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EISENSTEIN SERIES AND THE TRACE FORMULA 

JAMES ARTHUR 

The spectral theory of Eisenstein series was begun by Selberg. It was completed 
by Langlands in a manuscript which was for a long time unpublished but which 
recently has appeared [I]. The main references are 

1. Langlands, On the functional equations satisfied by Eisenstein series, Springer- 
Verlag, Berlin, 1976. 

2. , Eisenstein series, Algebraic Groups and Discontinuous Subgroups, 
Summer Research Institute (Univ. Colorado, 1965), Proc. Sympos. Pure Math., 
vol. 9, Amer. Math. Soc., Providence, R.  I. 1966. 

3. Harish-Chandra, Automorphic forms on semi-simple Lie groups, Springer- 
Verlag, Berlin, 1968. 

In the first part of these notes we shall try to describe the main ideas in the theory. 
Let G be a reductive algebraic matrix group over Q. Then G(A) is the restricted 

direct product over all valuations v of the groups G(Qu).  If v is finite, define Ku 
to be G(uJ if this latter group is a special maximal compact subgroup of G(Qu). 
This takes care of almost all v. For the remaining finite v, we let KO be any fixed 
special maximal compact subgroup of G(Qu). We also fix a minimal parabolic sub- 
group PO, defined over Q ,  and a Levi component Mo of Po. Let An be the maximal 
split torus in the center of My. Let Ko be a fixed maximal compact subgroup of 
G(R)  whose Lie algebra is orthogonal to the Lie algebra of Ao(R)  under the Killing 
form. Then K = FI "KO is a maximal compact subgroup of G(A).  

For most of these notes we shall deal only with standard parabolic subgroups; 
that is, parabolic subgroups P, defined over Q ,  which contain Po. Fix such a P. 
Let N p  be the unipotent radical of P, and let M p  be the unique Levi component of 
P which contains Mo. Then the split component, Ap,  of the center of M p  is con- 
tained in A,,. If X(Mp)n is the group of characters of M p  defined over Q ,  define 
LIP = Hom((Xp)@, R) .  Then if 111 = \{^mu lies in M(A) ,  we define a vector H,&) 
in rip by 

e x p ~ ( ~ ~ ( m ) ,  X Ã  = \~(M)I  = 

Let Mp(A)l be the kernel of the homomorphism H,y. Then M p ( A )  is the direct 
-- -- 
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product of Mp(A)l and A(R)o, the connected component of 1 in A(R), Since G(A) 
equals Np(A)Mp(A)K, we can write any x e G(A) as nmk, n e Np(A), m e Mp(A), 
k e K. We define Hp(x) to be the vector Hu(m) in ap. 

Let 0 be the restricted Weyl group of (G, An). 0 acts on the dual space of ao. We 
identify an with its dual by fixing a positive definite 0-invariant bilinear form ( , ) 
on an. This allows us to embed each ap in an. Let Jp be the set of roots of (P, A). 
These are the elements in X(A)n obtained by decomposing the Lie algebra of Np 
under the adjoint action of Ap. They can be regarded as vectors in ap. Let Qp be the 
set of simple roots of (P, A ) .  G itself is a parabolic subgroup. We write Z and 8 for 
Ac and ac respectively. Then is a basis of the orthogonal complement of 8 in ap. 

Suppose that Q is another (standard) parabolic subgroup, with Q c P.  Then 
Qp = Q fl M p  is a parabolic subgroup of Mp. Its unipotent radical is N&' = NQ fl 
Mp. We write a$ for the orthogonal complement of ap in an. In  general, we shall 
index the various objects associated with QP by the subscript Q and the super- 
script P. For example, @$ stands for the set of simple roots of (Qp, Ao). I t  is the pro- 
jection onto a$ of@$\@. We shall write $6 for the basis of the Euclidean space a$ 
which is dual to 05. If P i  is a parabolic subgroup, we shall often use i instead of Pi 
for a subscript or superscript. If the letter P alone is used, we shall often omit 
it altogether as a subscript. Finally, we shall always denote the Lie algebras of 
groups over Q by lower case Gothic letters. 

If P and PI are parabolic subgroups, let Q(a, al) be the set of distinct isomor- 
phisms from a onto al obtained by restricting elements in Q to a. P and PI are said 
to  be associated if Q(a, a\) is not empty. Suppose that Sft is an  associated class, and 
that P e 9. 

a+ = a$ = { H e a : < a ,  H)>O,ae@p}  

is called the chamber of P in a. 

LEMMA 1. Upicasl)sco(n, s-l(ar) is a disjoint union which is dense in a. 

Before discussing Eisenstein series, we shall define a certain induced representa- 
tion. Fix P. Let ,?f& be the space of functions 

such that 
(i) for any x e G(A) the function m -^ @(mx), m e M(A), is *-finite, where 

YMW is the center of the universal enveloping algebra of m(C), 
(ii) the span of the set of functions Q Ã ˆ  x -> @(xk), x e G(A), indexed by k E K, 

is finite dimensional. 

(iii) 

Let Rp be the Hilbert space obtained by completing Â̂¡p If A is in ar. the com- 
plexification of a, 0 e ^fp, and x, y e G(A), put 

Here pp is the vector in a such that 

w ) n ( A )  = e x ~ ( ( 2 p ~ ,  H^m))), M(A)' 

Ip(A) = I f ( A )  is a representation of G(A) induced from a representation of 
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P(A) ,  which in turn is the pull-back of a certain representation, Iw) in our nota- 
tion, of M(A).  We have 

where f * (y )  = f(y-1). In particular, Ip(A)  is unitary if A is purely imaginary. 
REMARK.  It is not difficult to show that I m )  is the subrepresentation of the 

regular representation of M ( A )  on L w R ) ' J . M ( Q ) \ M ( A ) )  which decomposes 
discretely. We can write IE(0) = @; a', where af = Bus; is an irreducible repre- 
sentation of M(A) .  If v is any prime and â  is an irreducible unitary representation 
of M(Q,), define 

If O U A  is lifted to P(QJ and then induced to G(Qy), the result is a representation 
I p ( ~ u , A )  of G(Qu), acting on a Hilbert space .̂ (o,,). In this notation, 

Thus Ip(A) can be completely understood in terms of induced representations and 
the discrete spectrum of M. 

If P and Pi are fixed, and s 0 (a ,  al), let w, be a fixed representative of s in the 
intersection of K fl G(Q) with the normalizer of An. For 0 e PÂ¡p A e ac, and 
x G(A) ,  consider 

(We adopt the convention that if H is any closed connected subgroup of Ny, dh 
is the Haar measure on H ( A )  which makes the volume of H(Q)\H(A) one. This 
defines a unique quotient measure dn on N l ( A )  fl wsN(A)w;l\Nl(A).) 

LEMMA 2. Suppose that ( a ,  Re A - pp) > 0 for each a in ,Zp such that sa belongs 
to - ,Zpl. Then the above integral converges absolutely. Q 

The integral, for A as in the lemma, defines a linear operator from 2 1  to A?!,, 
which we denote by M(s,  A). Intertwining integrals play an important role in the 
harmonic analysis of groups over local fields, so it is not surprising that M(s, A)  
arises naturally in the global theory. 

LEMMA 3. M(s, A)* = M(s-1, - s]) .  Moreover, i f f  e CY(G(A)IK, the K-conjugate 
invariant functions in CT(G(A)) ,  

M(s, A)Ip(A,f  = Ip(sA, f )  M(s, A). 0 

We now define Eisenstein series: 

LEMMA 4. If 0 fl, x e G(A) and A e ac, with Re A e p p  + a+, the series 

E(x,  0, A)  = W x )  exp ( ( A  + pp ,  HP(&))) 
5 e P ( Q )  \G (Q)  

converges absolutely. Q 
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The principal results on Eisenstein series are contained in the following: 

MAIN THEOREM. (a) Suppose that 0 e Â̂¡p E(x,  0, A)  and M(s,  A)  0 can be analy- 
tically continued as meromorphic functions to ac. On ia, E(x,  0, A)  is regular, and 
M(s ,  A)  is unitary. For f C;(G(A))^ and t e fi(ai, a2), the following functional 
equations hold: 

(9 E ( x ,  IP(A,f)  0, A)  = \ C ( A ) ~ ( Y ) E ( ~ Y ,  0, A) dy, 
(ii) E ( x ,  M(s,  A) <I>, sA)  = E(x,  0,  A),  

(iii) M(ts, A)  0 = M(t ,  sA)M(s,  A)@. 
(b) Let S? be an associated class ofparabolic subgroups. Let be the set of collec- 

tions F = { F p  : P e. gft} of measurable functions Fp: ia + & f p  such that 
(9 I f  s Q(a, ad ,  

(ii) 

where n(A)  is the number of chambers in a. Then the map which sends F to the function 

defined for F in a dense subspace of La,, extends to a unitary map from La, onto a 
closed G(A)-invariant subspace L$(G(Q)\G(A)) of L\G(Q)\G(A)). Moreover, we 
have an orthogonal decomposition 

The theorem states that the regular representation of G(A) on Lz(G(Q)\G(A)) 
is the direct sum over a set of representatives {P} of associated classes of parabolic 
subgroups, of the direct integrals m ( A )  dA. 

The theorem looks relatively straightforward, but the proof is decidedly round 
about. The natural inclination might be to start with a general 0 in 2$ and try to 
prove directly the analytic continuation of M(s,  ,410 and E(x,  0, A).  This doesnot 
seem possible. One does not get any idea how the proof will go, for general 0, 
until p. 231 of [I], the second last page of Langlands' original manuscript. Rather 
Langlands' strategy was to prove all the relevant statements of the theorem for 0 
in a certain subspace flpcusp of "̂p. He was then able to finesse the theorem from 
this special case. 

Let ecusp be the space of measurable functions 0 on N(A)M(Q)A(R)Â¡\G(A 
such that 

(i) l l @ \ 1 2  = ~ . ~ M ( Q ) A ( R ) ^ M ( A )  0I(mk)l2 dm dk < a, 
(ii) for any Q 2 P, and x e G(A), ~ O ( 0 ) \ N O ( A )  @(nx) dn = 0. 

It is a right G(A)-invariant Hilbert space. 

LEMMA 5. /// e C^(G(A)) for some large N, the map 1>-' 0 * f, 0 e P5, cusp, is 
a Hilbert-Schmidt operator on ZQ 

This lemma, combined with the spectral theorem for compact operators, leads 
to 
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COROLLARY. XG,cusp decomposes into a direct sum of irreducible representations 
of G(A), each occurring with finite multiplicity. 

Â¥^G,cus is called the space of cusp forms on G(A). It follows from the corollary, 
applied to M, that any function in Xp cusp is a limit of functions in ^p. Therefore 
Xp, cusp is a subspace of X p .  It is closed and invariant under Ip(A). 

Let Y(G) be the collection of triplets y = ( 9 ,  V ,  W), where W is an irreducible 
representation of K, Sfl is an associated class of parabolic subgroups, and l^ is a 
collection of subspaces 

{ Vp c 2% cusp, the space of cusp forms on M(A)}pe, 

such that 
(i) if P e 9, Vp is the eigenspace of Xj^,cusp associated to a complex valued 

homomorphism of 5YM(Rj, and 
(ii) if P, P' 9 ,  and s e Q(a, dl), Vp is the space of functions obtained by con- 

jugating functions in Vp by w,. 
If P e Sfl, define ̂ C p  to be the space of functions @ in Â¥^kcus such that for each 

x G(A), 
(i) the function k -+ @(xk), k e K, is a matrix coefficient of W, and 
(ii) the function m -i @(mx), m e M(A), belongs to Vp. Â¥yfp, is a finite dimen- 
sional space which is invariant under Ip(A, f )  for any f e CY(G(A))K. Xp, cusp is the 
orthogonal direct sum over all 2 = ( 9 ,  V ,  W), for which P Sfl, of the spaces 
^P,?. 

Fix y = ( 9 ,  V,  W) and fix P 9. Suppose that we have an analytic function 

A -^ @(A) = @(A, x), A e ac, x e N(A)M(Q)A(R)O\G(A), 

of Paley-Wiener type, from ac to the finite dimensional space Xp,y. Then 

is a function on N(A)M(Q)\G(A) which is independent of the point An e a. It is 
compactly supported in the A(^)Â¡-componen of x. 

LEMMA 6. For 0 as above, the function 

converges absolutely and belongs to L2(G(Q)\G(A)). Let Li(G(Q)\G(A)) be the 
closed subspace generated by all such 6. Then there is an orthogonal decomposition 

Suppose that A. e ,op + a+. Then 

dim A 
2 exp((A + pp, Hp(.Sx))) @(A, dA 

Re A=Ao W (Q) \G (Q) 
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Suppose that Ql(Al ,  x )  is another function, associated to PI .  We want an inner pro- 
duct formula for 

in terms of Q and Ql.  The inner product is 

.exp( - 2(p1, H l ( x ) ) )  q51(amk) da dm dk. 

LEMMA 7. Suppose that P and PI  are of the same rank. Y Q  E Z'p,x and Re A E pp + 
a+, then 

.. 

(Of  course, the right-hand side is 0 $ Q(a, a l )  is empty; that is, if P and PI are not 
associated.) 

PROOF. Let {Q}  be the set of s E Q such that s-la > 0 for every a E 0:. Then { Q }  
is a set of representatives in Q of the left cosets of 0 modulo the Weyl group of M. 
By the Bruhat decomposition, 

E(nx,  @, A) dn 

wtN1w;l n M is the unipotent radical of a standard parabolic subgroup of M. 
If the group is not M itself the term corresponding to s above is 0, since @ is cuspi- 
dal. The group is M itself if and only if s = t-1 maps a onto al. In this case 
w;lPwt n No\No is isomorphic to w71Nwt fl Nl\Nl. Therefore the above formula 
equals 

The volume is one by our choice of measure. The lemma therefore follows. 
Combining the lemma with the Fourier inversion formula, one obtains 

COROLLARY. Suppose that P and Pl are associated, and that 4 and are as in the 
discussion preceding Lemma 7. Then 
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where A,, is any point in pp + a+. 0 

The proofs of Lemmas 1-6 are based on rather routine and familiar estimates. 
This is the point a t  which the serious portion of the proof of the Main Theorem 
should begin. There are two stages. The first stage is to complete the analytic con- 
tinuation and functional equations for @ a vector in %?$, cusp. This is nicely described 
in [2],  so we shall skip it altogether. The second stage, done in Chapter 7 of [I], 
is the spectral decomposition of Li(G(Q)\G(A)). From this all the remaining asser- 
tions of the Main Theorem follow. We shall try to give an intuitive description of 
the argument. 

Fix = ( P x ,  V x ,  W ) .  The argument in Chapter 7 of [I] is based on an intricate 
induction on the dimension of (AIZ), for P E P x .  For @ E % ? ~ , ~ ,  P E P z ,  we are 
assuming that E(x ,  @, A)@ and M(s, A)@ are meromorphic on ac. In the process of 
proving this, one shows that the singularities of these two functions are hyperplanes 
of the form r = { A  E a c :  ( a ,  A )  = p, p E C,  a E .Zp}, and that only finitely many 
r meet a+ + ia = { A 3 a c :  ( a ,  Re A )  > 0, a~ QP}. 

Let L$~,?(G(Q)\G(A)) be the closed subspace of LZ(G(Q)\G(A)) generated by 
functions $(x ) ,  where 4 comes from a function @(A), as above, which vanishes on 
the finite set of singular hyperplanes which meet a+ + ia. If # l ( x )  comes from 
@l(Al) ,  for Pl E P x ,  we can apply Cauchy's theorem to the formula for 

The result is 

since -s.A = sA on ia. Changing variables in the integral and sum, we obtain 

where 
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and Fp2 is defined similarly. Define LPZlx  to be the subspace of the space iPr 
(defined in the statement of the Main Theorem) consisting of those collections 
{Fp2: P2 E P x }  such that Fp2 takes values in RP2, x.a We have just exhibited an 
isometric isomorphism from a dense subspace of LPrsx  to a dense subspace of 
L& x(G(Q)\G(A)). Suppose that {Fp2} is a collection of functions in igx, each of 
which is smooth and compactly supported. Let h(x) be the corresponding function 
in L&(G(Q)\G(A)) defined by the above isomorphism. We would like to prove 
that h(x) equals 

1 dim A 
l i ( x )  = H ( A ~ ) - ~ ( ~ - )  l E(x,  Fpz(A), A)  dA. 

P2EPZ i ~ 2  

If J1 (x )  is as above, the same argument as that of the corollary to Lemma 7 shows 
that 

dim A2 
dx = z H(Az)-~(&) 

G (Q)  \G ( A )  P2 

Since the projection of &(x)  onto L$x, x(G(Q)\G(A)) corresponds to the collection 
{Fl, p2} defined by ( I ) ,  this equals 

We have shown that h(x) = i'?'(x). This completes the first stage of Langlands' 
induction. 

T o  begin the second stage, Langlands lets Q be the projection of L$(G(Q)\GjA)) 
onto the orthogonal complement of L&, xiG(Q)\G(A)). Then for any &x) and #l (x )  
corresponding to  @(A) and Ql(Al) ,  (Q4, d l )  equals 

Choose a path in a+ from A. to 0 which meets any singular hyperplane Y of 
{M(s,  A) : s E Q(a, al)}  in at most one point Z(s).  Any such s is of the form X(s) + 
rg, where sv is a real vector subspace of a of codimension one, and X(r) is a vector 
in a orthogonal to sv. The point Z(s )  belongs to X(s) + sv. By the residue theorem 
(Q& 41) equals 

dim A-1 
Resr(M(s, A)@(A). D l ( -  sA)) dA. 

The obvious tactic at this point is to repeat the first stage of the induction with A. 
replaced by Z(r) ,  0 replaced by X(r): and E(x, @, A) by ResrE(x, @, A). 
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Suppose that rv  = { H E  a :  ( a ,  H )  = 0 )  for a simple root a E QP. Then rv = 

aR, for R a parabolic subgroup of G containing P. If @ E define 

This is essentially a cuspidal Eisenstein series on the group MR(A). It converges for 
suitable A  E ac and can be meromorphically continued. It is clear that 

whenever the right-hand side converges. Suppose that A E T ,  and A  = X(r) + Av, 
Av E rg, Re Av E pR + a i .  Then for any small positive E ,  

where 

the residue at X(r) of an Eisenstein series in one variable. One shows that the func- 
tion m -+ @"(my), m E MR(Q)\MR(A), is in the discrete spectrum. Thus 

the Eisenstein series over R(Q)\G(Q) associated to a vector Qv in A?hZR,cusp, Its 
analytic continuation is immediate. Let ZRPx be the finite dimensional subspace of 
ZR consisting of all those vectors Qv. By examining ResrM(s, A), one obtains the 
operators 

for s E Q(aR, a@). Their analytic continuation then comes without much difficulty. 
Let 9' be the class of parabolic subgroups associated to R. In carrying out 

the second stage of the induction one defines subspaces L$l,x(G(Q)\G(A)) c 
Li(G(Q)\G(A)) and & , , , x  c i;,, and as above, obtains an isomorphism between 
them. In the process, one proves the functional equations in (a) of the Main The- 
orem for vectors QV E Z R Z x .  

The pattern is clear. For R now any standard parabolic subgroup and 9 any 
associated class, one eventually obtains a definition of spaces Z R Z x ,  i9,x and 
L$, x(G(Q)\G(A)). By definition, ZRIx is { 0 }  unless R contains an element 0 f 9 ~ ,  and 
the other two spaces are { 0 }  unless an element of 9 contains an element of p x .  If 
9' is the associated class of R, there corresponds a stage of the induction in which 
one proves part (a) of the Main Theorem for vectors Qv in ZRZx and part (b) for 
the spaces ig, and L$, x(G(Q)\G(A)). Finally, one shows that 
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The last decomposition together with the Main Theorem yields 

(2) L2(G(Q)\G(A)) = CDG, x(G(Q)\G(A)). 
9, x 

This completes our description of the proof of the Main Theorem. It is perhaps 
a little too glib. For one thing, we have not explained why it suffices to consider 
only those r above such that rv = { A  E a:  (a ,  A )  = 0). Moreover, we neglected 
to mention a number of serious complications that arise in higher stages of the 
induction. Some of them are described in Appendix 111 of [I], We shall only remark 
that most of the complications exist because eventually one has to study points 
X(r) and Z(r )  which lie outside the chamber a+, where the behavior of the functions 
M(s,  A) is a total mystery. 

In this section we shall describe a trace formula for G. We have not yet been able 
to prove as explicit a formula as we would like for general G. We shall give a more 
explicit formula for GL3 in the next section. In the past most results have been for 
groups of rank one. The main references are 

4. H. Jacquet and R. Langlands, Automorphic forms on GL(2),  Springer-Verlag, 
Berlin, 1970. 

5. M. Duflo and J. Labesse, Sur la formule des traces de Selberg, Ann. Sci. 
~ c o l e  Norm. Sup. (4) 4 (1971), 193-284. 

6. J. Arthur, The Selberg trace formula for groups of F-rank one, Ann. of Math. 
(2) 100 (19741, 326-385. 

We shall also quote from 

7. J. Arthur, The characters of discrete series as orbital integrals, Invent. Math. 
32 (19761, 205-261. 

Let R be the regular representation of G(A) on L2(Z(R)OSG(Q)\G(A)). If 6 E i6, 
recall that Rt is the twisted representation on Lz(Z(R)O.G(Q)\G(A)) given by 
Rf ( x )  = R(x)  exp((c, HG(x))) .  We are really interested in the regular representation 
of G(A) on L2(G(Q)\G(A)); but this representation is a direct integral over c E i6 
of the representations RE, so it is good enough to study these latter ones. The 
decomposition (21, quoted in Part I, is equivalent to 

Suppose that f E C;(G(A)IK. Then this last decomposition is invariant under the 
operator RE( f ) .  RE( f )  is an integral operator with kernel 
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where 

The following result is essentially due to Duflo and Labesse. 

LEMMA 1. For every N 2 0 we can express f as a finite sum of functions of the form 

Let &(G) be the set of y = (9, -T, W) in 9 ( G )  such that 9 # {G}. Let RE,(( / )  
be the restriction of R t ( f )  to @9@XE*(G) L$,% (Z(R)OG(Q)\G(A)). Then 

R c u s p , ~ ( f )  = R&f ) - R ~ , d f  
is the restriction of Re( f )  to the space of cusp forms. It is a finite sum of composi- 
tions R C  {( f l)Rcusp, (( f 2, of Hilbert-Schmidt operators and so is of trace class. For 
each P and let S8p,u be a fixed orthonormal basis of the finite dimensional space 
, y f p , y  Finally, recall that a G  = a^ is the orthogonal complement of 3 = ac in a. 
If A is in iac, we shall write At for the vector A + $ in ia. 

LEMMA 2. RE(/) is an integral operator with kernel 

The lemma would follow from the spectral decomposition described in the last 
section if we could show that the integral over A and sum over y converged and was 
locally bounded. We can assume that f = f 1 * f 2. If 

a finite sum, then one easily verifies that 

By applying Schwartz' inequality to the sum over y, P and the integral over A, we 
reduce to the case that ,f = f 1 * ( f  1)* and x = y. But then RE, ( ( / )  is the restriction 
of the positive semidefinite operator R c ( f )  to an invariant subspace. The integrand 
in the expression for Kp(x, x )  is nonnegative, and the integral itself is bounded by 
K(x, x). This proves the lemma. 

The proof of the lemma can be modified to show that KE(x, y)  is continuous in 
each variable. The same is therefore true of 

One proves without difficulty 

LEMMA 3. The trace of RcUsp ( ( f )  equals 

Z ' G  (0 \C X )  dx. 
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Of course neither K nor Kg is integrable over the diagonal. It turns out, however, 
that there is a natural way to modify the kernels so that they are integrable. Given 
P,  let r p  (resp. f p )  be the characteristic function of { H e  ao: a ( H )  > 0, a  e Q p  
(resp. p(H) > 0, p e <Pp)}. (Recall that 0p is the basis of aÂ which is dual to QP.) 
Then ip 5 f p .  Suppose that T 6 an. 

LEMMA 4. For any P, z a ~ p ( ~ ) \ ~ ( ~ )  fp(H(8x} - T )  is a locally bounded function of 
x e G(A}. In particular the sum is finite. 

We will now take T e a$. We shall assume that the distance from T to  each of the 
walls of a t  is arbitrarily large. We shall modify K(x, x )  by regarding it as the term 
corresponding to P = G in a sum of functions indexed by P. If x remains within a 
large compact subset of Z(R)OG(Q)\G(A), depending on T ,  the functions corre- 
sponding to P # G will vanish. They are defined in terms of 

the kernel of R [ ( f ) ,  where RP is the regular representation of G(A) on 
L2 (Z(R)ON(A)M(Q)\G(A)). Define the modified function to be 

k ~ ( ~ )  = 2 (-  l)dim(A/Z) 7; KP(6x, 5 ~ ) ? Â ¥ p ( H ( 6 ~  - T ) .  
P Jc. P ( Q )  \G ( Q )  

For each x this is a finite sum. The function obtained turns out to be integrable 
over Z(R)OG(Q)\G(A). We shall give a fairly detailed sketch of the proof of this 
fact because it is typical of the proofs of later results, which we shall only state. 

We begin by partitioning Z(R)Â¡Â¥G(Q)\G( into disjoint sets, indexed by P, 
which depend on T.  Fix a Siege1 set r in Z(R)O\G(A) such that Z(R)O\G(A) = G(,Q)r. 
Consider the set of x e r such that p(Ho(x) - T) < 0 for every p e (Po. It is a 
compact subset of r. The projection, G(T),  of this set onto Z(R)oG(Q)\G(A) remains 
compact. For any P we can repeat this process on M ,  to obtain a compact subset of 
A(R)OM(Q)\M(A), which of course depends on T .  Let Fp(rn, T )  be its characteristic 
function. Extend it to a function on G(A) by 

Fp(nmk, T )  = Fp(m, T ) ,  n e N(A),  m e M(A), k e K. 

This gives a function on N(A)M(Q)A(R)O\G(A). If Q c P, define rg (resp. f g )  to 
be the characteristic function of 

{ H e  ao: a(H) > 0,  a  e Qg (resp. p(H) > 0, p e @)}.  

The following lemma gives our partition of N(A)M(Q)A(R)O\G(A). It is essentially 
a restatement of standard results from reduction theory. 

LEMMA 5. Given P, 

equals 1 for almost all x e G(A). Q 

We can now study the function kT(x). It equals 
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To study OQ, consider the case that G = GL3. Then a0/3 is two dimensional, 
spanned by simple roots al  and a2. Let Q = Po, and let Pi be the maximal para- 
bolic subgroup such that al = { H e  ao: a l ( H )  = O}. Then 4 is the difference of 
the characteristic functions of the following sets: 

The next lemma generalizes what is clear from the diagrams. 

LEMMA 6. Suppose that H i s  a vector in the orthogonal complement of 8 in OQ. I f  
&H) # 0, andH = H* + H*, H* e ad, H* e a;, r h e ~  a(H*) > 0 for each a @ 
and \\ H* \\ < c \\ H* \\ for a constant c depending only on G. In other words H* belongs 
to a compact set, while H* belongs to the positive chamber in a& 

We write kT(x) as 

The integral over Z(R)OG(Q)\G(A) of the absolute value of kT(x) is bounded 
by the sum over Q c P1 of the integral over Q(Q)Z(R)O\G(A) of the product of 
FQ(x, T)ffy (H(x )  - T )  and 
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We can assume that for a given x the first function does not vanish. Then by the last 
lemma, the projection of HQ(x)  onto is large. Conjugation by x-I tends to stretch 
any element ,U e M(Q)  which does not lie in Q(Q). Since f is compactly supported, 
we can choose T so large that the only p which contribute nonzero summands 
in (1) belong to QP(Q) = Q(Q) f-l M(Q)  = MQ(Q)Ng(Q). Thus, ( 1 )  equals ,. , 

which is bounded by 

Recall that no is the Lie algebra of No. Let ( , ) denote the canonical bilinear 
form on no. If X e no, let e ( X )  be the matrix in No obtained by adding X to the 
identity. Then e is an isomorphism (of varieties over Q )  from no onto No. Let (/; be 
a nontrivial character on A/Q. Applying the Poisson summation formula to 115, 

we see that (1) is bounded by 

If n&(Q)' is the set of elements in nb(Q), which do not belong to any n$(Q) with 
Q c P $ Pl ,  this expression equals 

The integral over n* goes out. The integrals over k and m can be taken over com- 
pact sets. I t  follows from the last lemma that the set of points {a-1 n*u}, indexed by 
those n* and a for which the integrand is not zero, is relatively compact. Therefore 
there is a compact set C in Z(R)O\G(A) such that the integral of \kT(x)\ is bounded 
by the sum over Q c P I ,  ,u e MQ(Q) and the integral over x C of 

f* 
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Since f is compactly supported, the sum over p is finite. If Q = P I ,  04 equals 0, 
unless of course Q = Pi = G, when it equals 1. If Q P i ,  

is the Fourier transform of a Schwartz-Bruhat function on nb(A), and is con- 
tinuous in x. If H(a) = H* + H*,  H* e a;, H *  e a l / ~ ,  H *  must remain in a com- 
pact set. Since H* lies in the positive chamber of a;, far from the walls, Ad(a) 
stretches any element C in n&(Q)'. In fact as H* goes to infinity in any direction, 
Ad(u)Â£ goes to infinity. Here it is crucial that Â£ not belong to any 115 (Q), Q c P s 
Pi.  It follows that if Q $i P I ,  the corresponding term is finite and goes to  0 exponen- 
tially in T. Thus the dominant term is the only one left, that corresponding to Q = 
PI = G. It  is an integral over the compact set G(T). We have sketched theproof of 

THEOREM 1. W e  can choose e > 0 such that for any T e Q:, sufficiently far from the 
~i'alls, 

We would expect the integral of kT(x) to break up into a sum of terms corre- 
sponding to conjugacy classes in G(Q). I t  seems, however, that a certain equivalence 
relation in G(Q), weaker than conjugacy, is more appropriate. If {i e G(Q), let {is 

be its semisimple component relative to the Jordan decomposition. Call two ele- 
ments f i  and p' in G(Q) equivalent if ps and pi are G(Q)-conjugate. Let 9 be the set 
of equivalence classes in G(Q). If o E %?, define 

and 

Then 

If ,u e G and H i s  a closed subgroup of G, let H denote the centralizer of p in H.  

LEMMA 7. Fix P. Then for p M(Q) and 6 e C T(N(A) ) ,  

This lemma is easily proved. I t  implies that for o 9, P(Q) ft o = 

(M(Q) n o)N(Q). If this fact is combined with the proof of Theorem 1 we obtain 
a stronger version. 

THEOREM 1 *. There are positive constants C and e such that 
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The integral of kT(x) cannot be computed yet. What we must do is replace k 3 x )  
by a different function. Define 

J ~ X .  ~ ' 1  = 2 2 / i f ~ - ~ C - l p n M  ifc. 
F M ( Q )  f lu  CeNps(Q) \ N ( Q )  Np. ( A )  

It is obtained from Kfix ,  y) by replacing a part of the integral over N(A)  by the 
corresponding sum over Q-rational points. Define 

jT(x) = 2 ( - l ) d i m ( A / z )  2 J ~ x ,  8x)?p(H(8~) - T ) .  
P a s P ( Q )  \G (Q) 

The proof of the following is similar to that of Theorem 1 *. 

THEOREM 2. There are positive constants C and e such that 

Suppose that TI is a point in T + 6. By integrating the difference of kJ'(x) and 
k^(x) one proves inductively that the integral of k^x)  is a polynomial in T. The 
same goes for the integral o f j z x ) .  Since the integrals of k^(x)  and j z x )  differ by an 
expression which approaches 0 as T approaches m, they must be equal. Summariz- 
ing what we have said so far, we have 

Suppose that the class o consists entirely of semisimple elements. so that o is an 
actual conjugacy class. The centralizer of any element in o is anisotropic modulo 
its center. The split component of the center is G(Q)-conjugate to the split com- 
ponent of a standard parabolic subgroup. Thus, we can find p0 e o and a standard 
parabolic Po such that the identity component of Gh is contained in Mu and is 
anisotropic modulo An. We shall say that the class o is tmram;jied if Gb itself is 
contained in Mu. Assume that this is the case. We shall show how to express J^ ( f e )  
as a weighted orbital integral of fc. 

Given any P, suppose that p e o fl M(Q). Then by the same argument, we can 
choose an element s in U p ,  Q(ao, a i )  and an element 7 c M(Q) such that sa, 
contains a, and p = ~ ~ ~ p ~ w ; ~ 7 - ~ .  Let fi(ao; P) be the set of elements s in 
up, f i (ao ,  al)  such that if a1 = sag, a l  contains a, and s 4 a  is positive for every root 
a in @ ' p  Then if we demand that the element s above lie in O(ao; P), it is uniquely 
determined. Thus J^(8x, ax) equals 

Therefore j*) equals 
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Since the centralizer of w s ~ w s l  in G is contained in M, this equals 

269 

. T ) .  

where 
,. 

The expression in the brackets is compactly supported in a. In fact it follows from 
the results of [7, $32, 31 that v(x, T )  equals the volume in ao/3 of the convex hull of 
the projection onto ao/3 of { s l T  - s l H ( w s x ) ;  s e uplQ(ao, al)} .  It was Lang- 
lands who surmised that the volume of a convex hull would play a role in the trace 
formula. 

By studying how far JT(fe) differs from an invariant distribution, I hope to 
express J x f e ) ,  for general o, as a limit of the distributions for which o is as above, 
at least modulo an invariant distribution that lives on the unipotent set of G(A), 
However, this has not yet been done. 

The study of KE(x, x )  parallels what we have just done. The place of {o e %'} is 
now taken by { X  e &(G)}. Given P, and y e &(G), define 

where ^(AQ) is the number of chambers in aQ/a. Then if P # G, 

The convergence of the sum over y and the above integral over A is established by 
the argument of Lemma 2. Define 

/cT(x) = 2 ( - l ) d i m ( A / Z )  2 K W X ,  Sx)Fp(H(8x) - T ) .  
P i5eP(Q) \G(Q) 

Then 

We would like to be able to integrate the function kT,(x). But as before, we will 
have to replace it with a new function jF(x) before this can be done. 

To define the new function, we need to introduce a truncation operator. In form 
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it resembles the way we modified the kernel K(x, x ) ,  but it applies to any continuous 
function 6 on Z(R)O-G(Q)\G(A). Define a new function on Z(R)O.G(Q)\G(A) by 

AT has some agreeable properties. It leaves any cusp form invariant. I t  is a self- 
adjoint operator. These facts are clear. It is less clear, but true, that f i A T  = AT. 
If y E Y E ( G ) ,  define 

If we apply AT to the second variable in K d x ,  y )  we obtain ^-^yEiG)J];(x,y).  Define 
,j;(x) = J a x ,  x) .  

THEOREM 4. The function zx9r(G)1j;(~)1 is integrable over Z(R)Â¡G(Q)\G(A) 
For any y, the integral ofj\(x) equals 

The first statement of the theorem comes from a property of AT. Namely, if < 
is a smooth function on Z(R)O- G(Q)\G(A) any of whose derivatives (with respect 
to the universal enveloping algebra of g(C)) are slowly increasing in a certain sense, 
then AT$ is rapidly decreasing. The proof of this property is similar to the proof of 
Theorem 2. The Poisson formula can no longer be used, but one uses [3, Lemma 
101 instead. Given the fact that AToAT = AT, the other half of the theorem is a 
statement about the interchange of the integrals over x and A. By the proof of 
Lemma 2 we can essentially assume the integrand is nonnegative. The result fol- 
lows. 

THEOREM 5. There arepositive constants C and e such that 

I t  turns out that this theorem can be proved by studying the function kT(x) - 
A w x ,  y), at  x = y. This is essentially the sum over all 2 of the above integrand 
(without the absolute value bars). The point is that the new function is easier to 
study because it has a manageable expression in terms off. 

Combining Theorems 4 and 5, we see that hG(Q-I\G(A) SxeetGilk\(x)I dx  is 
finite. In particular, each k D )  is integrable. With a little more effort it can be 
shown that the integrals of k ^ f x )  and jT(x) are actually equal. We shall denote the 
common value by J7( fe) .  I t  is a polynomial in T. We have shown that 
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for any suitably large T a^. The right-hand side is a polynomial in T while the 
left-hand side is independent of T. Letting Jo(/{) and Jx( fs)  be the constant terms of 
the polynomials J;(f;)  and J ^ f p )  we have 

THEOREM 6. For any f E Cr(G(A))K ,  

Suppose that = (9, V", W) and that P 9. Then if 0e Z p , ^ ,  ATE(x, 0, A) 
equals the function denoted Er'(x, 0, A) by Langlands in [2, $91. This is, in fact, 
what led us to the definition of AT in the first place. If 0' is another vector in ^p.v, 
Langlands has proved the elegant formula 

(see [2, $91. Actually the formula quoted by Langlands is slightly more complicated, 
but it can be reduced to what we have stated.) In this formula, we can set A' = A 
and 0' = Ip(A, f ) @ .  We can then sum over all 0 in S S p  and integrate over A e iac. 
The result is not a polynomial in T. To obtain J $ ( f t )  we would have to consider all 
P, not just those in the associated class 9. The best hope seems to be to calculate 
residues in A and A' separately in the above formula. For GL3 the result turns out 
to be relatively simple. 

In this last section we shall give the results of further calculations. They can be 
stated for general G but at this point they can be proved only for G = GL3. Our 
aim is to express the trace of Rap, ( ( f )  in terms of the invariant distributions defined 
in 

8. J. Arthur, On the invariant distributions associated to weighted orbital integrals, 
preprint. 

A trace formula for K-bi-invariant functions has also been proved in 

9. A. B. Venkov, On Selberg's trace formula for SLdZ), Soviet Math. Dokl. 
17 (1976), 683-687. 

First we remark that the distributions J ^ ( f ^ )  and J J \ f ^ )  are independent of our 
minimal parabolic subgroup so there is no further need to fix Po. If A is any Q- 
split torus in G, let 9 ( A )  denote the set of parabolic subgroups with split component 
A. They are in bijective correspondence with the chambers in A.  In fact, if Po is a 
minimal parabolic subgroup contained in an element P of .S^(A), then 

If P' S"(A), and P' = w? Plbv:, define 
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Then M p I l p  ( A )  is a map from (̂P) to ^(PI),  which is independent of Po. In fact, 
if Re A 6 pp  + a$, 

We have changed our notation to agree with that of [8]. 
A is said to be a special subgroup of G if P ( A )  is not empty. Suppose that A and 

Al are special subgroups, with A => Al .  We write QMl(a, a)reg for the set of elements 
s e Q(a, a )  whose space of fixed vectors in a is d l .  Suppose that Pi e P ( A 1 )  and 
Q e ^aM](^),  the set of parabolic subgroups of M l  with split component A. Then 
there is a unique group in gft(A), which we denote by Pl(Q) ,  such that Pl(Q)  1= Pi 
and Pl(Q) n M, = Q. 

LEMMA 1.  Suppose that A and Al  are as above and that P = Pl(Q)  for some 
Pl e ^a(A1) and Q PM1(A), Then i f A  idl, the limit as 2 approaches 0 of 

exists as an operator on Z p .  W e  denote it by M(P ,  A l ,  A). 

This lemma follows from [8]. 0 
Fix a maximal special subgroup An of G. From Langlands' inner product 

formula, quoted at the end of Part 11, one can prove 

LEMMA 2. For any e Y E ( G ) ,  Jv( f ( )  equals the sum over all specialsubgroupsAl 
and A of G, with Al c= A c Ao, and over s fiMl(a, a )  of 

cS[ 
2 (-^(A - ^ I ,  A d M ( s ,  0) Ip(As,  f)@, i?) dA. 

(0: O<=&p, 

Here c, is the product of 

with the volume of a> modulo the lattice generated by @}>, and P is any element in 
^(Al)  which contains some group in %A).  

Recall the decomposition Ip(A)  = @L(xVp(o;,A). If 1>v is a smooth vector in 
jfp(o-,',) and Re A e pp + a t ,  define 

for x G(Q,^f. This is the usual unnormalized intertwining operator for a group 
over a local field. Then 

LEMMA 3. I f  a,, is an irreducible unitary representation of M(Q,,), we can define 
meromorphic functions rpt\p(aÃ§,A) P,  P'E ^(A),  A e ac, so that the operators 
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Rp,lp(av,A)  = M p , l p ( ~ , A )  rp~lp(av,,4)"1 can be analytically continued in A, with 
the following functional equations holding: 

and 

Moreover i f  oU is of class 1 and <t>., is the KO-invariant function, 

R P , I P ( ~ ~ ,  A ) @ ~  = R. 
Suppose that a = &au is an irreducible unitary representation of M(A).  If 

<ti = @<tiu is a smooth vector in Z p ( a )  = @02'p(au),  define 

For almost all v, the right-hand vector is the characteristic function of Ku. Define 
M 1  to be the kernel of the set of rational characters of M defined over Q .  Then Ml 
is defined over Q, and M(A) = M1(A)A(A). Letf be a function in CF(G(A))K, as 
in Part 11. 

LEMMA 4. There is a function < f > A ( f )  in Cw(M(A))KnM(A)  such that 

is compactly supported in m and a Schwartz function in a ,  so that the following pro- 
perty holds. I f  a  = is any irreducible unitary representation of w), 

(The limit on the right exists and is independent of the fixedgroup P e Â£y(A). 

Suppose that u is an equivalence class in G ( Q ) .  Then M(Q) ft u is a finite union 
(possibly empty), OF IJ Â ¥ Â  IJ OF, of equivalence classes relative to the group 
M(Q). If F,M is a function defined on the equivalence classes relative to the group 
M(Q), let us write 

Now we shall define an invariant distribution I, for each u e +?. The definition is 
inductive; we assume that the invariant distributions 1% have been defined for 
each special subgroup A, with Z A c An. We then define 

LEMMA 5. I0 is invariant. 

This is essentially Theorem 5.3 of [8]. Note that this lemma is necessary for our 
inductive definition, since ( b ^ f )  is only defined up to conjugation by anelementin 
M(A). a 

Suppose that a = B v &  is a unitary automorphic representation of M(A).  Then 
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is essentially a quotient of two Euler products and is defined by analytic continua- 
tion. If A e i ~ ,  let rp.,p(A) be the operator on Zp which acts on the subspace deter- 
mined by Ip(a') by the scalar rp,,p(a;). If A => Al define the operator @, Al, A) on 

by the limit in Lemma 1, with Mp,(Q)lp(A)-\Mp^Q)lp(A + A) replaced by 
rp,(~)lp(A)-lrp,(Qm(A + A). It commutes with the action of G(A), Finally, for 

e i$^(G), define ix(/{) by the formula for J f i )  in Lemma 2, with M(P, Al, A;) 
replaced by r(P, A^, A^). Then i is an invariant distribution. 

THEOREM 1 .  For any f e CC(G(A))K, 

REMARK.  It follows from formula (2) of Part I1 that if o consists entirely of semi- 
simple elements, I. is one of the invariant distributions studied in [8]. Moreover 
since G = GLv, it is possible to show that for any o, IÃ is a sum of limits of the 
invariant distributions in [8]. Suppose that f = Rvfv and that for two places v, 

for all maximal tori T i n  G such that Z(Qv)\T(Qu) is not compact. It follows from 
the last theorem of [8] that if there exists an element 7 in a given LI which is Q- 
elliptic mod Z, 

and that I,,(/{) = 0 if no such 7 exists. Moreover, it is easy to see that each i@) = 

0. From this it follows that if { 7 }  is a set of representatives of G(Q)-conjugacy 
classes of elements in G(Q) which are elliptic mod Z,  

for f as above. 
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