 
smooth away from the identity. Thus gi = h$I is in C^fl)^, and g;, the dif- 
ference between An * gi and the Dirac distribution, is actually in C:(fl)̂ . The 
lemma is established with Z = An. 

COROLLARY 4.2. Suppose ro > deg Z. Then any h â C':Ãˆ(G(A)l equals 

where, in the notation of the lemma, hl = h * Z, h2 = h ,  and gi is the product of 
gi with a multiple of the characteristic function of an open compact subgroup 
of G(Af). 

Proof. Let KO be any open compact subgroup of G(Af) under which h is bi- 
invariant. Define 

gi(xR xi), xR â G(R)l,xf â G(Af)l, i = 1, 2, 

to be gi(xR) divided by the volume of KO if xf â KO, and 0 otherwise. The corol- 
lary then follows from the lemma. 0 

LEMMA 4.3. There is a constant N a n d  a continuous semi-norm I I  l l o  on 
Cc(G(A)l) such that for any f E CC(G(A)l) and x, y â G(A)l, 

This lemma is well known, at least in the F\G(R)l setting ([3, Lemma 91). 
The extension to adele groups is easy. 

Recall that a function f on G(A)l is said to be K-finite if the space spanned by 
the left and right K-translates off is finite dimensional. 

LEMMA 4.4. There is an ro and a continuous seminorm \\-\\ro on C?>(G(A)l) 
such that ifX, Y â %(g(R)l (g> C), r 2 ro + deg X + deg Y, and f is a K-finite 
function in C:(G(A)l), 
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is bounded by 

llX * f * Yllro - llxllN - llyllN. 

Here N is as in Lemma 4.3. 

Proof. Since f is K-finite, the sum over is finite. Let E(x, ir) = E(x, T T ) ~  be 
the vector in the algebraic direct product 

equals 

Apply Corollary 4.2 with h = X * f * Y. (The integer m, upon which Z depends, 

can be arbitrary.) Then h = 1 hi * gi. We can choose gi to be in 
i =  1 

COT(G(A)l)K. Since each function hi is K-finite, we can assume that gi is K-finite 
as well. The absolute value of (4.2) equals 

which is bounded by 

Consider the set 

9 = {(x, P, ir) : x E E, ir â IIG(M)}. 

Regarded as a disjoint union of copies of IIG(M), it comes equipped with a 
topology. The integral (4.1) defines a measure on Y, Suppose that S is a com- 
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pact subset of if and that k is a K-finite function in Cc(G(A)l). 
the results on Eisenstein series summarized in $3 that 

r 

93 1 

It follows from 

is the kernel of the restriction of the operator R(k * k*) to an invariant subspace. 
Since the operator is positive semidefinite, the value at x = y of this expression 
is bounded by 

By Lemma 4.3 this is in turn bounded by 

Since this last expression is independent of S it remains a bound if the original 
integral is taken over all of if. It follows from Schwartz' inequality that (4.1) is 
bounded by 

1 1 

lxIlN llyllN . x Ilg*, * gil102 llhi * h?llo2. 
i 

Since hl = h * 2 ,  h2 = h and ro > deg 2 ,  the map which sends h to 

is a continuous seminorm on Cp(G(A)l). The lemma follows. 0 
The K-finite functions are not dense in C;(G(A)l). However, there is a posi- 

tive integer lo, depending only on G, such that for any r > lo, C^G(A)l) is con- 
tained in the closure in C - 'o(G(A)l) of the K-finite functions in C - 'o(G(A)l). If 
w = (Wl, W2) is a pair of equivalence classes of irreducible representations of 
KR, define 

fJx) = deg Wl . deg W2 f d k o f  (kf~kf)chw,(k2)dkldk2, 
KR X KR 

if chw, is the character of Wi. It follows easily from the representation theory of 
a compact Lie group that lo may be chosen so that if r > lo and 1 1 - 1 1  is any 
continuous seminorm on C; - 'o(G(A)l), 

is a continuous seminorm on C;(G(A)l), and x fa converges absolutely in 
C: - lo(G(A)l) to f. 0 

Suppose that the measure space if is defined as in the proof of the last lem- 
ma. If S is a measurable subset of if and f is a K-finite function in C;o(G(A)l), 
define Z(S, f, x, y) to be 
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I V E(x, Ip(r, f I+) ~ ( , y , < i ) ) d r .  
(x./'.w) 6 ifi E @ P ( ~ Ã  

For fixed x and y this defines a continuous linear functional on a subspace of 
C?Ãˆ(G(A)l) the closure of which contains Cgo + lo(G(A)l). We can therefore de- 
fine Z(S, f ,  x ,  y) for any f E C> + lo(G(AI1). 

LEMMA 4.5. Zf f E C':(G(A)l), Z(S, f ,  x ,  y) is continuously differentiable in 
either xor y of order r - ro - lo. IfX, Y E  %(g(R)l@ C )  and r 2 ro + lo + deg X 
+ deg Y ,  

R^X)RÃ£(Y*)Z(S f ,  x, Y )  

equals Z(S, X * f * Y ,  x ,  y). 

Proof. Suppose first of all that f is K-finite. If S is relatively compact the 
result follows from (3.1) and the proof of Lemma 4.4. In general S can be 
written as a disjoint union of relatively compact sets Sk. For any n ,  

In the notation of the proof of Lemma 4.4, this is bounded by 

As n approaches m this expression approaches 0 uniformly for y in compact 
subsets. It follows that the function 

is differentiable in y and its derivative with respect to Y* equals 

The differentiability in x follows the same way. 
Now suppose that f is an arbitrary function in C:(G(A)l). Let fn be a sequence 

of K-finite functions that converges to f in C':" lo(G(A)l. If ni > nz ,  

Ry(Y*)  I(S, X * fnÃ x ,  Y )  - Ru(Y*)I(s, X * fn;, x ,  Y ) ]  

= \I(S, X * fn, * Y - X * fn; * Y ,  X ,  y)l 

5 l l~l l~llyl l~ \\X * ( fÃ£  - fn2) * Y\lrO, 
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by Lemma 4.4. Therefore the sequence 

Ru(Y*) Z(5, X * fn, X ,  Y )  

converges uniformly for x and y in compact sets. In particular, 

m, X * f ,  x ,  Y )  

is differentiable y , and 

= lim Z(S, X * fn * Y ,  x,  y) 
n + m  

since X * fn * Y approaches X * f * Y in CP>(G(A)I). 

The differentiability in x follows the same way. 

COROLLARY 4.6. Suppose that X ,  Y E  '%(@)I â‚ C and r = rn + lo + deg X 
+ deg Y. Then there is a continuous seminorm II II on C;(G(A)l) such that i f  {Sk} 
is any sequence of disjoint subsets of Sl,  and f E C;(G(A)l), 

Proof. By the lemma, we may assume that X = Y = 1. The corollary then 
follows from Lemma 4.4 and the remarks immediately following its proof. 0 

COROLLARY 4.7. Under the assumptions of Corollary 4.6, 

where S is the union of the sets Sk. 

Proof. Again by Lemma 4.5, we need only consider the case that 
X = Y = 1. According to Lemma 4.4 and the remark following its proof, 

But 

1 lz(5k, fa,  x ,  Y ) \  
a k 
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is bounded by the product of IlxllN - llyllN and 

x llfwllro. 
0 

This last expression represents a continuous seminorm on CEO + 'o(G(A)l), and 
is, in particular, finite. Therefore the double series above converges absolutely. 
It equals 

as required. 0 

It follows from the discussion of $3 that to any closed subset S of 9 there 
corresponds a closed invariant subspace of L2(G(Q)\G(A)l). Let Ps be the 
orthogonal projection onto this subspace. Set 

LEMMA 4.8. Z(S, f, x, y) is the integral kernel of Rs(f). 

Proof. Suppose, first of all, that f is a K-finite function in CNG(A)l). If 5 is 
compact, the lemma follows from the results on Eisenstein series summarized 
in $3. In general, S can be expressed as a disjoint union of sets Sk such that for 
each n, 

n 

sn = U Sk 
k = l  

is compact. If 4 and ifi are functions in C;(G(Q)\G(A)l), 

It follows from Lemma 4.4 and dominated convergence that this equals 

JJ f(x) l{S, f, x, Y)4(Y'ldY dx 

Now suppose that f is an arbitrary function in CEO+ ̂̂ (A)). Let {fÃ£ be a 
sequence of K-finite functions that converges in Cp'(G(A)) to f. By the domi- 
nated convergence theorem, 
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Lemma 4.3 allows us to use, once again, the dominated convergence theorem. 
The above limit equals 

(Rs( f  )A, $)a  

We have proved that Z(S , f ,  x, y) is the kernel of Rc( f )  . 
Suppose that x is an element in 3Â and that S is the set { ( x ,  P, T T ) }  obtained by 

taking all P and IT. Then R s ( f )  is the projection of R ( f )  onto L2(G(Q)\GA)l),/. 
We shall write R x ( f )  and Kx(x, y) for R s ( f )  and Z(S, f ,  x ,  y) .  It follows from 
Lemma 4.8 and Corollary 4.7 that 

equals the kernel of R ( f ) .  It therefore must equal K(x,  y) almost everywhere. 
However the difference between these two functions is continuous in x and y 
(separately). It follows easily that 

for all x and y. 
Suppose that P is a parabolic subgroup. If K(x,  y) is replaced by Kp(x,  y) and 

E(x, 4 )  is replaced by Ep(x, d>), we can obtain obvious analogues of the defini- 
tions of this section, as well as of Lemmas 4.3 through 4.8. Then KpX(x ,  y) is 
defined to be 

iff is K-finite. Iff is an arbitrary function in C":Ã + lo(G(A)l), 

for all x and y. 

85. The modified kernel identity 
After comparing the formulas of 42 and $4 for Kp(x,  y) ,  we note that 

(5.1) ^ K p o ( x ,  Y )  = ^ K p , x ( x ,  Y )  
0 x 

for all x and y. In this section we shall modify each of the functions K ( x ,  x) and 
Kx(x ,  x) so that the sum over o remains equal to the sum over x.  We shall later 
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find that all of the modified functions are integrable over G(Q)\G(A)l. First, 
we shall need a lemma. 

If PI C P2, let 

TP2 = and f: = f: Pi 

be the characteristic functions on a. of 

{H E a. : a(H) > 0, a E A?} 

and 

{HE a,,: w(H) > 0, w E A?}. 

We shall denote T$ and f$5 simply by rp  and fp. 

LEMMA 5.1. Suppose that we are given a parabolic subgroup P, and a 
Euclidean norm I I  I I  on up. Then there are constants c and N such that for all 
x E G(A)l and X â up, 

2 fp(H(8x) - X) ~ ( I l x l l e ' l ~ ~ ~ ) ~ .  
8 E P(Q)\G(Q) 

In particular, the sum is finite. 

Proof. Suppose that w E Ao. Let A be a rational representation of G on the 
vector space V, with highest weight dm, d > 0. Choose a height function rela- 
tive to a basis on V(Q) as in $1. We can assume that the basis contains a highest 
weight vector v. According to the Bruhat decomposition, any element 
8 E G(Q) can be written TT wgv, for TT E Po@), v â No@) and s â 0. It follows 
that 

llA(8)-1vII 2 1. 

However, there are constants c1, c2 and Nl such that for any x E G(A)l, 

5 ~~llxll~~lIA(8x)-~ vll 

It follows that there is a constant c such that 

(5.2) w(Ho(8x)) 5 c(l + log 11x11) 

for all w E Ao, x E G(A)l and 8 E G(Q). 
For each x, let F(x) be a fixed set of representatives of P(Q)\G(Q) in G(Q) 

such that for any 8 â r(x), 8x belongs to wSA(R)OK, where w is a fixed 
compact subset of N(A) and S is a fixed Siege1 set in M(A)l. Then there is a 
compact subset wo of N,,(A) Mo(A)l and a point To in a. such that for any x, and 
any 8 â F(x), 8x belongs to woAo(R)OK, and in addition, 
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for every a E A:. We are interested in those 8 such that Tp(Ho(8x) - X} = 1 ;  
that is, such that 

for every w â Ap. The set of points Ho(8x) in a? which satisfy (5.2), (5.3) and 
(5.4) is compact. In fact, it follows from our discussion that if x â G(A)l ,  
8 â F(x) and Tp(H(8x) - X} = 1 ,  then 118x11 is bounded by a constant multiple of 
a power of 11x11 e l l x l l .  Since 

for some c and N ,  11811 too is bounded by a constant multiple of a power of 
11x11 e '^".  Because G(Q) is a discrete subgroup of G(A)l ,  the lemma follows 
from the fact that the volume in G(A)l of the set 

is bounded by a constant multiple of a power of t .  0 
COROLLARY 5.2. Suppose that T â an and N 2 0. Then we can find con- 

stants c' and N'such that for any function d>on P(Q)\G(A)l, and x ,  y â G(A)l ,  

c'llxIlN llyIlN sup (ld>(u)l llullrN). 
u â G(A)' 

Proof. The expression (5.5) is bounded by the product of 

sup (I+(u)\ . llull-^) 
u â G(A)' 

and 

We proved in the lemma that when Tp(H(8x) - H(y) - T )  was equal to 1, ll&cll 
was bounded by a constant multiple of a power of l l ~ l l e ~ ~ ~ p ( " )  + The corollary 
therefore follows from the lemma itself. 

Suppose that T is a fixed point in G. We shall say that T is suitably regular if 
a0 is sufficiently large for all a E Ao. We shall make this assumption when- 
ever it is convenient, often without further comment. For the rest of this paper, 
f will be a function in Cg(G(A)l), where r 2 ro + lo. We shall also assume that r 
is as large as necessary at any given time, again, without further comment. 
Suppose that x â G(A)l. For o â 0 and x â E, define 
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kz(x, f )  = 1 (- l)dim(A~/Z) 2 Kp,o(8X, 8 X )  . Tp(H(8x) - 
P 8 e P m \ G ( Q )  

and 

kz(x, f )  = 1 (- l)dim(Ap/n v p , x ( 8 x ,  8x) - Tp(H(8x) 
P 8 6 P(Q)\G(Q) 

PROPOSITION 5.3. 2 kz(x, f )  = 1 k%x, f ) .  
0 x 

Proof. The left hand side equals 

(- l)dim(Ap/a x x Kp,o(8x, 8x)Tp(H(8x) - T )  , 
P 6 â P(Q)\G(Q) o 

since the sums over P and 8 are finite. B y  (5.1) this equals 

which is just 2 k:(x, f ) .  
x 

46. Some geometric lemmas 
We want to show that each of the terms in the identity of Proposition 5.2 is 

integrable over G(Q)\G(A)j. In this section we shall collect some geometric 
lemmas which will be needed in estimating the integrals. 

If PI C P,, set 

for H â ao. We hope that the reader will understand the motivation for this 
definition, as well as for the next lemma, after reading $7. 

LEMMA 6.1. If P, 3 Pi,  o"? is the characteristic function of the set of 
H â a, such that 

(i) a(H) > 0 for all a â AL 
(ii) a(H) 5 0 for all w â A,\AL and 

(iii) W ( H )  > Ofor all w E A,. 
Proof. Fix H E a,. Consider the subset of those VJ in A, for which 

w(H)  > 0. This subset is of the form Ac, for a unique parabolic subgroup 
R 3 P.,. Then 

Suppose that T^H} = 1 for a given Pa 3 R. Then f iH )  = 1 for all smaller P3. It 
follows from Proposition 1.1 that the above sum vanishes unless the original Py 
equals R. Thus, 
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is the characteristic function of 

(6.1) {X E a, : a(X) > 0, a E d)?; a(X) 5 0, a E Ai\Af} 

If R = PÃ u?(H) = 1 if and only if H belongs to the set (6.1), as required. We 
must show that if R is strictly larger than P2,  cr\(H) = 0. Suppose not. Then H 
belongs to the set (6.1). In particular, the projection of H onto a g i e s  in the 
positive chamber, which is contained in set of positive linear combinations of 
roots in Af. Thus w(H) > 0 for all w E A?. By the definition of R, w(H) > 0 for 
all w â AR. From this, we shall show that if 

each co, is positive. Suppose that w E AR c A,, and that aw is the element in A, 
which is paired with w. Then ca- = w(H) is positive. Therefore the projection 
of 

onto of is in the negative chamber, so that if v â A?, v(Ha) is negative. If a,, is 
the root in A? corresponding to v, 

ca,, = v(H) - ~ H R )  

is positive. Thus each ca is positive. Therefore w(H) is positive for each 
w E A,, and in particular, for each w in A,. Therefore R = P2 so we have a 
contradiction. 0 

COROLLARY 6.2. Fix T â a:. For any H â a?, let /:/?be the projection of H 
onto a\. Then i f  u:(H - T )  # 0, a(/:/?) is positive for each a E A\, and 

for any Euclidean norm I I  I I  on an, and some constant c. 

Proof. The first condition follows directly from the lemma and the fact that 
T belongs to a;. To prove the second one, write 

The value at Hz of any root in A2 equals a(Ĥ  for some root a in Al\Af .  But 

by the lemma. Since 

for each w â A2, H2 belongs to a compact set. In fact the norm of Hz is bound- 
ed by a constant multiple of 1 + 11/:/?11 as required. 0 
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This corollary will not be used until we begin to estimate the integrals of the 
functions defined in $5 .  A second consequence of Lemma 6.1 is the special case 
that Pv = PI, and Pi # G. Since every functional in the set & is negative on 
-a'\, c$i(H) is the characteristic function of the empty set. In other words, 

for all H E a,,. 
Suppose that Q and P are parabolic subgroups with Q C P. Fix A â a?,. Let 

?;(A) be (- 1) raised to a power equal to the number of roots a E AS such that 
A(&) 5 0. Let 

be the characteristic function of the set of H â a. such that for any a â A& 
wm(H) > 0 if A(av) <s 0, and wa(H) s 0 if A(a) > 0. In the special case that none 
of the numbers A(@) or wJH) is zero, these definitions give functions which 
occur in a combinatorial lemma of Langlands [l(b)]. It is desirable to have this 
lemma for general H and A, so we shall give a different proof, based only on 
Proposition 1.1. 

equals 0 if A(av) 5 0 for some a E AS, and equals 1 otherwise. 

Proof. If R # P,  our remark following Corollary 6.2 implies that 

(- l)d"n(Al/ALJ)^(^P(^) 
{R,:R C PI C PI 

vanishes for all H .  Therefore 

is the difference between 

and 

(6.3) 1: e;(A)G(A, H)r&H) (- l)dim(AllAp)^ff). 
{R,Pi:Q C R C P,<-f} 

We shall prove the lemma by induction on dim(Ao/Ap). Define A& to be the set 
of roots a E AS such that a(A) > 0. Associated to A& we have a parabolic 
subgroup PA, with Q C PA C P. By our induction assumption, the sum over R 
in (6.3) vanishes unless PI C PA, in which case it equals (- l)dim(A-^p)<(H). 
Thus, (6.3) equals 
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if PA # P ,  and equals (6.4) minus 1 if PA = P. We need only show that (6.2) 
equals (6.4). This is a consequence of Proposition 1.1 and the definitions. 

Our final aim for this section is to derive a partition of G(Q)\G(A) into dis- 
joint subsets, one for each (standard) parabolic subgroup. The partition is simi- 
lar to a construction from [6(b)], in which disjoint subsets of G(Q)\G(A) are 
associated to maximal parabolic subgroups. More generally, we shall partition 
N(A)M(Q)\G(A), where P = NM is a parabolic subgroup. The result is little 
more than a restatement of a basic lemma from reduction theory, which we 
would do well to recall. Suppose that w is a compact subset of No(A)M0(A)l and 
that To â -(To. For any parabolic subgroup Pi, let ^(To, w) be the set of 

pak, p â w, a â Ao(R)O, k â K, 

such that a(Ho(a) - To) is positive for each a E Ah. By the properties of Siege1 
sets we can fix w and To so that for any Pi ,  G(A) = Pl(Q)WT0, a). The result 
from reduction theory is contained in the proof of [6(b), Lemma 2.12.1. Name- 
ly, any suitably regular point Tin a$ has the following property: suppose that 
Pi C P are parabolic subgroups, and that x and 8x belong to @l(T0, w) for 
points x â G(A) and 8 â P(Q). Then if a(Ho(x) - T )  > 0 for all a in A$\A$l, 8 
belongs to Pl(Q). 

Suppose that Pl is given. Let ^(To, T, w) be the set of x in Pi(To, w) such 
that m(H0(x) - T )  ss 0 for each w â A&. Let 

be the characteristic function of the set of x â G(A) such that 8x belongs 
to ^(To, T, w) for some 8 â P,(Q). F1(x, T) is left Al(R)ONl(A)Ml(Q) 
invariant, and can be regarded as the characteristic function of the projec- 
tion of ^(TO, T, w) onto Al(R)ON1(A)Ml(Q)\G(A), a compact subset of 
Al(R)ONl(A)Ml(Q)\G(A). 

LEMMA 6.4. Fix P, and let Tbe any suitably regularpoint in To + at,. Then 

equals one for all x in G(A), 

Proof. Fix x E G(A). Choose 8 E P(Q) such that 8x belongs to ^(To, w). 
Apply Lemma 6.3, with Q = Po, A â ( a v ,  and H = Ho(8x) - T. Then there is 
a parabolic subgroup Pl C P such that w(Ho(&f) - T )  0 for all VJ â A; and 
a(Ho(8x) - T )  > 0 for a â AT. Therefore 

so the given sum is at least one. 
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Suppose that there are elements 8i, a2 â G(Q), and parabolic subgroups Pi 
and P2 contained in P such that 

F U ~ ~ X ,  DT?(Ho(8ix) - T )  = F2(82x, T)T^o(8zx) - T)  = 1. 

After left translating 8, by an element in Pi@) if necessary, we may assume that 

Six â W 0 ,  T, w), i = 1, 2. 

The projection of H(8,x) - T onto a$ can be written 

- caa" + 2 cmw", 
a E A: w E A'i 

where each c,, and cW is positive. It follows that a(Ho(aix) - T)  > 0 for every 
a â A$\A;. In particular, since T lies in To + a:, 8,x belongs to ^(To, w). The 
reduction theoretic result just quoted now implies that 828;' belongs to PI@) 
and 818a1 belongs to P2(Q). In other words, 82 = (81, for some element in 
Pl(Q) n P2(Q). Let Q = Pl f l  P,. Then HO(alx) - T and HO(8,x) - T project 
onto the same point, say Hc, on a:. If R equals either Pi or P2, we have 
w(H$) 5 0 for w â and a(H$) > 0 for a E Ag. Applying Lemma 6.3, with 
A â (at))+, we see that there is exactly one R, with Q C R C P ,  for which these 
inequalities hold. Therefore Pi = P2, and a1 and 82 belong to the same Pi@) 
coset in G(Q). This proves that the given sum is at most one. 

$7. Integrability of kxx, f )  
The primary goal of this section is to establish the integrability of each func- 

tion kzx, f ) .  In fact we will obtain 

THEOREM 7.1. For all sufficiently regular T, 

is finite. 

Proof. For any x, kxx, f )  equals the sum over P and over 8 E P(Q)\G(Q) 
of the product of 

and 

This equals the sum over {PI, P : Po C Pi C P} and {8 E P,(Q)\G(Q)} of 

For any H â a. we can certainly write 
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T?(H)fp(H) = s ( - l )dim(A2/A3)y3 (^ ) f3 (H)  
{P,,P,:P C P2 c P,) 

by Proposition 1.1. In the notation of $6, this equals 

We have shown that k z x ,  f )  is the sum over 
over 8 â Pl(Q)\G(Q) of 

{ P I ,  P ,  Pi : Pi c P c Pz} and 

T)Kp,o(8x, 8 4 .  

Therefore 

(7.2) 

is bounded by the sum over {P i ,  P f l 1  C P,} and over o â Cof the integral over 
P1(Q)\G(A)l of the product of 

with the absolute value of 

The critical part of this expression is the alternating sum over P.  In order to 
exploit it we shall show that the sum over y â M(Q) n o in (7.4) can be taken 
over a smaller set. Fix P,  and suppose that x â P1(Q)\G(A)l. We can assume 
that neither (7.3) nor 

vanishes. We want to show that the sum over y can be taken over the inter- 
section of o with the parabolic subgroup Pi n M of M. 

We choose a representative of x in G(A)* of the form 

where k E K, n*, n* and m belong to fixed compact subsets of Nz(A),  %(A) 
and Mo(A)l respectively, and a â Ao(R)O n G(A)l has the property that 

and 

(7 6 )  

Here To is as in $6. By Corollary 6.2, a(Ho(a) - T )  is positive for any a â At. It 
follows that the projection of Ho(a) - T onto equals 
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where each ca and c_ is positive. Consequently, 

A well known lemma from reduction theory asserts that for any such a ,  a l n * m  a 
belongs to a fixed compact subset of Ni(A) x M0(A)l which is independent of 
T. Suppose that the assertion we are trying to prove is false. Then there is a y in 
M(Q) n Pl(Q)\M(Q) such that 

is not zero. This expression equals 

Therefore there is a compact subset of G(A)l which meets alyN(A)a.  Thus, 
a^ya belongs to a fixed compact subset of M(A)l. According to the Bruhat 
decomposition for M(Q), we can write y = vwsr, for v â N$(Q), r Â M(Q) n 
Po@), and s â flM, the Weyl group of (M, Ao), s cannot belong to the Weyl 
group of (Mi, Ao), so we can find an element m â & not fixed by s. Let A be a 
rational representation of M with highest weight dm, d > 0. Let v be a highest 
weight vector in V(Q), the space on which G(Q) acts. Choose a height function 
I I relative to a basis of V(Q) as in $1. We can assume that the basis includes 
the vectors v and A(ws)u. The component of A(alvwsra)v in the direction of 
A(ws)v is e"̂  - ̂^oC") A(ws)v. Therefore 

The left side of this inequality is bounded by a number which is independent of 
T. On the other hand, w - sw is a nonnegative sum of roots in A$, and at least 
one element in A$\Ai has nonzero coefficient. It follows from (7.5) and (7.7) 
that the right hand side of the inequality can be made arbitrarily large by letting 
T be sufficiently regular. This is a contradiction. 

We have shown that for T sufficiently regular, (7.4) equals 

According to the remark following Lemma 2.1, 

so the absolute value of (7.4) is bounded by the sum over y â Ml(Q) n o of 
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We would like to replace the sum over v by a sum over the rational points of n:, 
the Lie algebra of N?. Let 

be an isomorphism, defined over â‚¬ from the Lie algebra of No onto No which 
intertwines the action of Ao. The last expression equals 

1 2; (- l)dim(Ala x /(;[-lye({ + X)x)dXl. 
{RP, c P c PJ 1 i e n f ( Q )  "(A) 

Apply the Poisson summation formula to the sum over 6 .  Let (-,-) be a positive 
definite bilinear form on no@) x no@) for which the action of Ao(Q) is self- 
adjoint, and let <b be a nontrivial character on A/Q.  We obtain 

1 2; ( - ~ ~ ~ ~ ( ~ / a  2 j fix-lye(mx)<b((x, 0 ~ x 1 .  
{ E P ,  c P c P,} Y E nXQ) 

If n?(Q)' is the set of elements in n?(Q) which do not belong to any n?(Q), with 
Pi C P $ Pi ,  this equals 

1 2; , 1 f ( x - ' v e W x ) W .  {))dXl, 
Â 6 n!(Q) n,(A) 

by Proposition 1.1. We have shown that (7.2) is bounded by the sum over 
{Pi ,  P2 : Pi C P2} of the integral over x in P,(Q)\G(A)l of 

Set 

where k â K, a â A1(R)O n G(A)l ,  and n*,  n* and m lie in fixed fundamental 
domains in N2(A),  N?(A) and Mi(A)l respectively. Of course, this change of 
variables will add a factor of e-2p~(Ho(a)) to the integrand. n* is absorbed in the 
integral over X. We need only consider points for which the integrand does not 
vanish. Therefore m and a-ln*a both remain in fixed compact sets. Thus (7.2) is 
bounded by a constant multiple of the quantity obtained by taking the sum over 
P I ,  Pa and y ,  the supremum as y ranges over a fixed compact subset of G(A)l ,  
and the integral over a in A1(R)O n G(A)l of the expression 

The sum over y is finite. Our only remaining worry is the integral over a.  
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Let 

be the decomposition of n: into eigenspaces under the action of A!. Each A 
stands for a linear function on a:. Choose a basis of n:(Q) such that each basis 
element lies in some nA(Q). The basis gives us a Euclidean norm on n:(R). It 
also allows us to speak of nQ) and nA(Z). Note that 

y + J f ( Y - ~ Y ~ ( W Y ) $ J ( ( X ,  Ad(a)[))dX, Y n4(A), 
n,(A) 

is the Fourier transform of a Schwartz-Bruhat function on nt(A) which varies 
smoothly with y .  Therefore we can reduce the integral over X in (7.8) to a finite 
sum of integrals over a real vector space. It follows without difficulty that for 
every n we can choose N such that the supremum over y of (7.8) is bounded by 
a constant multiple of 

w:(Ho(a) - 2') + 1 llAd(a)[ll-n. 
I '  6 ng(x 2) 

Every A is a unique integral linear combination of elements in A:. Suppose that 
S is a subset of roots A with the property that for any a â A!, there is a A in S 
whose a coordinate is positive. Let nS(Q)' be the set of elements in n;(Q) 
whose projections onto nA are nonzero if A belongs to S and are zero otherwise. 

Then the above sum over n: can be replaced by the double sum over 

all such S and over [ inns Z . Clearly $ 1' 
w:(Ho(a) - 2') 2 llAd(a)[ll-n 

1 '  c e ns(x 2) 

is bounded by 

is the set of nonzero elements in nA 
, , 

quotient of n by the number of roots in S. This last expression equals the prod- 
uct of 

and 
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The first factor is finite for large enough n. The second factor equals 

where each ka is a positive real number. 
The projection of Ho(a) - T onto a? can be written 

2 tamy + H*, 
a â A: 

where H* â a;, and for each a â A:, fa is a positive real number. If 
u?(Ho(a) - 7') # 0, it follows from Corollary 6.2 that H* belongs to a compact 
set whose volume is bounded by a polynomial in the numbers { f a } .  Therefore, 
there is an N such that the integral of (7.9) is bounded by a multiple of 

This last expression is finite. The proof of Theorem 7.1 is complete. 

58. Weighted orbital integrals 
For any II â 0, set 

In this section we shall define another function jT(x, f). We shall show that its 
integral is equal to J z ( f ) .  Then we will, in some cases, reduce the integral of 
jT(x,  f )  to a weighted orbital integral off .  

Given o and P, define the function 

It is obtained from Kp,o(x, y) by replacing part of the integral over N(A) by the 
corresponding sum over Q-rational points. Define 

THEOREM 8.1. For all suficiently regular T ,  

is .finite. Moreover, for any 0, 
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Proof. The argument used to prove the first statement is essentially the 
same as the proof of Theorem 7.1. The integral 

is bounded by the sum over { P I ,  P2 : PI C P2} and o â 0 of the integral over 
P1(Q)\G(AI1 of the product of 

with the absolute value of 

As in the proof of Theorem 7.1 we observe that for T sufficiently regular the 
sum over y may be taken over Pl(Q) fl M(Q) n 0. It follows from Lemma 2.1 
and Poisson summation that the expression in the brackets in (8.3) equals the 
sum over y in Ml(Q) f l  LI of 

Let n?(Q,y8)' be the set, possibly empty, of elements in n?(Q,y8) which do not 
belong to any n{(Q, y8),  with Pl c P P2. Then (8.1) is bounded by the sum 
over { P I ,  P2 : PI C P2} of the integral over x in MI(Q)Nl(A)\G(A)l of 

The integrand, as a function of n, is left Nz(A, ys) invariant. We can therefore 
write n = n2nl where n2 ranges over a relatively compact fundamental set for 
N!(Q, y8) in N?(A, 78) and nl belongs to Nl(A ,  y8)\Nl(A). For any y the in- 
tegrand will vanish for nl outside a compact set. Next, set 

x = mak, 
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where k â K, a â A1(R)O f l  G(A)l and m lies in a fixed fundamental domain in 
M1(A)l.  Note that a normalizes Nl(A ,  y8)\Nl(A). If the integrand does not 
vanish m and a-ln2a will both remain in fixed compact sets. Moreover, the sum 
over y will be finite. It follows that (8.1) is bounded by a constant multiple of 
the quantity obtained by taking the sum over P I ,  P2 and y ,  the supremum as y 
ranges over a fixed compact subset of G(A)l and the integral over a â A1(R)O i7 
G(A)l of the expression 

The finitude of (8.1) now follows from the arguments of $7. 
Fix o. The integral of jT(x, f )  is the sum over Pl and P2 of the integral over 

P1(Q)\G(A)l of the product of (8.2) and (8.3). Decompose the integral over 
P1(Q)\G(A)l into a double integral over M1(Q)Nl(A)\G(A)l and 
Nl(Q)\Nl(A). Then take the integral over Nl(Q)\Nl(A) inside the sum over P 
and y in (8.3).  The summand is then 

by Lemma 2.2. The integral over Nl(Q)\Nl(A) can now be taken back outside 
the sum over y and P ,  and recombined with the integral over 
M1(Q)Nl(A)\G(A)l. We must of course remember that (8.2) is a left Nl(A)-  
invariant function of x. We end up with the sum over Pl and P2 of the integral 
over P1(Q)\G(A)l of the product of (7.3) and (7.4). This is just the integral of 
k:(x, f ) .  The theorem is proved. 0 

Let o be a fixed equivalence class. Choose a semisimple element yl â o and 
groups Pl C P2 as in $2. Assume that PI = P2, so that o consists entirely of 
semisimple elements, Any element in G(y l )  normalizes A l ,  since it is the split 
component of the center of G(y1)O. We obtain a map from G ( y l )  to fl(al,  a l ) ,  
whose kernel is G(y l )  n MI.  We shall say that the class II is unram$ed if the 
map is trivial; in other words if G ( y l )  is contained in M I ,  It is clear that o is 
unramified if and only if the only s in Q(a1 ,  a l )  for which wSylw;l is Ml(Q)- 
conjugate to yl is the identity, 



950 JAMES G. ARTHUR 

Let o be an unramified class in 0, and let yl and PI be as above. Since it 
consists entirely of semi-simple elements, o is an actual conjugacy class in 
G(Q). Suppose that P is a parabolic subgroup and that y belongs to M(Q) n 0. 
Then there is a parabolic subgroup P2 C P ,  and an element y2 â M2(Q), which 
is M(Q)-conjugate to y ,  such that the split component of the center of G(y2)0 is 
A2. Any element in G(Q) which conjugates yl to y2 will conjugate Al to A2. It 
follows that for some s â i2(al, a2), and q â M(Q), 

Suppose that for a parabolic P3 C P ,  and elements s f  â fl(al, a3) and 
q' â WQ), 

Then there is an element c â G(Q, y) such that 

Since G(y) C M ,  

for some element t â M(Q). Let i2(al; P) be the set of elements s in the union 
over a2 of the sets fl(al, a2) such that sal = a2 contains a and s-la is positive for 
each a â A$. Then given y and P ,  there is a unique s in fl(al; P) such that (8.4) 
holds for some q â M(Q). 

It follows from this discussion that Jp,o(y,  y) equals 

Since the centralizer of wsyIw;l in G is contained in M ,  this equals the sum over 
8 â G(Q, yl)\G(Q) of the product of 

and 

Suppose that A is a point in a% such that A(aV) > 0 for each a â A,,. We shall 
show that (8.5) equals 
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where we have written e2 and (f>i for the functions denoted by es, and <̂ , in $6. 
To see this, write (8.5) as the sum over P,, over s â Wa,, az) and over those 
P 3 P2 such that s^a > 0 for all a â A:, of 

For a given s, define Ps 3 P by 

Then the sum over P is just the sum over {P : P, C P C Pg}. Since it is an 
alternating sum of characteristic functions, we can apply Proposition 1 . 1 .  The 
sum over P will vanish, for a given s, unless precisely one summand is nonzero. 
We have shown that for all H â do, 

equals the product of (- l )d im(A~/Z)  with the characteristic function of 

This is just the function 

e2(5w%oA, H) . 
We have shown that (8.5) equals (8.6). 

After substituting (8.6) for (8.5) in the expression for j%x, f ) ,  we must in- 
tegrate over G(Q)\G(A)l. Since the integrand is left Z(R)O-invariant, we can 
integrate over Z(R)OG(Q)\G(A) instead. We could then combine the integral 
over x and the sum over 8 if we were able to prove the resulting integral abso- 
lutely convergent. But the resulting integral can be written as 

where 

The integral over x can be taken over a compact set. By [l(b), Corollary 3.31, 
the integral over a can also be taken over a compact set. It follows that Jy f )  
equals (8.7). We have expressed J f̂) as a weighted orbital integral off when- 
ever o is unramified. We note that v(x, T) ,  the weight factor, equals the volume 
of the convex hull of the projection of 

onto al/g, [l(b), Corollary 3.51. 
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