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Introduction

This paper is the last of three articles designed to stabilize the trace formula. Our

goal is to stabilize the global trace formula for a general connected group, subject to a

condition on the fundamental lemma that has been established in some special cases. In

the first article [I], we laid out the foundations of the process. We also stated a series of

local and global theorems, which together amount to a stabilization of each of the terms

in the trace formula. In the second paper [II], we established a key reduction in the proof

of one of the global theorems. In this paper, we shall complete the proof of the theorems.

We shall combine the global reduction of [II] with the expansions that were established in

§10 of [I].

We refer the reader to the introduction of [I] for a general discussion of the problem of

stabilization. The introduction of [II] contains further discussion of the trace formula, with

emphasis on the “elliptic” coefficients aG
ell(γ̇S). These objects are basic ingredients of the

geometric side of the trace formula. However, it is really the dual “discrete” coefficients

aG
disc(π̇) that are the ultimate objects of study. These coefficients are basic ingredients of

the spectral side of the trace formula. Any relationship among them can be regarded, at

least in theory, as a reciprocity law for the arithmetic data that is encoded in automorphic

representations.

The relationships among the coefficients aG
disc(π̇) are given by Global Theorem 2.

This theorem was stated in [I, §7], together with a companion, Global Theorem 2′, which

more closely describes the relevant coefficients in the trace formula. The proof of Global

Theorem 2 is indirect. It will be a consequence of a parallel set of theorems for all the

other terms in the trace formula, together with the trace formula itself.

Let G be a connected reductive group over a number field F . For simplicity, we can

assume for the introduction that the derived group Gder is simply connected. Let V be a

finite set of valuations of F that contains the set of places at which G ramifies. The trace
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formula is the identity obtained from two different expansions of a certain linear form

I(f), f ∈ H(G, V ),

on the Hecke algebra of G(FV ). The geometric expansion

(1) I(f) =
∑

M

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M,V )

aM (γ)IM(γ, f)

is a linear combination of distributions parametrized by conjugacy classes γ in Levi sub-

groups M(FV ). The spectral expansion

(2) I(f) =
∑

M

|WM
0 ||WG

0 |−1

∫

Π(M,V )

aM (π)IM(π, f)dπ

is a continuous linear combination of distributions parametrized by representations π of

Levi subgroups M(FV ). (We have written (2) slightly incorrectly, in order to emphasize

its symmetry with (1). The right hand side of (2) really represents an integral over {M}×

Π(M,V ) that is known at present only to converge conditionally.) Local Theorems 1′ and

2′ were stated in [I, §6], and apply to the distributions IM (γ, f) and IM (π, f). Global

Theorems 1′ and 2′, stated in [I, §7], apply to the coefficients aM (γ) and aM (π).

Each of the theorems consists of two parts (a) and (b). Parts (b) are particular to

the case that G is quasisplit, and apply to “stable” analogues of the various terms in the

trace formula. Our use of the word “stable” here (and in [I] and [II]) is actually slightly

premature. It anticipates the assertions (b), which say essentially that the “stable” variants

of the terms do indeed give rise to stable distributions. It is these assertions, together with

the corresponding pair of expansions obtained from (1) and (2), that yield a stable trace

formula. Parts (a) of the theorems apply to “endoscopic” analogues of the terms in the

trace formula. They assert that the endoscopic terms, a priori linear combinations of

stable terms attached to endoscopic groups, actually reduce to the original terms. These

assertions may be combined with the corresponding endoscopic expansions obtained from

(1) and (2). They yield a decomposition of the original trace formula into stable trace

formulas for the endoscopic groups of G.
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Various reductions in the proofs of the theorems were carried out in [I] and [II] (and

other papers) by methods that are not directly related to the trace formula. The rest

of the argument requires a direct comparison of trace formulas. We are assuming at

this point that G satisfies the condition [I, Assumption 5.2] on the fundamental lemma.

For the assertions (a), we shall compare the expansions (1) and (2) with the endoscopic

expansions established in [I, §10]. The aim is to show that (1) and (2) are equal to their

endoscopic counterparts for any function f . For the assertions (b), we shall study the

“stable” expansions established in [I, §10]. The aim here is to show that the expansions

both vanish for any function f whose stable orbital integrals vanish. The assertions (a)

and (b) of Global Theorem 2 will be established in §9, at the very end of the process. They

will be a consequence of a term by term cancellation of the complementary components in

the relevant trace formulas.

Many of the techniques of this paper are extensions of those in Chapter 2 of [AC]. In

particular, Sections 2–5 here correspond quite closely to Sections 2.13–2.16 of [AC]. As in

[AC], we shall establish the theorems by a double induction argument, based on integers

dder = dim(Gder)

and

rder = dim(AM ∩Gder),

for a fixed Levi subgroup M of G. In §1, we shall summarize what remains to be proved

of the theorems. We shall then state formally the induction hypotheses on which the

argument rests.

In §2, we shall apply the induction hypotheses to the endoscopic and stable expansions

of [I, §10]. This will allow us to remove a number of inessential terms from the comparison.

Among the most difficult of the remaining terms will be the distributions that originate

with weighted orbital integrals. We shall begin their study in §3. In particular, we shall

apply the technique of cancellation of singularities, introduced in the special case of divi-
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sion algebras by Langlands in 1984, in two lectures at the Institute for Advanced Study.

The technique allows us to transfer the terms in question from the geometric side to the

spectral side, by means of an application of the trace formula for M . The cancellation

of singularities comes in showing that for suitable v ∈ V and fv ∈ H
(
G(Fv)

)
, a certain

difference of functions

γv −→ IEM (γv, fv) − IM (γv, fv), γv ∈ ΓG-reg
(
M(Fv)

)
,

can be expressed as an invariant orbital integral on M(Fv). In §4, we shall make use

of another technique, which comes from the Paley-Wiener theorem for real groups. We

shall apply a weak estimate for the growth of spectral terms under the action on f of an

archimedean multiplier α. This serves as a substitute for the lack of absolute convergence

of the spectral side of the trace formula. In particular, it allows us to isolate terms that

are discrete in the spectral variable. The results of §4 do come with certain restrictions

on f . However, we will be able to remove the most serious of these restrictions in §5 by a

standard comparison of distributions on a lattice.

The second half of the paper begins in §6 with a digression. In this section, we

shall extend our results to the local trace formula. The aim is to complete the process

initiated in [A10] of stabilizing the local trace formula. In particular, we shall see how

such a stabilization is a natural consequence of the theorems we are trying to prove.

The local trace formula has also to be applied in its own right. We shall use it to es-

tablish an unprepossessing identity (Lemma 6.5) that will be critical for our proof of

Local Theorem 1. Local Theorem 1 actually implies all of the local theorems, according to

reductions from other papers. We shall prove it in §7 and §8. Following a familiar line of

argument, we can represent the local group to which the theorem applies as a completion

of a global group. We will then make use of the global arguments of §2–5. By choosing

appropriate functions in the given expansions, we will be able to establish assertion (a)

of Local Theorem 1 in §7, and to reduce assertion (b) to a property of weak approxima-
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tion. We will prove the approximation property in §8, while at the same time taking the

opportunity to fill a minor gap at the end of the argument in [AC, §2.17].

We shall establish the global theorems in §9. With the proof of Local Theorem 1 in

hand, we will see that the expansions of §2–5 reduce immediately to two pairs of simple

identities. The first pair leads directly to a proof of Global Theorem 1 on the coefficients

aG
ell(γ̇S). The second pair of identities applies to the dual coefficients aG

disc(π̇). It leads

directly to a proof of Global Theorem 2.

In the last section, we shall summarize some of the conclusions of the paper. In

particular, we shall review in more precise terms the stablization process for both the

global and local trace formulas. The reader might find it useful to read this section before

going on with the main part of the paper.
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§1. The induction hypotheses

Our goal is to prove the general theorems stated in [I, §6,7]. This will yield both a

stable trace formula, and a decomposition of the ordinary trace formula into stable trace

formulas for endoscopic groups. Various reductions of the proof have been carried out in

other papers, by methods that are generally independent of the trace formula. The rest of

the proof will have to be established by an induction argument that depends intrinsically

on the trace formula. In this section, we shall recall what remains to be proved. We shall

then state the formal induction hypotheses that will be in force throughout the paper.

We shall follow the notation of the papers [I] and [II]. We will recall a few of the basic

ideas in a moment. For the most part, however, we shall have to assume that the reader

is familiar with the various definitions and constructions of these papers.

Throughout the present paper, F will be a local or global field of characteristic 0. The

theorems apply to a K-group G over F that satisfies Assumption 5.2 of [I]. In particular,

G =
∐

β

Gβ , β ∈ π0(G),

is a disjoint union of connected reductive groups over F , equipped with some extra struc-

ture [A10, §2], [I, §4]. The disconnected K-group G is a convenient device for treating

trace formulas of several connected groups at the same time. Any connected group G1 is

a component of an (essentially) unique K-group G [I, §4], and most of the basic objects

that can be attached to G1 extend to G in an obvious manner.

The study of endoscopy for G depends on a quasisplit inner twist ψ: G → G∗ [A10,

§1,2]. Recall that ψ is a compatible family of inner twists

ψβ : Gβ −→ G∗, β ∈ π0(G),

from the components of G to a connected quasisplit group G∗ over F . Unless otherwise

stated, ψ will be assumed to be fixed. We also assume implicitly that if M is a given Levi
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sub(K-)group of G, then ψ restricts to an inner twist from M to a Levi subgroup M ∗ of

G∗.

It is convenient to fix central data (Z, ζ) for G. We define the center of G to be

a diagonalizable group Z(G) over F , together with a compatible family of embeddings

Z(G) ⊂ Gβ that identify Z(G) with the center Z(Gβ) of any component Gβ . The first

object Z is an induced torus over F that is contained in Z(G). The second object ζ

is a character on either Z(F ) or Z(A)/Z(F ), according to whether F is local or global.

The pair (Z, ζ) obviously determines a corresponding pair of central data (Z∗, ζ∗) for the

connected group G∗.

Central data are needed for the application of induction arguments to endoscopic

groups. Suppose that G′ ∈ Eell(G) represents an elliptic endoscopic datum (G′,G′, s′, ξ′)

for G over F [I, §4]. We assume implicitly that G′ has been equipped with the auxiliary

data (G̃′, ξ̃′) required for transfer [A7, §2]. Then G̃′ → G′ is a central extension of G′ by

an induced torus C̃ ′ over F , while ξ̃′: G′ → LG̃′ is an L-embedding. The preimage Z̃ ′

of Z in G̃′ is an induced central torus over F . The constructions of [LS, (4.4)] provide a

character η̃′ on either Z̃ ′(F ) on Z̃ ′(A)/Z̃ ′(F ), according to whether F is local or global.

We write ζ̃ ′ for the product of η̃′ with the pullback of ζ from Z to Z̃ ′. The pair (Z̃ ′, ζ̃′)

then serves as central data for the connected quasisplit group G̃′. (The notation from [I]

and [II] we are using here is slightly at odds with that of [A7] and [A10].)

The trace formula applies to the case of a global field, and to a finite set of valuations

V of F that contains Vram(G, ζ). We recall that Vram(G, ζ) denotes the set of places at

which G, Z or ζ are ramified. As a globalK-group, G comes with a local product structure.

This provides a product

GV =
∏

v∈V

Gv =
∏

v

( ∐

βv

Gv,βv

)
=

∐

βV

GV,βV

of local K-groups Gv over Fv, and a corresponding product

GV (FV ) =
∏

v∈V

Gv(Fv) =
∏

v

( ∐

βv

Gv,βv
(Fv)

)
=

∐

βV

GV,βV
(FV )
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of sets of Fv-valued points. Following the practice in [I] and [II], we shall generally avoid

using separate notation for the latter. In other words, Gv will be allowed to stand for

both a local K-group, and its set of Fv- valued points. The central data (Z, ζ) for G yield

central data

(ZV , ζV ) =
( ∏

v

Zv,
∏

v

ζv

)
=

∐

βV

(ZV,βV
, ζV,βV

)

for GV , with respect to which we can form the ζ−1
V -equivariant Hecke space

H(GV , ζV ) =
∐

βV

H(GV,βV
, ζV,βV

).

The terms in the trace formula are linear forms in a function f in H(GV , ζV ), which depend

only on the restriction of f to the subset

GZ
V =

{
x ∈ GV : HG(x) ∈ aZ

}

of GV . They can therefore be regarded as linear forms on the Hecke space

H(G, V, ζ) = H(GZ
V , ζV ) =

∐

βV

H(GZ
V,βV

, ζV,βV
).

We recall that some of the terms depend also on a choice of hyperspecial maximal compact

subgroup

KV =
∏

v 6∈V

Kv

of the restricted direct product

GV (AV ) =
∏

v 6∈V

Gv.

In the introduction, we referred to Local Theorems 1′ and 2′ and Global Theorems

1′ and 2′. These are the four theorems stated in [I, §6,7] that are directly related to the

four kinds of terms in the trace formula. We shall investigate them by comparing the trace

formula with the endoscopic and stable expansions in [I, §10]. In the end, however, it will
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not be these theorems that we prove directly. We shall focus instead on the complementary

theorems, stated also in [I, §6,7]. The complementary theorems imply the four theorems

in question, but they are in some sense more elementary.

Local Theorems 1 and 2 were stated in [I, §6], in parallel with Local Theorems 1′ and

2′. They apply to the more elementary situation of a local field. However, as we noted

in [I, Propositions 6.1 and 6.3], they can each be shown to imply their less elementary

counterparts. In the paper [A11], it will be established that Local Theorem 1 implies

Local Theorem 1′. In the paper [A12], it will be shown that Local Theorem 2 implies

Local Theorem 2′, and also that Local Theorem 1 implies Local Theorem 2. A proof of

Local Theorem 1 would therefore suffice to establish all the theorems stated in [I, §6].

Since it represents the fundamental local result, we ought to recall the formal statement

of this theorem from [I, §6].

Local Theorem 1. Suppose that F is local, and that M is a Levi subgroup of G.

(a) If G is arbitrary,

IEM (γ, f) = IM (γ, f), γ ∈ ΓG-reg,ell(M, ζ), f ∈ H(G, ζ).

(b) Suppose that G is quasisplit, and that δ′ belongs to the set ∆G-reg,ell(M̃
′, ζ̃′), for some

M ′ ∈ Eell(M). Then the linear form

f −→ SG
M (M ′, δ′, f), f ∈ H(G, ζ),

vanishes unless M ′ = M∗, in which case it is stable.

The notation here is, naturally, that of [I]. For example, ΓG-reg,ell(M, ζ) stands for

the subset of elements in Γ(M, ζ) of strongly G-regular, elliptic support in M(F ), while

Γ(M, ζ) itself is a fixed basis of the space D(M, ζ) of distributions onM(F ) introduced in [I,

§1]. Similarly, ∆G-reg,ell(M̃
′, ζ̃′) stands for the subset of elements in ∆(M̃ ′, ζ̃′) of strongly

G-regular, elliptic support in M̃ ′(F ), while ∆(M̃ ′, ζ̃ ′) is a fixed basis of the subspace
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SD(M̃ ′, ζ̃′) of stable distributions in D(M̃ ′, ζ̃′). We recall that G is defined to be quasisplit

if it has a connected component Gβ that is quasisplit. In this case, the Levi sub(K-)group

M is also quasisplit, and there is a bijection δ → δ∗ from ∆(M, ζ) onto ∆(M∗, ζ∗). The

linear forms IEM (γ, f) and SG
M (M ′, δ′, f) are defined in [I, §6], by a construction that relies

on the solution [Sh] [W] of the Langlands-Shelstad transfer conjecture. For p-adic F , this

in turn depends on the Lie algebra variant of the fundamental lemma that is part of [I,

Assumption 5.2]. If G is quasisplit (which is the only circumstance in which SG
M (M ′, δ′, f)

is defined), the notation

SG
M (δ, f) = SG

M (M∗, δ∗, f), δ ∈ ∆G-reg,ell(M, ζ),

of [A10] and [I] is useful in treating the case that M ′ = M∗.

If M = G, there is nothing to prove. The assertions of the theorem in this case follow

immediately from the definitions in [I, §6]. In the case of archimedean F , we shall prove

the general theorem in [A13], by purely local means. We can therefore concentrate on the

case that F is p-adic and M 6= G. We shall prove Local Theorem 1 under these conditions

in §8. (One can also apply the global methods of this paper to the case of archimedean F ,

as in [AC]. However, some of the local results of [A13] would still be required in order to

extend the cancellation of singularities in §3 to this case.)

Global Theorems 1 and 2 were stated in [I, §7], in parallel with Global Theorems

1′ and 2′. They apply to the basic building blocks from which the global coefficients in

the trace formula are constructed. According to Corollary 10.4 of [I], Global Theorem

1 implies Global Theorem 1′, while by Corollary 10.8 of [I], Global Theorem 2 implies

Global Theorem 2′. It would therefore be sufficient to establish the more fundamental pair

of global theorems. We recall their formal statements, in terms of the objects constructed

in [I, §7].

Global Theorem 1. Suppose that F is global, and that S is a large finite set of valuations

that contains Vram(G, ζ).
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(a) If G is arbitrary,

aG,E
ell (γ̇S) = aG

ell(γ̇S),

for any admissible element γ̇S in ΓE
ell(G,S, ζ).

(b) If G is quasisplit, bGell(δ̇S) vanishes for any admissible element δ̇S in the complement of

∆ell(G,S, ζ) in ∆E
ell(G,S, ζ).

Global Theorem 2. Suppose that F is global, and that t ≥ 0.

(a) If G is arbitrary,

aG,E
disc(π̇) = aG

disc(π̇),

for any element π̇ in ΠE
t,disc(G, ζ).

(b) If G is quasisplit, bGell(φ̇) vanishes for any φ̇ in the complement of Φt,disc(G, ζ) in

ΦE
t,disc(G, ζ).

The notation γ̇S, δ̇S , π̇ and φ̇ from [I] was meant to emphasize the essential global

role of the objects in question. The first two elements are attached to GS , while the last

two are attached to G(A). The objects they index in each case are basic constituents of

the global coefficients for GV , for any V with

Vram(G, ζ) ⊂ V ⊂ S,

that actually occur in the relevant trace formulas. The domains ΓE
ell(G,S, ζ), Πt,disc(G, ζ),

etc., were defined in [I, §2,3,7], while the objects they parametrize were constructed in [I,

§7]. The notion of an admissible element in Global Theorem 1 is taken from [I, §1]. We

shall establish Global Theorems 1 and 2 in §9, as the last step in our induction argument.

We come now to the formal induction hypotheses. The argument will be one of double

induction on a pair of integers dder and rder, with

(1.1) 0 < rder < dder.
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These integers are to remain fixed until we complete the argument at the end of §9. The

hypotheses will be stated in terms of these integers, the derived multiple group

Gder =
∐

β

Gβ,der,

and the split component

AM∩Gder
= AM ∩Gder

of the Levi subgroup of Gder corresponding to M .

Local Theorem 1 applies to a local field F , a local K-group G over F that satisfies

Assumption 5.2(2) of [1], and a Levi subgroup M of G. We assume inductively that this

theorem holds if

(1.2) dim(Gder) < dder, (F local),

and also if

(1.3) dim(Gder) = dder, and dim(AM ∩Gder) < rder, (F local).

We are taking for granted the proof of the theorem for archimedean F [A13]. We have

therefore to carry the hypotheses only for p-adic F , in which case G is just a connected

reductive group. Global Theorems 1 and 2 apply to a global field F , and a global K-group

G over F that satisfies Assumption 5.2(1) of [I]. We assume that these theorems hold if

(1.4) dim(Gder) < dder, (F global).

In both the local and global cases, we also assume that if G is not quasisplit, and

(1.5) dim(Gder) = dder, (F local or global),

the relevant theorems hold for the quasisplit inner K-form of G. We have thus taken

on four induction hypotheses, which are represented by the four conditions (1.2)–(1.5).

The induction hypotheses imply that the remaining theorems also hold. According to the

results cited above, any of the theorems stated in [I, §6,7] is actually valid under any of

the relevant conditions (1.2)–(1.5).
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§2. Application to endoscopic and stable expansions

We now begin the induction argument that will culminate in §9 with the proof of the

global theorems. We have fixed the integers dder and rder in (1.1). In this section, we shall

apply the induction hypotheses (1.2)–(1.5) to the terms in the main expansions of [I, §10].

The conclusions we reach will then be refined over the ensuing three sections. For all of

this discussion, F will be global.

We fix the global field F . We also fix a global K-group G over F that satisfies

Assumption 5.2(1) of [I], such that

dim(Gder) = dder.

Given G, we choose a corresponding pair of central data (Z, ζ). We then fix a finite set V

of valuations of F that contains Vram(G, ζ). As we apply the induction hypotheses over the

next few sections, we shall establish a series of identities that occur in pairs (a) and (b),

and approximate what is required for the main theorems. The identities (b) apply to the

case that G is quasisplit, and often to functions f ∈ H(GV , ζV ) such that fG = 0. We call

such functions unstable, and we write Huns(GV , ζV ) for the subspace of unstable functions

in H(GV , ζV ). It is clear that Huns(GV , ζV ) can be defined by imposing a condition at any

of the places v in V . It is the subspace of H(GV , ζV ) spanned by functions f =
∏
v
fv such

that for some v ∈ V , fv belongs to the local subspace

Huns(Gv, ζv) =
{
fv ∈ H(Gv, ζv) : fG

v = 0
}

of unstable functions.

Our first step will be to apply the global descent theorem of [II], in the form taken

by [II, Proposition 2.1] and its corollaries. Since the induction hypotheses (1.4) and (1.5)

include the conditions imposed after the statement of Theorem 1.1 of [II], these results are

valid for G. Let f be a fixed function in H(GV , ζV ). Given f , we take S to be a large

finite set of valuations of F containing V . To be precise, we require that S be such that
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the product of the support of f with the hyperspecial maximal compact subgroup KV of

GV (AV ) is an S-admissible subset of G(A), in the sense of [I, §1]. In [I, §8], we defined the

linear form

Iell(f, S) = Iell(ḟS), ḟS = f × uV
S .

We also defined endoscopic and stable analogues IEell(f, S) and SG
ell(f, S) of Iell(f, S). The

role of the results in [II] will be to reduce the study of these objects to that of distributions

supported on unipotent classes.

Let us use the subscript unip to denote the unipotent variant of any object with

the subscript ell. Thus, Γunip(G, V, ζ) denotes the subset of classes in Γell(G, V, ζ) whose

semisimple parts are trivial. Applying this convention to the “elliptic” objects of [I, §8],

we obtain linear forms

(2.1) Iunip(f, S) =
∑

α∈Γunip(G,V,ζ)

aG
unip(α, S)fG(α),

with coefficients

aG
unip(α, S) =

∑

k∈KV
unip

(G,S)

aG
ell(α× k)rG(k), α ∈ Γunip(G, V, ζ).

We also obtain endoscopic and stable analogues IEunip(f, S) and SG
unip(f, S) of Iunip(f, S).

These are defined inductively by the usual formula

IEunip(f, S) =
∑

G′∈E0
ell

(G,S)

ι(G,G′)ŜG̃′

unip(f ′, S) + ε(G)SG
unip(f, S),

with the requirement that IEunip(f, S) = Iunip(f, S) in case G is quasisplit. The natural

variant of [I, Lemma 7.2] provides expansions

(2.2) IEunip(f, S) =
∑

α∈ΓE

unip
(G,V,ζ)

aG,E
unip(α, S)fG(α)

and

(2.3) SG
unip(f, S) =

∑

β∈∆E

unip
(G,V,ζ)

bGunip(β, S)fE
G(β),
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with coefficients

aG,E
unip(α, S) =

∑

k∈KV,E

unip
(G,S)

aG,E
ell (α× k)rG(k), α ∈ ΓE

unip(G, V, ζ),

and

bGunip(β, S) =
∑

`∈LV,E

unip
(G,S)

bGell(β × `)rG(`), β ∈ ∆E
unip(G, V, ζ).

(See [I, (8.4)–(8.9)].)

The global descent theorem of [II] allows us to restrict our study of the “elliptic”

coefficients to the special case in which the arguments have semisimple part that is central.

Recall that the center of G is a diagonalizable group Z(G) over F , together with a family of

embeddings Z(G) ⊂ Gβ . Let us write Z(G)V,o for the subgroup of elements z in Z(G,F )

such that for every v 6∈ V , the element zv is bounded in Z(G,Fv), which is to say that its

image inGv lies in the compact subgroup Kv. The group Z(G)V,o then acts discontinuously

on GV . Its quotient

Z(G)V,o = Z(G)V,oZV /ZV

in turn acts discontinuously on GV = GV /ZV . If z belongs to Z(G)V,o, and fz(x) = f(zx),

we set

Iz,unip(f, S) = Iunip(fz, S),

IEz,unip(f, S) = IEunip(fz, S),

and

SG
z,unip(f, S) = SG

unip(fz, S).

Lemma 2.1. (a) In general, we have

IEell(f, S) − Iell(f, S) =
∑

z∈Z(G)V,o

(
IEz,unip(f, S) − Iz,unip(f, S)

)
.
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(b) If G is quasisplit and f is unstable, we have

SG
ell(f, S) =

∑

z∈Z(G)V,o

SG
z,unip(f, S).

Proof. Consider the expression in (a). It follows from the expansions [I, (8.5), (8.8)]

that

IEell(f, S) − Iell(f, S) =
∑

γ∈ΓE

ell
(G,V,ζ)

(
aG,E
ell (γ, S)− aG

ell(γ, S)
)
fG(γ).

The coefficients can in turn be expanded as

aG,E
ell (γ, S)− aG

ell(γ, S) =
∑

k∈KV,E

ell
(G,S)

(
aG,E
ell (γ × k) − aG

ell(γ × k)
)
rG(k),

by [I, (8.4), (8.6)]. Proposition 2.1(a) of [II] asserts that aG,E
ell (γ × k) equals aG

ell(γ × k),

whenever the semisimple part of γ×k is not central in G. It follows that if the semisimple

part of γ is not central in G, aG,E
ell (γ, S) equals aG

ell(γ, S). If the semisimple part of γ is

central in G, γ has a Jordan decomposition that can be written

γ = zα, z ∈ Z(G)V,o, α ∈ ΓE
unip(G, V, ζ).

The trivial case of the general descent formula [II, Corollary 2.2(a)] then implies that

aG,E
ell (γ, S)− aG

ell(γ, S) = aG,E
unip(α, S) − aG

unip(α, S).

The formula (a) follows.

To deal with (b), we write

SG
ell(f, S) =

∑

δ∈∆E

ell
(G,V,ζ)

bGell(δ, S)fE
G(δ),

and

bGell(δ, S) =
∑

`∈LV,E

ell
(G,S)

bGell(δ × `)rG(`),
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according to [I, (8.9), (8.7)]. Since f is unstable, fE
G(δ) vanishes on the subset ∆ell(G, V, ζ)

of ∆E
ell(G, V, ζ). On the other hand, if δ lies in the complement of ∆ell(G, V, ζ), and the

semisimple part of δ is not central in G, Proposition 2.1(b) of [II] implies that bG
ell(δ, S) = 0.

If the semisimple part of δ is central in G, δ has a Jordan decomposition

δ = zβ, z ∈ Z(G)V,o, α ∈ ∆E
unip(G, V, ζ).

The simplest case of the descent formula [II, Corollary 2.2(b)] then implies that

bGell(γ, S) = bGunip(α, S).

The formula (b) follows. �

We have relied on our global induction hypotheses in making use of the descent formu-

las of [II]. The next stage of the argument depends on both the local and global induction

hypotheses. We are going to study the expressions

Ipar(f) =
∑

M∈L0

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M,V,ζ)

aM (γ)IM(γ, f),

IEpar(f) =
∑

M∈L0

|WM
0 ||WG

0 |−1
∑

γ∈ΓE (M,V,ζ)

aM,E(γ)IEM(γ, f),

and

SG
par(f) =

∑

M∈L0

|WM
0 ||WG

0 |−1
∑

M ′∈Eell(M,V )

ι(M,M ′)
∑

δ′∈∆(M̃ ′,V,ζ̃′)

bM̃
′

(δ′)SG
M (M ′, δ′, f),

that comprise the three geometric expansions in [I, §2,10]. However, we shall first study the

complementary terms in the corresponding trace formulas. These include constituents of

the three spectral expansions from [I, §3,10]. We shall show how to eliminate all the terms

in the spectral expansions except for the discrete parts It,disc(f), IEt,disc(f) and SG
t,disc(f).

As in [I, §3], the nonnegative real numbers t that parametrize these distributions are

obtained from the imaginary parts of archimedean infinitesimal characters.
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Proposition 2.2(a). (a) In general, we have

(2.4) IEpar(f) − Ipar(f) =
∑

t

(
IEt,disc(f) − It,disc(f)

)
−

∑

z

(
IEz,unip(f, S) − Iz,unip(f, S)

)
.

(b) If G is quasisplit and f is unstable, we have

(2.5) SG
par(f) =

∑

t

SG
t,disc(f) −

∑

z

SG
z,unip(f, S).

The sums over t in (a) and (b) satisfy the global multiplier estimate [I, (3.3)], and in

particular, converge absolutely.

Proof. We begin with the assertion (a). By the geometric expansions [I, Proposition

2.2 and Theorem 10.1(a)], we can write

IEpar(f) − Ipar(f) =
(
IE(f) − I(f)

)
−

(
IEorb(f) − Iorb(f)

)
,

in the notation of [I]. Now

IEorb(f) − Iorb(f) =
∑

γ∈ΓE (G,V,ζ)

(
aG,E(γ) − aG(γ)

)
fG(γ),

by the definition [I, (2.11)] and the formula [I, Lemma 7.2(a)]. If we apply the global

induction hypothesis (1.4) to the terms in the expansions [I, (2.8), (10.10)], we see that

aG,E(γ)− aG(γ) = aG,E
ell (γ, S)− aG

ell(γ, S).

It follows from [I, (8.5), (8.8)] that

IEorb(f) − Iorb(f) = IEell(f, S)− Iell(f, S).

Combining this with Lemma 2.1, we see that

IEpar(f) − Ipar(f) =
(
IE(f) − I(f)

)
−

∑

z

(
IEz,unip(f) − Iz,unip(f)

)
.
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The second step is to apply the spectral expansions for IE(f) and I(f). It follows

from Propositions 3.1 and 10.5 of [I] that

IE(f) − I(f) =
∑

t

(
IEt (f) − It(f)

)
,

where the sums over t satisfy the global multiplier estimate [I, (3.3)]. We have to show

that the summands reduce to the corresponding summands in (2.4).

By Proposition 3.3 and Theorem 10.6 of [I], we can write IEt (f)− It(f) as the sum of

a distribution

IEt,unit(f) − It,unit(f)

defined in [I, §3,7], and an expression

∑

M∈L0

|WM
0 ||WG

0 |−1

∫

ΠE

t (M,V,ζ)

(
aM,E(π)IEM(π, f)− aM (π)IM(π, f)

)
dπ.

Consider the terms in the expansion. The indices M are by definition proper Levi sub-

groups of G. For any such M , the global induction hypothesis (1.4) implies that aM,E(π)

equals aM (π). Local Theorem 2′ would also tell us that the distributions IEM (π, f) and

IM (π, f) are equal. At this point, we do not know that the theorem holds for arbitrary

π. In the case at hand, however, π belongs to ΠE
unit(M,V, ζ), and therefore has unitary

central character. In this case, the identity follows from the study of these distributions

in terms of their geometric counterparts [A12], and the local induction hypothesis (1.2).

(For special cases of this argument, the reader can consult the proof of Lemma 5.2 of [A2]

and the discussion at the end of §10 of [AC].) The terms in the expansion therefore vanish.

The remaining distribution has its own expansion

IEt,unit(f) − It,unit(f) =

∫

ΠE

t
(G,V,ζ)

(
aG,E(π) − aG(π)

)
fG(π)dπ,

according to [I, (3.16) and Lemma 7.3(a)]. Applying the global induction hypothesis (1.4)

to the terms in the expansions [I, (3.12), (10.21)], we deduce that

aG,E(π) − aG(π) = aG,E
disc(π) − aG

disc(π).
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It follows from [I, (8.13), (8.16)] that

IEt,unit(f) − It,unit(f) = IEt,disc(f) − It,disc(f).

This gives the reduction we wanted. Summing over t, we conclude that

IE(f) − I(f) =
∑

t

(
IEt,disc(f) − It,disc(f)

)
,

and that the identity of (a) is valid.

The argument in (b) is similar. Assume that G is quasisplit, and that f is unstable.

The geometric expansion [I, Theorem 10.1(b)] asserts that

SG
par(f) = SG(f) − SG

orb(f),

in the notation of [I]. Now, SG
orb(f) has a simple expansion

SG
orb(f) =

∑

δ∈∆E (G,V,ζ)

bG(δ)fE
G(δ),

according to [I, Lemma 7.2(b)]. Since f is unstable, the function f E
G vanishes on the subset

∆(G, V, ζ) of ∆E(G, V, ζ). It follows from [I, Proposition 10.3(b) and (8.9)] that

SG
orb(f) =

∑

δ∈∆E (G,V,ζ)

bGell(δ, S)fE
G(δ) = SG

ell(f, S).

Combining this with Lemma 2.1, we see that

SG
par(f) = SG(f) −

∑

z

SG
z,unip(f).

The second step again is to apply the appropriate spectral expansion. It follows from

[I, Proposition 10.5] that

SG(f) =
∑

t

SG
t (f),

where the sums over t satisfy the global multiplier estimate [I, (3.3)]. For a given t,

Theorem 10.6 of [I] expresses SG
t (f) as the sum of a distribution SG

t,unit defined in [I, §7],

and an expansion in terms of distributions

SG
M (M ′, φ′, f), M ∈ L0, M ′ ∈ Eell(M,V ), φ′ ∈ Φt(M̃

′, V, ζ̃′).
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Local Theorem 2′ would tell us that the distribution SG
M (M ′, φ′) vanishes if M ′ 6= M ,

and is stable if M ′ = M . Since f is unstable, SG
M (M ′, φ′, f) ought then to vanish for any

M ′. Given that the element φ′ ∈ Φt(M̃
′, V, ζ̃′) at hand has unitary central character, this

again follows from the study of the distributions in terms of their geometric counterparts

[A12], and the local induction hypothesis (1.2), even though we have not yet established

the theorem in general. The terms in the expansion therefore vanish. The remaining

distribution has its own expansion

SG
t,unit(f) =

∫

ΦE

t (G,V,ζ)

bG(φ)fE
G(φ)dφ,

provided by [I, Lemma 7.3(b)]. We can then deduce that

SG
t,unit(f) =

∑

φ∈ΦE

t,unit
(G,V,ζ)

bGdisc(φ)fE
G(φ) = SG

t,disc(f),

from [I, Proposition 10.7(b) and (8.17)], and the fact that f is unstable. Summing over t,

we conclude that

SG(f) =
∑

t

It,disc(f).

The identity in (b) follows. �

We shall now study the expressions on the left hand sides of (2.4) and (2.5). If M

belongs to L0, the global induction hypothesis (1.4) implies that the coefficients aM,E(γ)

and aM (γ) are equal. We can therefore write the left hand side of (2.4) as

IEpar(f) − Ipar(f) =
∑

M∈L0

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M,V,ζ)

aM (γ)
(
IEM (γ, f)− IM (γ, f)

)
.

There are splitting formulas for IEM (γ, f) and IM (γ, f) that decompose these distributions

into individual contributions at each place v in V [A10, (4.6), (6.2)], [A11]. The decom-

positions are entirely parallel. It follows from the induction hypothesis (1.2) that any of

the cross terms in the two expansions cancel. To describe the remaining terms, we may as

well assume that f =
∏
v
fv. In particular,

f = fvf
v, fv =

∏
w 6=v

fw,
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for any v. The left hand side of (2.4) then reduces to

(2.6)
∑

M∈L0

|WM
0 ||WG

0 |−1
∑

v∈V

∑

γ∈Γ(M,V,ζ)

aM (γ)
(
IEM (γv, fv) − IM (γv, fv)

)
fv

M (γv),

where γ = γvγ
v is the decomposition of γ relative to the product GV = GvG

v
V . Similarly,

there are splitting formulas [A10, (6.3), (6.3′)], [A11] for the distributions SG
M (M ′, δ′, f)

that occur in the expansion of left hand side SG
par(f) of (2.5). Applying the local induction

hypothesis (1.2), one sees that SG
par(f) equals

∑

M∈L0

|WM
0 ||WG

0 |−1
∑

M ′∈Eell(M,V )

ι(M,M ′)(2.7)

·
∑

v∈V

∑

δ′∈∆(M̃ ′,V,ζ̃′)

bM̃
′

(δ′)SG
M (M ′

v, δ
′
v, fv)(f

v)M ′(
(δ′)v

)
,

for any function f = Πfv such that fG = 0, and for the decomposition δ′ = δ′v(δ′)v of δ′.

We have not yet used the induction hypothesis (1.3) that depends on the integer rder.

In order to apply it, we have to fix a Levi subgroup M ∈ L such that

dim(AM ∩Gder) = rder.

Since rder is positive, M actually lies in the subset L0 of proper Levi subgroups. The pair

(G,M) will remain fixed until the end of §5.

If v belongs to V , M determines an element Mv in the set L0
v ⊂ Lv of (equivalence

classes of) proper Levi subgroups of Gv that contain a fixed minimal Levi subgroup of Gv.

The real vector space

aMv
= Hom

(
X(M)Fv

,R
)

then maps onto the corresponding space aM for M . As usual,we write aGv

Mv
for the kernel

in aMv
of the projection of aMv

onto aGv
. We shall also write Vfin(G,M) for the set of

p-adic valuations v in V such that

dim(aGv

Mv
) = dim(aG

M ).
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This condition implies that the canonical map from a
Gv

Mv
to aG

M is an isomorphism.

If v is any place in V , we shall say that a function fv ∈ H(Gv, ζv) is M -cuspidal if

fv,Lv
= 0 for any element Lv ∈ Lv that does not contain a Gv-conjugate of Mv. Let

HM (GV , ζV ) denote the subspace of H(GV , ζV ) spanned by functions f =
∏
v
fv such that

fv is M -cuspidal at two places v in V . In the case that G is quasisplit, we also set

Huns
M (GV , ζV ) = HM (GV , ζV ) ∩Huns(GV , ζV ).

We write W (M) for the Weyl group of (G,M) [A10, §1]. As in the case of connected

reductive groups, W (M) is a finite group that acts on L.

Lemma 2.3. (a) If G is arbitrary, IEpar(f) − Ipar(f) equals

(2.8) |W (M)|−1
∑

v∈Vfin(G,M)

∑

γ∈Γ(M,V,ζ)

aM (γ)
(
IEM (γv, fv) − IM (γv, fv)

)
fv

M (γv),

for any function f =
∏
v
fv in HM (GV , ζV ).

(b) If G is quasisplit, SG
par(f) equals

|W (M)|−1
∑

M ′∈Eell(M,V )

ι(M,M ′)(2.9)

·
∑

v∈Vfin(G,M)

∑

δ′∈∆(M̃ ′,V,ζ̃′)

bM̃
′

(δ′)SG
M (M ′

v, δ
′
v, fv)(f

v)M ′(
(δ′)v

)
,

for any function f =
∏
v
fv in Huns

M (GV , ζV ).

Proof. To establish (a), we write the expression (2.6) as

∑

L

|W (L)|−1
∑

v∈V

∑

γ∈Γ(L,V,ζ)

aL(γ)
(
IEL(γv, fv) − IL(γv, fv)

)
fv

L(γv),

where L is summed over a set of representatives of WG
0 -orbits in L0. This is possible

because the factors on the right depend only on the WG
0 -orbit of L, and the stabilizer of

L in WG
0 equals WL

0 W (L). If L does not contain a conjugate of M , our condition on f
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implies that fv
L(γv) = 0 for any v. The corresponding summand therefore vanishes. If L

does contain a conjugate of M , but is not actually equal to such a conjugate, we have

dim(AL ∩Gder) < dim(AM ∩Gder) = rder.

In this case, the induction hypothesis (1.3) implies that IEL(γv, fv) equals IL(γv, fv), for

any v. The corresponding summand again vanishes. This leaves only the element L that

represents the orbit of M . The earlier expression (2.6) for IEpar(f) − Ipar(f) therefore

reduces to

|W (M)|−1
∑

v∈V

∑

γ∈Γ(M,V,ζ)

aM (γ)
(
IEM (γv, fv) − IM (γv, fv)

)
fv

M (γv).

This is the same as the given expression (2.8), except that v is summed over V instead of

the subset Vfin(G,M) of V .

Suppose that v belongs to the complement of Vfin(G,M) in V . If v is archimedean,

IEM (γv, fv) equals IM (γv, fv), by [A13] and [A11]. If v is p-adic, the map from aGv

Mv
to aG

M

has a nontrivial kernel. In this case, the descent formulas [A10, (4.5), (7.2)] (and their

analogues [A11] for singular elements) provide an expansion

IEM (γv, fv) − IM (γv, fv) =
∑

Lv∈Lv(Mv)

dG
Mv

(M,Lv)
(
ÎLv,E
Mv

(γv, fv,Lv
) − ÎLv

Mv
(γv, fv,Lv

)
)
,

in which the coefficients dG
Mv

(M,Lv) vanish unless Lv is a proper Levi subgroup of Gv.

But if Lv is proper, our local induction hypothesis (1.2) tells us that ÎLv,E
Mv

(γv, fv,Lv
) equals

ÎLv

Mv
(γv, fv,Lv

). The summand for v in the expression above therefore vanishes in either

case. We conclude that IEpar(f) − Ipar(f) equals (2.8), as required.

The proof of (b) is similar. We first write the expression (2.7) as

∑

L

|W (L)|−1
∑

L′∈Eell(L,V )

ι(L,L′)
∑

v∈V

∑

δ′∈∆(L̃′,V,ζ̃′)

bL̃
′

(δ′)SG
L (L′

v, δ
′
v, fv)(f

v)L′(
(δ′)v

)
,

where L is summed over a set of representatives of WG
0 -orbits in L0. If L does not contain

a conjugate of M ,

(fv)L′(
(δ′)v

)
= (fv

L)L′(
(δ′)v

)
= 0, v ∈ V,
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so the corresponding summand vanishes. If L strictly contains a conjugate of M , our

induction hypothesis (1.3) implies that the distribution SG
L (L′

v, δ
′
v, fv) vanishes if L′ 6= L,

and is stable if L′ = L. Since the function f is unstable, the product

SG
L (L′

v, δ
′
v, fv)(f

v)L′(
(δ′)v

)
, v ∈ V,

vanishes for any L′, v and δ′. The corresponding summand again vanishes. The earlier

expression (2.7) for SG
par(f) therefore reduces to

|W (M)|−1
∑

M ′∈Eell(M,V )

ι(M,M ′)
∑

v∈V

∑

δ′∈∆(M̃ ′,V,ζ̃′)

bM̃
′

(δ′)SG
M (M ′

v, δ
′
v, fv)(f

v)M ′(
(δ′)v

)
.

This is the same as the required expression (2.9), except that v is summed over V instead

of the subset Vfin(G,M). But if v belongs to the complement of Vfin(G,M) in V , the

condition that f be unstable again allows us to deduce that the products

SG
M (M ′

v, δ
′
v, fv)(f

v)M ′(
(δ′)v

)

all vanish. If v is archimedean, this follows from [A13] and [A11]. If v is p-adic, it is

a simple consequence of the descent formulas [A10, (7.3), (7.3′)] (and their analogues

[A11] for singular elements), and the local induction hypothesis (1.2). The summand

corresponding to v therefore vanishes. We conclude that SG
par(f) equals (2.9), as required.

�

We remark that ifM ′ and v are as in (2.9), the local endoscopic datum M ′
v for Mv need

not be elliptic. However, in this case, [A10, Lemma 7.1(b′)] (together with our induction

hypotheses) implies that

SG
M (M ′

v, δ
′
v, fv) = 0.

It follows that v could actually be summed over the subset

Vfin(G,M ′) =
{
v ∈ Vfin(G,M) : aM ′

v
= aMv

}

=
{
v ∈ Vfin : dim(aGv

M ′
v
) = dim(aG

M )
}

of Vfin(G,M) in (2.9).
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§3. Cancellation of p-adic singularities

To proceed further, we require more information about the linear forms in fv that

occur in (2.8) and (2.9). We shall extend the method of cancellation of singularities that

was applied to the general linear group in [AC, §2.14]. In this paper, we need consider only

the p-adic form of the theory, since the problems for archimedean places will be treated by

local means in [A13] and [A11].

As in the last section, G is a fixed K-group over the global field F , with a fixed Levi

subgroup M . Suppose that v belongs to the set Vfin of p-adic valuations in V . Then Gv

is a connected reductive group over the field Fv. We are going to define two subspaces of

the Hecke algebra H(Gv, ζv).

Let H(Gv, ζv)
00 be the subspace of functions in H(Gv, ζv) whose strongly regular

orbital integrals vanish near the center of G. Equivalently, H(Gv, ζv)
00 is the null space in

H(Gv, ζv) of the family of orbital integrals

fv −→ fv,G(zvαv), fv ∈ H(Gv, ζv),

in which zv ranges over the center

Z(Gv) = Z(G,Fv)/Z(Fv)

of Gv = Gv/Zv, and αv ranges over Γunip(Gv, ζv). For the latter description, we could

equally well have replaced Γunip(Gv, ζv) by the abstract set Runip(Gv, ζv) introduced in

[A11]. This set is a second basis of the space of distributions spanned by the unipotent

orbital integrals that has the advantage of behaving well under induction. More pre-

cisely, Runip(Gv, ζv) is the disjoint union of the set Runip,ell(Gv, ζv) of elliptic elements in

Runip(Gv, ζv), together with the subset

Runip,par(Gv, ζv) =
{
ρGv

v : ρv ∈ Runip,ell(Lv, ζv), Lv ( Gv

}

of parabolic elements, induced from elliptic elements for proper parabolic subgroups of

Gv. (See [A11].) We have reserved the symbol H(Gv, ζv)
0 to denote the larger subspace
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annihilated by just the parabolic elements. That is, H(Gv, ζv)
0 is the subspace of functions

fv in H(Gv, ζv) such that

fv,G(zvαv) = 0, zv ∈ Z(Gv), αv ∈ Runip,par(Gv, ζv).

Suppose now that v lies in our subset Vfin(G,M) of valuations v in Vfin such that aGv

Mv

maps isomorphically onto aG
M . We are going to define a map from H(Gv, ζv)

0 to another

space, which represents an obstruction to the assertion of Local Theorem 1(a). In the case

that Gv is quasisplit, we shall construct some further maps, one of which is defined on the

space

Huns(Gv, ζv)
0 = Huns(Gv, ζv) ∩H(Gv, ζv)

0,

and represents an obstruction to the stability assertion of Local Theorem 1(b). The maps

will take values in the function spaces Iac(Mv, ζv) and SIac(Mv, ζv) introduced in earlier

papers. (See for example [A1, §1].) We recall that Iac(Mv, ζv) and SIac(Mv, ζv) are

modest generalizations of the spaces I(Mv, ζv) and SI(Mv, ζv), necessitated by the fact

that weighted characters have singularities in the complex domain. They are given by

invariant and stable orbital integrals of functions in a space Hac(Mv, ζv). By definition,

Hac(Mv, ζv) is the space of uniformly smooth, ζ−1
v -equivariant functions fv on Mv such

that for any Xv in the group

aM,v = aMv,Fv
= HMv

(Mv),

the restriction of fv to the preimage of Xv in Mv has compact support. By uniformly

smooth, we mean that the function fv is bi-invariant under an open compact subgroup

of Gv. An element in Iac(Mv, ζv) can be identified with a function on either of the sets

Γ(Mv, ζv) or R(Mv, ζv) (by means of orbital integrals) or with a function on the product of

Π(Mv, ζv) with aM,v/aZ,v (by means of characters). Similarly, an element in SIac(Mv, ζv)

can be identified with a function on ∆(Mv, ζv) (by means of stable orbital integrals) or with

a function on the product of Φ(Mv, ζv) with aM,v/aZ,v (by means of “stable characters”).

28



We emphasize that the sets R(Mv, ζv), ∆(Mv, ζv) and Φ(Mv, ζv) are all abstract bases of

one sort or another. In particular, the general theory is not sufficiently refined to be able

to identify the elements in Φ(Mv, ζv) with stable characters in the usual sense.

The maps will actually take values in the appropriate subspace of cuspidal functions.

We recall that a function in Iac(Mv, ζv) is cuspidal if it vanishes on any induced element

γv = ρMv

v , ρv ∈ Γ(Rv, ζv),

in Γ(Mv, ζv), where Rv is a proper Levi subgroup of Mv. Similarly, a function in

SIac(Mv, ζv) is cuspidal if it vanishes on any properly induced element

δv = σMv

v , σv ∈ ∆(Rv, ζv),

in ∆(Mv, ζv).

Proposition 3.1. (a) There is a map

εM : H(Gv, ζv)
0 −→ Iac(Mv, ζv),

which takes values in the subspace of cuspidal functions, such that

(3.1) εM (fv, γv) = IEM (γv, fv) − IM (γv, fv),

for any fv ∈ H(Gv, ζv)
0 and γv ∈ Γ(Mv, ζv).

(b) If Gv is quasisplit, there is a map

εM = εM∗

: Huns(Gv, ζv)
0 −→ SIac(Mv, ζv),

which takes values in the subspace of cuspidal functions, such that

(3.2) εM (fv, δv) = SG
M (δv, fv),

for any fv ∈ Huns(Gv, ζv)
0 and δv ∈ ∆(Mv, ζv).
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(b′) If Gv is quasisplit and M ′ belongs to E0
ell(M), there is a map

εM ′

: H(Gv, ζv)
0 −→ SIac(M̃

′
v, ζ̃

′
v),

which takes values in the subspace of cuspidal functions, such that

(3.2′) εM ′

(fv, δ
′
v) = SG

M (M ′
v, δ

′
v, fv),

for any fv ∈ H(Gv, ζv)
0 and δ′v ∈ ∆(M̃ ′

v, ζ̃
′
v).

Proof. The main point will be to establish that the assertions of the lemma hold

locally around a singular point. To begin the proof of (a), we fix a function fv ∈ H(Gv, ζv)
0.

Consider a semisimple conjugacy class cv ∈ Γss(Mv) in Mv = Mv/Zv. We shall show that

the right hand side of (3.1) represents an invariant orbital integral of some function, for

those strongly G-regular elements γv ∈ ΓG-reg(Mv, ζv) in some neighbourhood of cv. To

do so, we shall use the results in [A11] on the comparison of germs of weighted orbital

integrals.

According to the germ expansions for IEM (γv, fv) and IM (γv, fv) in [A11], the right

hand side of (3.1) equals

(3.3)
∑

L∈L(M)

∑

ρv∈Rdv (Lv,ζv)

(
gL,E

M (γv, ρv)I
E
L(ρv, fv) − gL

M (γv, ρv)IL(ρv, fv)
)
,

for any element γv ∈ ΓG-reg(Mv, ζv) that is near cv. Here, dv ∈ ∆ss(Mv) is the stable

conjugacy class of cv, and Rdv
(Lv, ζv) denotes the set of elements in the basis R(Lv, ζv)

whose semisimple part maps to the image of dv in ∆ss(Lv). One might expect to be able

to sum ρv over only the subset Rcv
(Lv, ζv) of elements in Rdv

(Lv, ζv) whose semisimple

part maps to cv. Indeed, gL
M (γv, ρv) vanishes by definition, unless ρv lies in Rcv

(Lv, ζv).

Local Theorem 1 implies that the germs gL,E
M and gL

M are equal [A11], so we would ex-

pect gL,E
M (γv, ρv) also to have this property. For the moment, we have to leave open the

possibility that gL,E
M represent a larger family of germs, but we shall soon rule this out.
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We shall show that the summand with any L 6= M in (3.3) vanishes. If L is distinct

from G, the first local induction hypothesis (1.2) tells us that the distributions IL,E
M (γv)

and IL
M (γv) are equal. It follows from [A11] that the germs gL,E

M (γv, ρv) and gL
M(γv, ρv)

are also equal. In particular, the corresponding inner sum in (3.3) can be taken over the

subset Rcv
(Lv, ζv) of Rdv

(Lv, ζv). If L is also distinct from M , the second local induction

hypothesis (1.3) implies that IEL(ρv, fv) equals IL(ρv, fv). It follows that the summands in

(3.3) with L distinct from M and G all vanish. Consider next the summand with L = G.

Then

IEG(ρv, f) = IG(ρv, fv) = fv,G(ρv).

Suppose first that cv is not central in Gv. The descent formulas in [A11] provide parallel

expansions for gG,E
M (γv, ρv) and gG

M (γv, ρv) in terms of germs attached to the centralizer of

cv in Gv. The induction hypothesis (1.2) again implies that the germs are equal. In the

remaining case that cv is central in Gv, we have

Rdv
(Gv, ζv) = Rcv

(Gv, ζv) =
{
cvαv : αv ∈ Runip(Gv, ζv)

}
.

If αv belongs to the subset Runip,ell(Gv, ζv) of Runip(Gv, ζv), the germs gG,E
M (γv, cvαv) and

gG
M (γv, cvαv) are equal. This is a simple consequence [A11] of the results of [A10, §10]. If αv

belongs to the complement Runip,par(Gv, ζv) of Runip,ell(Gv, ζv) in Runip(Gv, ζv), fv,G(cvαv)

equals 0, since fv belongs to H(Gv, ζv)
0. In either case, the term in (3.3) corresponding to

ρv = cvαv vanishes. This takes care of the summand with L = G.

We have shown that (3.3) reduces to the summand with L = M . We obtain

(3.4) IEM (γv, fv) − IM (γv, fv) =
∑

ρv∈Rcv (Mv,ζv)

gM
M (γv, ρv)

(
IEM (ρv, fv) − IM (ρv, fv)

)
,

for elements γv ∈ ΓG-reg(Mv, ζv) that are close to cv. Since gM
M (γv, ρv) is an ordinary

Shalika germ, the right hand side of (3.4) represents an invariant orbital integral in γv. We

conclude that there exists a function εM (fv) in I(Mv, ζv) such that (3.1) holds locally for

any strongly G-regular element γv in some neighbourhood of cv.
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To establish the full assertion (a), we have to let cv vary. The obvious technique to

use is a partition of unity. However, something more is required, since we have to show

that a function of noncompact support is uniformly smooth. We shall use constructions of

[A1] and [A12] to represent εM (fv) in terms of some auxiliary functions in Iac(Mv, ζv).

Suppose that γv is any element in ΓG-reg(Mv, ζv). Then we can write

IM (γv, fv) = cIM (γv, fv) −
∑

L∈L0(M)

ÎL
M

(
γv,

cθL(fv)
)
,

in the notation of [A1, Lemma 4.8]. One of the purposes of the paper [A12] is to establish

endoscopic and stable versions of formulas such as this. The endoscopic form is

IEM (γv, fv) = cIEM (γv, fv) −
∑

L∈L0(M)

ÎL,E
M

(
γv,

cθEL(fv)
)
,

where cIEM (γv) and cθEL are endoscopic analogues of, respectively, the supplementary linear

form cIM (γv) and the map cθL from Hac(Gv, ζv) to Iac(Lv, ζv). Therefore, the difference

IEM (γv, fv) − IM (γv, fv)

can be expressed as

(
cIEM (γv, fv) −

cIM (γv, fv)
)
−

∑

L∈L0(M)

(
ÎL,E
M

(
γv,

cθEL(fv)
)
− ÎL

M

(
γv,

cθL(fv)
))
.

Suppose that L ∈ L0(M). Since L is distinct from G, the induction hypothesis (1.2) tells

us that ÎL,E
M (γv) = ÎL

M (γv). If L is also distinct from M , it follows from the induction

hypothesis (1.3) and the results of [A12] that cθEL(fv) = cθL(fv). Therefore the summands

with L 6= M in the last expression all vanish. We obtain

IEM (γv, fv) − IM (γv, fv) = cεM (fv, γv) −
(

cθEM (fv, γv) −
cθM (fv, γv)

)
,

where

cεM (fv, γv) = cIEM (γv, fv) −
cIM (γv, fv).
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We can of course restrict the variable γv to the strongly G-regular elements in some neigh-

bourhood of cv. Since the left hand side of the last formula represents a function in

I(Mv, ζv) in such a neighbourhood, and since cθEM (fv, γv) and cθM (fv, γv) represent func-

tions in Iac(Mv, ζv) for all γv,
cεM (fv, γv) must represent a function in I(Mv, ζv), for all

stronglyG-regular elements γv near cv. The advantage of the auxiliary function cεM (fv, γv)

is that it has bounded support in γv. This follows from [A1, Lemma 4.4] and its endoscopic

analogue in [A12]. We can therefore use a finite partition of unity to construct a function

cεM (fv) in I(Mv, γv) whose value at any strongly G-regular element γv equals cεM (fv, γv).

Having defined cεM (fv), we set

εM (fv) = cεM (fv) −
(

cθEM (fv) −
cθM (fv)

)
.

Then εM (fv) is a function in Iac(Mv, ζv) such that (3.1) holds for every γv in

ΓG-reg(Mv, ζv). To show that (3.1) is valid for elements that are not strongly G-regular,

we consider the ordinary Shalika germ expansion

εM (fv, γv) =
∑

ρv∈Rcv (Mv,ζv)

gM
M (γv, ρv)εM (fv, ρv)

of εM (fv), for γv ∈ ΓG-reg(Mv, ζv) near cv. The left hand side of this expression equals

the left hand side of (3.4) by construction, so the two right hand sides must be equal. It

follows from the linear independence of the germs

gM
M (γv, ρv), ρv ∈ Rcv

(Mv, ζv),

that

εM (fv, ρv) = IEM (ρv, fv) − IM (ρv, fv), ρv ∈ Rcv
(Mv, ζv).

This is equivalent to the identity

εM (f, γv) = IEM (γv, fv) − IM (γv, fv), γv ∈ Γcv
(Mv, ζv),
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since Γcv
(Mv, ζv) and Rcv

(Mv, ζv) represent bases of the same space. But the set Γ(Mv, ζv)

is by definition a disjoint union of subsets Γcv
(Mv, ζv). We conclude that (3.1) holds in

general.

The last step in the proof of (a) is to show that the function εM (fv) is cuspidal.

Consider an element

γv = ρMv
v , ρv ∈ Γ(Rv, ζv),

induced from a proper Levi subgroup Rv of Mv. Applying the descent formulas [A10,

(4.5), (7.2)] (or rather their generalizations [A11] to singular elements), we see that

εM (fv, γv) = IEM (γv, fv) − IM (γv, fv)

=
∑

Lv∈L(Mv)

dG
Rv

(M,Lv)
(
ÎLv,E
Rv

(ρv, fv,Lv
) − ÎLv

Rv
(ρv, fv,Lv

)
)
.

The coefficient dG
Rv

(M,Lv) is defined in [A10, §4], and actually equals the corresponding

coefficient dGv

Rv
(Mv, Lv) in this case, since v belongs to Vfin(G,M). In any case, since Rv is

proper in Mv, the coefficient vanishes unless Lv is a proper Levi subgroup of Gv. But if Lv

is proper, the induction hypothesis (1.2) tells us that ÎLv,E
Rv

(ρv, fv,Lv
) equals ÎLv

Rv
(ρv, fv,Lv

).

The summand corresponding to Lv vanishes, so that εM (fv, γv) = 0. Therefore εM (fv) is

a cuspidal function in Iac(Mv, ζv).

The proofs of (b) and (b′) proceed along similar lines. Assume that Gv is quasi-

split, and that fv belongs to H(Gv, ζv)
0. We fix an endoscopic datum M ′ in Eell(M),

and a semisimple stable conjugacy class d′v in ∆ss(M
′
v) = ∆ss(M̃

′
v). We shall study

SG
M (M ′

v, δ
′
v, fv), for strongly G-regular elements δ′v ∈ ∆G-reg(M̃

′
v, ζ̃

′
v) that are close to d′v.

In the special case thatM ′ = M∗, we assume that fv belongs to the subspace Huns(Gv, ζv)
0

of H(Gv, ζv)
0, and we write dv = d′v and δv = δ′v. In general, we take dv to be the image

of d′v in ∆ss(Mv).

We shall apply the stable germ expansion of [A11]. According to this expansion,
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SG
M (M ′

v, δ
′
v, fv) equals the sum of

(3.5)
∑

σv∈∆E

dv
(Gv,ζv)

hG
M (M ′

v, δ
′
v, σv)f

E
v,G(σv)

and

(3.6)
∑

L∈L0(M)

∑

L′∈EM′ (L)

∑

σ′
v∈∆d′

v
(L̃′

v,ζ̃′
v)

ιM ′(L,L′)hL̃′

M̃ ′
(δ′v, σ

′
v)S

G
L (L′

v, σ
′
v, fv),

for any element δ′v ∈ ∆G-reg(M̃
′
v, ζ̃

′
v) that is close to d′v. Here ∆E

dv
(Gv, ζv) denotes the set

of elements in ∆E(Gv, ζv) whose semisimple part maps to the image of dv in ∆ss(Gv), and

∆d′
v
(L̃′

v, ζ̃
′
v) is a similarly defined subset of ∆(L̃′

v, ζ̃
′
v). The functions

δ′v −→ hG
M (M ′

v, δ
′
v, σv)

in (3.5) are the “stable” germs of [A11]. If M ′ = M∗ and δ′v = δ∗v , and if σv belongs to the

subset ∆dv
(Gv, ζv) of ∆E

dv
(Gv, ζv), we generally write

hG
M (δ∗v , σv) = hG

M (M ′
v, δ

′
v, σv).

The germs hL̃′

M̃ ′
(δ′v, σ

′
v) in (3.6) follow this notation.

Consider the sum in (3.5). Suppose first that dv is not central in Gv. The descent

formula of [A11] then asserts that hG
M (M ′

v, δ
′
v, σv) = 0, unless M ′ = M∗ and σv lies in the

subset ∆dv
(Gv, ζv) of ∆E

dv
(Gv, ζv). However this last condition implies that

fE
v,G(σv) = fG

v (σv) = 0,

since fv is unstable. Therefore (3.5) vanishes in this case. In the remaining case that dv is

central in Gv, we have

∆E
dv

(Gv, ζv) =
{
dvβv : βv ∈ ∆E

unip(Gv, ζv)
}
.
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If βv belongs to the subset ∆E
unip,ell(Gv, ζv) of elliptic elements in ∆E

unip(Gv, ζv), we apply

the results on cuspidal functions in [A10, §10]. It is a simple consequence [A11] of these re-

sults that hG
M (M ′

v, δ
′
v, dvβv) = 0, unless M ′ = M∗ and βv lies in the subset ∆unip,ell(Gv, ζv)

of ∆E
unip,ell(Gv, ζv). But the last condition implies that

fE
v,G(dvβv) = fG

v (dvβv) = 0,

again because fv is unstable. On the other hand, if βv belongs to the complement

∆E
unip,par(Gv, ζv) of ∆E

unip,ell(Gv, ζv), f
E
v,G(dvβv) = 0, by virtue of the fact that fv lies

in H(Gv, ζv)
0. The sum (3.5) therefore vanishes in this case as well.

We have shown that SG
M (M ′

v, δ
′
v, fv) equals the expansion (3.6). Turning our attention

to (3.6), we consider an outer summand in this expression corresponding to any L 6= M .

If L′ is an endoscopic datum for L that is distinct from L∗, SG
L (L′

v, σ
′
v, fv) = 0, by the

induction assumption (1.3). This takes care of all the elements in the inner sum over

EM ′(L), provided that M ′ 6= M∗. If M ′ = M∗, the set EM ′(L) also contains L∗. In this

case, however, the induction hypothesis (1.3) implies that the distributions

SG
L (σv, fv) = SG

L (L∗
v, σ

∗
v, fv), σv = σ∗

v = σ′
v,

are stable. Since fv is unstable, the distributions vanish at fv. It follows that the terms

in (3.6) with L 6= M vanish. We conclude that

(3.7) SG
M (M ′

v, δ
′
v, fv) =

∑

σ′
v∈∆d′

v
(M̃ ′

v,ζ̃′
v)

hM̃ ′

M̃ ′
(δ′v, σ

′
v)S

G
M (M ′

v, σ
′
v, fv),

for all δ′v ∈ ∆G-reg(M̃
′
v, ζ̃

′
v) that are close to d′v. Since hM̃ ′

M̃ ′
(δ′v, σ

′
v) is a stabilized Shalika

germ, the right hand side of (3.7) represents a stable orbital integral in δ′v. We conclude

that there is a function εM ′

(fv) in SI(M̃ ′
v, ζ̃

′
v) such that (3.2) or (3.2′) holds (according

to whether M ′ equals M∗ or not) for every strongly G-regular element δ′v that is close to

d′v.
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To establish the full assertions (3.2) and (3.2′), we have to let d′v vary. We again use

the constructions of [A12]. Given M ′ ∈ Eell(M) and δ′v ∈ ∆G-reg(M̃
′
v, ζ̃

′
v), we can express

SG
M (M ′

v, δ
′
v, fv) as

cSG
M (M ′

v, δ
′
v, fv) −

∑

L∈L0(M)

∑

L′∈EM′ (L)

ŜL̃′

M̃ ′

(
δ′v,

cηL(L′
v, fv)

)
,

where cSG
M (M ′

v, δ
′
v) and cηL(L′

v) are “stable” analogues of cIM (γv) and cθL respectively.

Suppose that L ∈ L0(M) is distinct from M . It follows from the induction hypothesis (1.3)

and [A12] that cηL(L′
v, fv) = 0 for any L′ ∈ E(L) distinct from L∗, and that cηL(L∗

v, fv)

depends only on fG
v . But if L∗ lies in EM ′(L), M ′ has to equal M∗, and fG

v = 0 by

assumption. The term corresponding L therefore vanishes. We obtain

SG
M (M ′

v, δ
′
v, fv) = cεM ′

(fv, δ
′
v) −

cηM (M ′
v, fv, δ

′
v),

where

cεM ′

(fv, δ
′
v) = cSG

M (M ′
v, δ

′
v, fv).

We have already shown that SG
M (M ′

v, δ
′
v, fv) represents a function in SI(M̃ ′

v, ζ̃
′
v) for δ′v

near d′v. Since cηM (M ′
v, fv, δ

′
v) represents a function in SIac(M̃

′
v, ζ̃

′
v) for all δ′v, we see that

cεM ′

(fv, δ
′
v) represents a function in SI(M̃ ′

v, ζ̃
′
v) for δ′v near d′v. As in (a), the auxiliary

function cεM ′

(fv, δ
′
v) has bounded support in δ′v [A12]. We can therefore use a finite

partition of unity to construct a function cεM ′

(fv) in SI(M̃ ′
v, ζ̃

′
v) whose value at any

strongly G-regular element δ′v equals cεM ′

(fv, δ
′
v).

Having defined cεM ′

(fv), we set

εM ′

(fv) = cεM ′

(fv) −
cηM (M ′

v, fv).

Then εM ′

(fv) is a function in SIac(M̃
′
v, ζ̃

′
v) such that the relevant identity (3.2) or (3.2′)

holds for every δ′v in ∆G-reg(M̃
′
v, ζ̃

′
v). To show that the identity holds for elements that

are not strongly G-regular, we compare (3.7) with the Shalika germ expansion of εM ′

(fv)

around any d′v. It follows from the linear independence of the germs

hM̃ ′

M̃ ′
(δ′v, σ

′
v), σ′

v ∈ ∆d′
v
(M̃ ′

v, ζ̃
′
v),
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that the required identity is valid for elements in ∆d′
v
(M̃ ′

v, ζ̃
′
v). It is therefore valid in

general.

The final point to check is that the function εM ′

(fv) is cuspidal. Consider an element

δ′v = (σ′
v)

M̃ ′

v , σ′
v ∈ ∆(R̃′

v, ζ̃
′
v),

induced from a proper Levi subgroup R′
v of M ′

v. We can represent R′
v as an element in

Eell(Rv), for a proper Levi subgroup Rv of Mv that is uniquely determined up to conjugacy.

We shall use the extension [A11] to singular elements of the relevant descent formula [A10,

(7.3), (7.3′)], with the elements F1, G1, M1, and R1 of [A10, §7] taken to be Fv, Gv, Mv,

and Rv, respectively. Suppose first that M ′ = M∗. Then Rv = R′
v, and δv = δ′v is induced

from the element σv = σ′
v in ∆(Rv, ζv). The descent formula in this case is

SG
M (δv, fv) =

∑

Lv∈L(Rv)

eG
Rv

(M,Lv)Ŝ
Lv

Rv
(δv, f

Lv

v ).

The coefficient eG
Rv

(M,Lv) vanishes by definition [A10, (6.1)], unless Lv is a proper Levi

subgroup of Gv. But if Lv is proper, our induction hypothesis (1.2) implies that SLv

Rv
(Sv)

is stable, and since fv is assumed to be unstable in this case, ŜLv

Rv
(δv, f

Lv
v ) = 0. The sum

therefore vanishes. In the other case that M ′ 6= M∗, the descent formula is simply the

identity

SG
M (M ′

v, δ
′
v, fv) = 0.

(The hypotheses in [A10, §7] on which this identity rests are included in the induction

hypothesis (1.2) and (1.3).) We have shown in both cases that

εM ′

(fv, δ
′
v) = SG

M (M ′
v, δ

′
v, fv) = 0.

Therefore εM ′

(fv) is a cuspidal function in SIac(M̃
′
v, ζ̃

′
v). This completes the proof of the

proposition. �

Corollary 3.2. The mappings of the proposition satisfy formulas

(3.8) εM (fv) = cεM (fv) −
(

cθEM (f) − cθM (fv)
)
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and

(3.9) εM ′

(fv) = cεM ′

(fv) −
cηM (M ′

v, fv),

in the notation of the proof. As above, fv is any function in H(Gv, ζv)
0 that is unstable in

the case that M ′ = M∗. �

We now return to the discussion of §2. Recall that V is a finite set of valuations of F

that contains Vram(G, ζ). Let H(GV , ζV )0 denote the subspace of H(GV , ζV ) spanned by

functions of the form

(3.10) f =
∏

v∈V

fv, fv ∈ H(Gv, ζv)
0.

For any such function, we can obviously write

f = fvf
v, v ∈ V, fv ∈ H(Gv

V , ζ
v
V )0,

with the superscript as usual being used to denote an object associated to V − {v}. If G

is quasisplit, we set

Huns(GV , ζV )0 = Huns(GV , ζV ) ∩ H(GV , ζV )0.

Then Huns(GV , ζV )0 is spanned by functions of the form (3.10) such that fG
v = 0 for some

v.

We extend the maps of Lemma 3.1 to functions on GV so that they are parallel to the

expansions (2.8) and (2.9). Thus

εM : H(GV , ζV )0 −→ Iac(MV , ζV )

is a map such that

(3.11) εM (f, γ) =
∑

v∈Vfin(G,M)

εM (fv, γv)f
v
M (γv),
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for any element γ =
∏
v
γv in Γ(M,V, ζ), and any function f ∈ H(GV , ζV )0 of the form

(3.10). If G is quasisplit,

εM = εM∗

: Huns(GV , ζV )0 −→ SIac(MV , ζV )

is defined by

(3.12) εM (f, δ) =
∑

v∈Vfin(G,M)

εM (fv, δv)f
v,M(δv),

for δ =
∏
v
δv in ∆(M,V, ζ) and for f ∈ Huns(GV , ζV )0 of the form (3.10). (This is well

defined, since if fv does not belong to Huns(Gv, ζv)
0, (fv)M = 0, and the corresponding

summand vanishes.) Finally, if G is quasisplit and M ′ ∈ E0
ell(M),

εM ′

: H(GV , ζV )0 −→ SIac(M̃
′
V , ζ̃

′
V )

is defined by

(3.12′) εM ′

(f, δ′) =
∑

v∈Vfin(G,M)

εM ′

(fv, δ
′
v)f

v,M ′(
(δ′)v

)
,

for δ′ =
∏
v
δ′v in ∆(M̃ ′, V, ζ̃′) and f ∈ H(GV , ζV )0 as in (3.10). The co-domains

Iac(MV , ζV ), SIac(MV , ζV ) and SIac(M̃
′
V , ζ̃

′
V ) are natural variants of the spaces discussed

for v at the beginning of this section. For example, Iac(MV , ζV ) is defined by orbital in-

tegrals in terms of the space Hac(MV , ζV ) of uniformly smooth, ζ−1
V -equivariant functions

on MV whose restrictions to each set

MX
V = {m ∈MV : HM (m) = X}, X ∈ aM ,

have compact support.

In §2, we also defined the space HM (GV , ζV ) of functions in H(GV , ζV ) that are M -

cuspidal at two places. Let HM (GV , ζV )0 and Huns
M (GV , ζV )0 denote the intersections of

HM (GV , ζV ) with H(GV , ζV )0 and Huns(GV , ζV )0 respectively. The following result is a

corollary of Lemma 2.3 and Lemma 3.1.
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Corollary 3.3. (a) If G is arbitrary, we have

(3.13) IEpar(f) − Ipar(f) = |W (M)|−1ÎM
(
εM (f)

)
,

for any function f in HM (GV , ζV )0.

(b) If G is quasisplit, we have

(3.14) SG
par(f) = |W (M)|−1

∑

M ′∈Eell(M,V )

ι(M,M ′)ŜM̃ ′(
εM ′

(f)
)
,

for any function f in Huns
M (GV , ζV )0.

Proof. To establish (a), we combine the expansion (2.8) of Lemma 2.3 with the

definition (3.1) and (3.11) of εM (f). We obtain

IEpar(f) − Ipar(f) = |W (M)|−1
∑

γ∈Γ(M,V,ζ)

aM (γ)εM(f, γ).

We are assuming that f is M -cuspidal at two places. It then follows from Corollary 3.2

that the function εM (f) in Iac(M,V, ζ) is actually cuspidal at two places. This means

that the geometric side of the trace formula for M , formulated as in [I, Proposition 2.2],

simplifies at the function εM (f) [A2, Theorem 7.1(b)]. We obtain

ÎM
(
εM (f)

)
=

∑

γ∈Γ(M,V,ζ)

aM (γ)εM(f, γ).

The identity (3.13) follows.

To deal with (b), we begin with the stable expansion (2.9) of Lemma 2.3. Combining

this with the definitions (3.2), (3.2′), (3.12) and (3.12′), we obtain

SG
par(f) = |W (M)|−1

∑

M ′∈Eell(M,V )

ι(M,M ′)
∑

δ′∈∆(M̃ ′,V,ζ̃′)

bM̃
′

(δ′)εM̃ ′

(f, δ′).

Corollary 3.2 implies that the function εM ′

(f) in SIac(M̃
′
V , ζ̃

′
V ) is cuspidal at two places.

This means that the geometric side of the stable trace formula for M̃ ′ simplifies at the
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function εM ′

(f). There is no direct reference to such a simplified formula, but it is easily

derived from the general stable expansion in [I, Theorem 10.1(b)]. Indeed, we can write

ŜM̃ ′(
εM ′

(f)
)
− ŜM̃ ′

orb

(
εM ′

(f)
)

=
∑

R̃′∈(LM̃′ )0

|W R̃′

0 ||W M̃ ′

0 |−1
∑

δ′∈∆(R̃′,V,ζ̃′)

bR̃
′

(δ′)ŜM̃ ′

R̃′

(
δ′, εM ′

(f)
)
,

by [I, (10.5)]. From the local induction hypothesis (1.2) and the splitting formula for

ŜM̃ ′

R̃′

(
δ′, εM ′

(f)
)
, we deduce that this expression equals zero. Combining the global in-

duction hypothesis (1.4) with the expansion [I, Lemma 7.2(b)] for ŜM̃ ′

orb

(
εM ′

(f)
)
, we then

obtained the simplified expansion

ŜM̃ ′(
εM ′

(f)
)

=
∑

δ′∈∆(M̃ ′,V,ζ̃′)

bM̃
′

(δ′)εM̃ ′

(f, δ′).

The identity (3.14) follows. �
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§4. Separation by infinitesimal character

Proposition 2.2 and Corollary 3.3 are the main results so far. Together, they provide

a pair of identities (a) and (b) that will be objects of study for the rest of the paper. We

shall now apply the theory of archimedean multipliers, following the argument in [AC,

§2.15]. We are going to replace the function

f =
⊕

β∈π0(G)

fβ, fβ ∈ H(GV,βV
, ζV,βV

),

by its transform fα =
⊕
β

fβ,α under a multiplier α ∈ C∞
c (hZ)W∞ . We will then study the

resulting identities in terms of the function α̂(ν). Our goal is to show that each side of

the identity in question vanishes, by the comparison of a distribution that is discrete in

ν with one that is continuous. This is a crucial step that goes back to the comparison of

distributions in [L3, §11] by Langlands.

We are following notation at the beginning of [I, §3]. In particular, h is a split Cartan

subalgebra of a split form of the real group GV∞,βV∞
, for any component β ∈ π0(G), and

W∞ is the corresponding Weyl group. Any element α in the space E(h)W∞ of compactly

supported, W∞-invariant distributions on h determines an endomorphism

f =
⊕

β

fβ −→ fα =
⊕

β

fβ,α,

of H(GV , ζV ). We shall take α to be in the subspace C∞
c (hZ)W∞ of E(h)W∞. As in [I, §3],

hZ denotes the subspace of points in h whose projection onto aG lies in aZ (relative to the

canonical embedding aZ ⊂ aG). Then α̂(ν) is a W∞-invariant Paley-Wiener function on

the complex dual space h∗
C
/a∗G,Z,C, where a∗G,Z is the annihilator of aZ in a∗G. We recall that

it is the W∞-orbits in h∗
C
/a∗G,Z,C that parametrize archimedean infinitesimal characters νπ

of elements π in the set

Π(GZ
V , ζV ) =

∐

βV

Π(GZ
V,βV

, ζV,βV
)
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of irreducible representations of (components of) GZ
V . We recall also that there is a natural

subset h∗
u of h∗

C
/ia∗G,Z , which embeds into h∗

C
/a∗G,Z,C, and whose W∞-orbits contain the

infinitesimal characters of all unitary representations. (See [A2, p. 536] and [A7, p. 558].)

It will sometimes be convenient to index “discrete” distributions in the trace formula

by an archimedean infinitesimal character ν, rather than the norm t = ‖Im(ν)‖. For this

purpose, ν stands for an element in the set h∗
u/W∞ of W∞-orbits in h∗

u. We recall that

‖ · ‖ is the restriction to h∗
u of the Hermitian norm on h∗

C
/a∗G,Z,C that is dual to a fixed,

W∞-invariant Euclidean inner product on hZ . We shall use a double subscript (ν, disc)

to denote the contribution of ν to any object that has been indexed by (t, disc). For

example, if t = ‖Im(ν)‖, Πν,disc(G, V, ζ) denotes the set of representations in Πt,disc(G, V, ζ)

whose archimedean infinitesimal character equals ν. It is empty unless the projection of

ν onto a∗Z,C coincides with the differential of the archimedean infinitesimal character of ζ.

Moreover,

Iν,disc(f) =
∑

π∈Πν,disc(G,V,ζ)

aG
disc(π)fG(π)

and

It,disc(f) =
∑

{ν:‖Im(ν)‖=t}

Iν,disc(f).

Following [I, §3], and earlier papers [A2], [AC] and [A7], we write

h∗
u(r) = h∗

u(r, 0) =
{
ν ∈ h∗

u : ‖Re(ν)‖ ≤ r
}

and

h∗
u(r, T ) =

{
ν ∈ h∗

u(r) : ‖Im(ν)‖ ≥ T
}
,

for any nonnegative numbers r and T .

Lemma 4.1. For any function f ∈ H(GV , ζV ), we can choose r so that for every α ∈

C∞
c (hZ)W∞, the distributions Iν,disc(fα), IEν,disc(fα) and SG

ν,disc(fα) vanish if ν does not

belong to h∗
u(r)/W∞.
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Proof. As α varies, the functions fα are uniformly K∞-finite, where K∞ =
∐
β

K∞,β∞

is a union of maximal compact subgroups. It follows from Harish-Chandra’s Plancherel

formula that the tempered characters

fα,G(π), π ∈ Πtemp(GV , ζV ),

are supported on representations π whose archimedean infinitesimal characters have

bounded real part. The same property for the larger family of unitary characters is then

easy to establish from the Langlands classification. In particular, we can find an r such

that the function Iν,disc(fα) of ν is supported on h∗
u(r)/W∞. The corresponding assertions

for the functions IEν,disc(fα) and SG
ν,disc(fα) then follow from their inductive definitions in

terms of Iν,disc(fα), and standard properties of archimedean transfer factors. �

We now recall the spaces HM (GV , ζV )0 and Huns
M (GV , ζV )0, defined near the end of

the last section. Let us write HM (GV , ζV )00 and HM (GV , ζV )00 for the subspaces spanned

by functions f =
∏
v
fv in HM (GV , ζV )0 and Huns

M (GV , ζV )0 respectively, such that for some

v ∈ Vfin, fv belongs to the space H(Gv, ζv)
00 defined at the beginning of the last section.

Proposition 4.2. (a) If G is arbitrary,

(4.1) IEν,disc(f) − Iν,disc(f) = 0,

for any ν and any f ∈ HM (GV , ζV )00.

(b) If G is quasisplit,

(4.2) SG
ν,disc(f) = 0,

for any ν and any f ∈ Huns
M (GV , ζV )00.

Proof. The proposition is a general analogue of the results in [AC, §2.15] for GL(n).

(See also [A7, Lemmas 8.1 and 9.1].) To prove it, we shall combine the global multiplier

estimate [I, (3.3)] with Proposition 2.2 and Corollary 3.3. This will allow us to express the
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left hand sides of (4.1) and (4.2) each as the value of a certain limit. We shall then show

that the two limits vanish.

To deal with (a), we fix the function f in HM (GV , ζV )00. Suppose that

α ∈ C∞
c (hZ)W∞ is a multiplier. The function fα certainly lies in H(GV , ζV ). It therefore

satisfies the identity (2.4) of Proposition 2.2. In fact, fα belongs to HM (GV , ζV )00, since

the conditions that define this subspace of H(GV , ζV ) are not affected by multipliers. We

can therefore apply Corollary 3.3(a) to the value taken at fα by the linear form on the left

hand side of (2.4). Moreover, the sum

∑

z

(
IEz,unip(fα, S) − Iz,unip(fα, S)

)

obtained from the right hand side of (2.4) is equal to zero, since the functions fα,z,G vanish

on ΓE
unip(G, V, ζ). The identity reduces to

|W (M)|−1ÎM
(
εM (fα)

)
=

∑

t

(
IEt,disc(fα) − It,disc(fα)

)
.

For the linear form on the left hand side, we note that since W∞ contains the corresponding

Weyl group attached to M , α determines a multiplier for MV . It acts on the spaces

H(MV , ζV ) and Hac(MV , ζV ), and as explained on p. 530 of [A2], also on Iac(MV , ζV ).

The various definitions tell us that the function εM (fα) equals εM (f)α. Since this function

is cuspidal at some place, we can expand the linear form on the left hand side as

ÎM
(
εM (f)α

)
=

∑

t

ÎM
t,disc

(
εM (f)α

)
,

by the simple version [A2, Lemma 7.1(a)] of the spectral expansion. The distribution

ÎM
t,disc depends (through t) on a Euclidean norm on the analogue hM,Z for M of the space

hZ = hG,Z . We assume that this is the restriction of the Euclidean norm we fixed on hZ .

We have obtained an identity

|W (M)|−1
∑

t

ÎM
t,disc

(
εM (f)α

)
=

∑

t

(
IEt,disc(fα) − It,disc(fα)

)
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between two absolutely convergent sums over t. The right hand sum satisfies the global

multiplier estimate [I, (3.3)]. It happens the left hand sum also satisfies this stronger

estimate, but the justification requires further comment.

The spectral expansion for functions in the standard Hecke algebra does satisfy the

required estimate. This follows from Proposition 3.1 of [I], which is in turn a direct

consequence of the proof of Lemma 6.3 of [A2]. However, the function εM (f) belongs

to Iac(MV , ζV ) rather than I(MV , ζV ). Moreover, the multiplier α is supported on the

space hZ = hG,Z , rather than the subspace hM,Z attached to M . With only these general

conditions on εM (f) and α, the estimate of [A2, Lemma 6.3] would actually fail. The

estimate was carried out for the special case of what were called moderate functions. In

the present context, the moderate functions form a space that lies between I(MV , ζV )

and Iac(MV , ζV ). They are defined as on p. 531 of [A2] by a mild support condition,

and a similarly mild growth condition. We shall prove that εM (f) is a moderate function

in Iac(MV , ζV ), in order to show that the left hand side of the identity does satisfy the

desired estimate.

To establish that εM (f) is moderate, it will be enough to verify that for v ∈ Vfin(G,M)

and fv ∈ H(Gv, ζv)
0, the function εM (fv) satisfies the local form of the two conditions on

p. 531 of [A2]. The fact that εM (fv) is cuspidal means that the support condition is

vacuous. To check the growth condition, we recall that

εM (fv) = cεM (fv) −
(

cθEM (fv) −
cθM (fv)

)
,

by Corollary 3.2 As we saw in the proof of Proposition 3.1, the function cεM (fv) actually

belongs to I(Mv, ζv). It is therefore compactly supported on Γ(Mv, ζv). The functions

cθEM (fv) and cθM (fv) belong to the larger space Iac(Mv, ζv). However, according to the

assertion in [A1, Lemma 5.2] for cθM (fv), and its analogue [A12] for cθEM (fv), the two

functions have a property of rapid decrease. More precisely, as functions on the product

of Πtemp(Mv, ζv) with aM,v/aZ,v,
cθM (fv) and cθEM (fv) are both rapidly decreasing in
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the second variable. Therefore εM (fv) has the same property. The required condition of

moderate growth pertains to εM (fv) as a function on Γ(Mv, ζv). However, since εM (fv)

is cuspidal, the condition is an obvious consequence of what we have just established.

Therefore εM (fv) satisfies both conditions. It follows from (3.11) that εM (f) is a moderate

function in Iac(MV , ζV ). Once we know that εM (f) is moderate, the relevant part of the

proof of Lemma 6.3 of [A2] tells us that the spectral expansion of ÎM
(
εM (f)α

)
satisfies

the global multiplier estimate. But the spectral expansion of ÎM
(
εM (f)α

)
is just the sum

on the left hand side of the identity we have been considering. Therefore, the left hand

side does satisfy the global multiplier estimate.

We have established an identity

∑

t≥0

(
IEt,disc(fα) − It,disc(fα) − |W (M)|−1ÎM

t,disc

(
εM (f)α

))
= 0,

in which the sum over t satisfies the global multiplier estimate [I, (3.3)]. The estimate

itself depends on the choice of a positive number T . Before applying it, we recall that

IEt,disc(fα) − It,disc(f) =
∑

ν

(
IEν,disc(fα) − Iν,disc(f)

)
,

where ν is summed over orbits ν ∈ h∗
u/W∞ with ‖Im(ν)‖ = t. In fact, by Lemma 4.1, we

can restrict ν to the orbits in h∗
u(r)/W∞, for some r > 0 that is independent of t and α.

We can therefore express the sum

(4.3)
∑

ν

(
IEν,disc(fα) − Iν,disc(fα)

)
,

taken over the orbits ν ∈ h∗
u(r)/W∞ with ‖Im(ν)‖ ≤ T , as a difference between

(4.4) |W (M)|−1
∑

t≤T

ÎM
t,disc

(
εM (f)α

)

and the expression obtained from the left hand side of the last identity by restricting

the sum to those t with t > T . It is to the last expression that we apply the global
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multiplier estimate. The resulting conclusion is that we may choose r, together with

positive constants C and k, with the property that for any N > 0, α ∈ C∞
N (hZ)W∞ and

T , the difference between (4.3) and (4.4) has absolute value that is bounded by

CekN sup
ν∈h∗

u(r,T )

|α̂(ν)|.

(See [I, (3.3)].) We note that for any given T , the sums in (4.3) and (4.4) can be taken

over finite sets that are independent of α.

Let ν1 ∈ h∗
u(r)/W∞ be a fixed infinitesimal character. According to [AC, Lemma

2.15.2], we can find a function α1 ∈ C∞
c (hZ)W∞ such that α̂1 maps h∗

u(r) to the unit

interval, and such that the inverse image of 1 under α̂1 is simply the set of points in the

W∞-orbit of ν1. We fix α1, and then choose N1 > 0 such that α1 belongs to C∞
N1

(hZ)W∞ .

Assuming that r and k have been chosen as above, we can find a positive number T such

that

|α̂1(ν)| ≤ e−2kN1 ,

for all points ν in the set h∗
u(r, T ). This is possible because α̂1 is rapidly decreasing on the

vertical strips. For each positive integer m, let αm be the convolution of α1 with itself m

times. Then αm belongs to C∞
mN1

(hZ)W∞ , and

α̂m(ν) =
(
α̂1(ν)

)m
.

Taking α = αm in the estimate above, we see that (4.3) equals the sum of (4.4) and an

expression whose absolute value is bounded by

Ce−kN1m.

It follows that the difference between (4.3) and (4.4) approaches zero as m approaches

infinity.
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Suppose that ν is any point in h∗
u(r)/W∞. Then

IEν,disc(fαm
) − Iν,disc(fαm

)

=
∑

π∈ΠE

ν,disc
(G,V,ζ)

(
aG,E
disc(π) − aG

disc(π)
)
fαm,G(π)

=
∑

π

(
aG,E
disc(π) − aG

disc(π)
)
fG(π)α̂m(ν)

=
(
α̂1(ν)

)m(
IEν,disc(f) − Iν,disc(f)

)
.

This equals IEν1,disc(f)−Iν1,disc(f) if ν = ν1, and otherwise approaches zero asm approaches

infinity. Since there are only finitely many nonzero terms in (4.3), we conclude that the

value of (4.3) at α = αm approaches the difference

IEν1,disc(f) − Iν1,disc(f)

as m approaches infinity. This difference therefore approaches the corresponding limit

(4.5) lim
m→∞

(
|W (M)|−1

∑

t≤T

ÎM
t,disc

(
εM (f)αm

))

of (4.4). We have reduced the proof of (a) to showing that the limit (4.5) is zero.

To deal with (b), we assume thatG is quasisplit, and that f belongs to Huns
M (GV , ζV )00.

We shall retrace the steps in the argument for (a) above, making modifications as necessary.

If α ∈ C∞
c (hZ)W∞ is a multiplier, the function fα remains unstable. This follows from

Shelstad’s characterization of stability at the archimedean places in terms of tempered L-

packets [Sh]. (This point is not essential to the argument, since we could have insisted at

the outset that f be unstable at some finite place.) In particular, fα satisfies the identity

(2.5) of Proposition 2.2. The function fα actually belongs to Huns
M (GV , ζV )00, since the

conditions that define this subspace of Huns(GV , ζV ) are not changed by multipliers. We

can therefore apply Corollary 3.3(b) to the value at fα of linear form on the left hand side

of (2.5). Moreover, the sum
∑

z

SG
z,unip(fα)
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obtained from the right hand side of (2.5) is equal to 0. The identity becomes

|W (M)|−1
∑

M ′∈Eell(M,V )

ι(M,M ′)ŜM̃ ′(
εM ′

(fα)
)

=
∑

t

SG
t,disc(fα).

For the linear forms on the left hand side, we recall that for any M ′, there is a multiplier

α′ for M̃ ′
V such that

α̂′(ν′) = α̂(ν), ν ∈ h∗
C
/a∗G,Z,C.

Here

ν −→ ν′ = ν + dη̃′∞

is the affine linear embedding of h∗
C

into the corresponding space (h̃′)∗
C
⊃ h∗

C
attached to

M̃ ′. We also write

t = ‖Im(ν)‖ −→ t′ = ‖Im(ν′)‖ = t+ ‖Im(dη̃′∞)‖

for the associated change of norms. (See [A7, p. 561] and [I, §7].) The action of α′ on

Iac(M̃
′
V , ζ̃

′
V ) is uniquely determined by the given condition, even though α′ itself is not.)

The correspondence α→ α′ is compatible with the archimedean transfer map, from which

it follows that εM ′

(fα) = εM ′

(f)α′ . We can therefore expand the linear forms on the left

hand side as

ŜM̃ ′(
εM ′

(fα)
)

=
∑

t

ŜM̃ ′

t′
(
εM ′

(f)α′

)
,

by [I, Proposition 10.5].

We have obtained an identity

|W (M)|−1
∑

t

∑

M ′∈Eell(M,V )

ι(M,M ′)ŜM̃ ′

t′
(
εM ′

(f)α′

)
=

∑

t

SG
t,disc(fα),

between two absolutely convergent sums over t. The right hand sum satisfies the global

multiplier estimate [I, (3.3)]. We would like to show that the left sum over t satisfies this

stronger estimate, and also that the linear forms ŜM̃ ′

t′ can be replaced by their “discrete”

analogues.
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The stronger estimate would follow from the proof of [I, Proposition 10.5] and [A2,

Lemma 6.3], if it could be shown that for any M ′, the function εM ′

(f) in SIac(M̃
′
V , ζ̃

′
V )

was moderate. This amounts to showing that εM ′

(f) satisfies the analogues of the weak

support and growth conditions on p. 531 of [A2]. As in (a), it is enough to verify that for

any v ∈ Vfin(G,M), the function εM ′

(fv) satisfies the relevant form of these conditions.

The fact that εM ′

(fv) is cuspidal means that the support condition is vacuous. The growth

condition is a consequence of the identity

εM ′

(fv) = cεM ′

(fv) −
cηM (M ′

v, fv)

of Corollary 3.2. For as we saw in the proof of Proposition 3.1, the function cεM ′

(fv)

belongs to SI(M̃ ′
v, ζ̃

′
v), and therefore has compact support on ∆(M̃ ′

v, ζ̃
′
v). By the analogue

[A11] of [A1, Lemma 5.2], the function cηM (M ′
v, fv) is rapidly decreasing (in the sense

of [A2, Lemma 5.2]). It follows easily that cηM (M ′
v, fv) satisfies the relevant growth

condition, at least on the elliptic elements on which εM ′

(fv) is supported. The same

condition therefore holds for the original function εM ′

(fv). Recalling the definitions (3.12)

and (3.12′), we conclude that εM ′

(f) is a moderate function in SIac(M̃
′
V , ζ̃

′
V ). Therefore

the sum
∑

t

ŜM̃ ′

t′
(
εM ′

(f)α′

)

does satisfy the global multiplier estimate.

For any t, the general spectral expansion [I, (10.18)] for ŜM̃ ′

t′

(
εM ′

(f)α′

)
is easily seen

to simplify. Guided by the proof of [A2, Theorem 7.1(a)], one applies the splitting formula

in [A12] to the terms

ŜM̃ ′

L̃′

(
φ′, εM ′

(f)α′

)
, L̃′ ∈ (LM̃ ′

)0, φ′ ∈ Πt′(L̃
′, V, ζ̃′),

in this expansion. Since εM ′

(f)α′ is actually cuspidal at two places, the local induction

hypothesis (1.2) implies immediately that these terms all vanish. It follows from [I, (10.18)]

that

ŜM̃ ′

t′
(
εM ′

(f)α′

)
= ŜM̃ ′

t′,unit

(
εM ′

(f)α′

)
.
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Recall that Lemma 7.3(b) of [I] provides an expansion for ŜM̃ ′

t′,unit

(
εM ′

(f)α′

)
, as well as an

expansion for the more elementary linear form ŜM̃ ′

t′,disc

(
εM ′

(f)α′

)
. One can compare the

coefficients of the two expansions by means of the formula (10.22) of Proposition 10.7(b)

of [I]. If we combine this formula with the global induction hypothesis (1.4), and the fact

that εM ′

(f)α′ is cuspidal at some place, we find that

ŜM̃ ′

t′,unit

(
εM ′

(f)α′

)
= ŜM̃ ′

t′,disc

(
εM ′

(f)α′

)
.

The right hand side here represents a simple version of the stable spectral expansion of

the original linear form ŜM̃ ′

t′

(
εM ′

(f)α′

)
. This is the second point we wanted to check.

We have established that

∑

t≥0

(
SG

t,disc(fα) − |W (M)|−1
∑

M ′∈Eell(M,V )

ι(M,M ′)ŜM̃ ′

t′,disc

(
εM ′

(f)α′

))
= 0,

where the sum over t satisfies the global multiplier estimate [I, (3.3)]. The rest of the

argument is entirely similar to the discussion above for (a). By Lemma 4.1, we can write

SG
t,disc(fα) =

∑

ν

SG
ν,disc(fα),

where ν is summed over the orbits in a set h∗(r)/W∞ with ‖Im(ν)‖ = t. We fix an orbit

ν1 ∈ h∗
u(r)/W∞, and then choose a corresponding function α1 ∈ C∞

N1
(hZ)W∞ as above.

Following the discussion of (a), we deduce that the linear form

SG
ν1,disc(f)

may be represented by the limit

(4.6) lim
m→∞

(
|W (M)|−1

∑

t≤T

∑

M ′∈Eell(M,V )

ι(M,M ′)ŜM̃ ′

t′,disc

(
εM ′

(f)α′
m

))
,

for some t > 0. This reduces the proof of (b) to showing that the limit (4.6) is zero.

To deal with the limits (4.5) and (4.6), we first write

ÎM
t,disc

(
εM (f)αm

)
=

∑

ν

ÎM
ν,disc

(
εM (f)αm

)
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and

ŜM̃ ′

t′,disc

(
εM ′

(f)α′
m

)
=

∑

ν

ŜM̃ ′

ν′,disc

(
εM ′

(f)α′
m

)
,

where ν is summed in each case over the infinitesimal characters for MV with ‖Im(ν)‖ = t.

Lemma 4.3. (a) If ν is any infinitesimal character for MV , there is a Schwartz function

λ −→ εM,ν(f, λ), λ ∈ ia∗M,Z/ia
∗
G,Z ,

such that for any α ∈ C∞
c (hZ)W∞,

ÎM
ν,disc

(
εM (f)α

)
=

∫

ia∗

M,Z
/ia∗

G,Z

εM,ν(f, λ)α̂(ν + λ)dλ.

(b) Suppose that G is quasisplit. Then for any infinitesimal character ν for MV and any

M ′ ∈ Eell(M,V ), there is a Schwartz function

λ −→ εM ′

ν′ (f, λ), λ ∈ ia∗M,Z/ia
∗
G,Z ,

such that for any α ∈ C∞
c (hZ)W∞,

ŜM̃ ′

ν′,disc

(
εM ′

(f)α′

)
=

∫

ia∗

M,Z
/ia∗

G,Z

εM ′

ν′ (f, λ)α̂(ν + λ)dλ.

Proof. Consider part (a). Any element φ in Iac(MV , ζV ) can be regarded as a

function on the product of Π(MV , ζV ) with aM/aZ . For example, if φ is the image of a

function h ∈ Hac(MV , ζV ), the value of φ is defined by an integral

φ(π,X) =

∫

MX
V

/ZV

h(m)Θπ(m)dm, (π,X) ∈ Π(MV , ζV ) × aM/aZ ,

over a compact set, in which Θπ is the character of π, and

MX
V =

{
m ∈MV : HM (m) + aZ = X

}
.

Now the given element α ∈ C∞
c (hZ)W∞ is to be regarded as a multiplier for MV . It

transforms any function φ in Iac(MV , ζV ) to the function

φα(π,X) =

∫

a
G,Z

M
/aZ

φ(π,X − Y )αM (π, Y )dY,
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where a
G,Z
M is the subspace of elements in aM whose image in aG lies in aZ , and

αM (π, Y ) =

∫

ia∗

M,Z
/ia∗

G,Z

α̂(νπ + λ)e−λ(Y )dλ, Y ∈ a
G,Z
M .

This follows easily from the fact that ia∗M,Z/ia
∗
G,Z is isomorphic to the dual group of

a
G,Z
M /aZ . (See [A2, (6.1)].) We are most interested in the case that π is unitary, and the

element X ∈ aM/aZ is trivial. Then MX
V equals the set we have denoted by MZ

V . In

order to match earlier notation, we generally reserve the symbol π for the restriction of the

representation to this subset of MV . Then π may be identified with an orbit {πλ} of ia∗M,Z

in Πunit(MV , ζV ), or if one prefers, the representation in that orbit whose infinitesimal

character has minimal norm. We shall usually suppress the element X = 0 from the

notation in this case, and write

φ(π) = φ(πλ, 0).

We use these remarks to express the value of ÎM
ν,disc at εM (f)α. We obtain a sum

ÎM
ν,disc

(
εM (f)α

)
=

∑

π∈Πν,disc(M,V,ζ)

aM
disc(π)εM (f)α(π),

which can be taken over a finite set that is independent of α, and in which

εM (f)α(π) =

∫

a
G,Z

M
/aZ

εM (f, π,−Y )αM (π, Y )dY.

It would be enough to show that for any π in Πν,disc(M,V, ζ), the function

X −→ εM (f, π,X), X ∈ a
G,Z
M /aZ ,

is rapidly decreasing. For assertion (a) would then follow, with

εM,ν(f, λ) =
∑

π∈Πν,disc(M,V,ζ)

aM
disc(π)

∫

a
G,Z

M
/aZ

εM (f, π,X)eλ(X)dX,

from an interchange of integrals in the last formula. As in the special case proved in

[AC, Lemma 2.15.3], we shall combine the cuspidal property of the map εM with the fact
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that π is unitary. (The proof of [AC, Lemma 2.15.3] is a little hard to decipher, because

of an unfortunate typographical error in the assertion of an earlier result [AC, Corollary

2.14.2]. The symbol Π+
(
M(FS)

)
in the second sentence of that assertion should actually

be Π+
temp

(
M(FS)

)
. The earlier result was meant to serve as the special case of [AC, Lemma

2.15.3] in which π is tempered.)

We can assume that f is a product of
∏
v
fv, as in (3.10). It is then not hard to see

from the definition (3.11) that εM (f, π,X) equals

∑

v∈Vfin(G,M)

∫

aX
M,V

/aZ,V

fv
M (πv, Xv

V )εM (fv, πv, Xv)dXV ,

where π = πv ⊗ πv, and aX
M,V is the set of vectors XV = Xv

V ⊕Xv in

aM,V =
⊕

w∈V

aM,w

whose projection onto aM equals X. For any v,

Xv
V −→ fv

M (πv, Xv
V ) =

∏

w∈V w

fMw
(πw, Xw),

is a smooth function of compact support on the quotient of aM,V w by aZ,V w . The growth

of εM (f, π,X) is therefore reflected entirely in the growth of the functions εM (fv, πv, Xv).

It would be enough to show that for any v ∈ Vfin(G,M) and πv ∈ Πunit(Mv, ζv),

Xv −→ εM (fv, πv, Xv)

is a rapidly decreasing function on the quotient of the lattice aM,v by aZ,v.

To exploit the fact that εM (fv) is a cuspidal function, we expand εM (fv, πv, Xv) in

terms of the basis T (Mv) of nontempered virtual characters discussed in [A11], among

other places. (The notation here differs slightly from that of the earlier papers [A5] and

[A7], where the elements in T (Mv) were taken to be tempered. For example, if G is an

inner form of GL(n), T (Mv) now represents the basis of standard characters used in the

proof of [AC, Lemma 2.15.3].) We obtain a finite linear combination

εM (fv, πv, Xv) =
∑

τv∈T (Mv,ζv)

δ(πv, τv)εM (fv, τv, Xv),
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where T (Mv, ζv) denotes the subset of elements in T (Mv) with Zv-central character equal

to ζv. Recall that T (Mv, ζv) contains the subset Tell(Mv, ζv) of elliptic elements. If τv

belongs to the complement of Tell(Mv, ζv) in T (Mv, ζv), τv is properly induced. In this

case

εM (fv, τv, Xv) = 0,

since εM (fv) is cuspidal. We can therefore expand εM (fv, πv, Xv) as a finite linear combi-

nation

εM (fv, πv, Xv) =
∑

τv∈Tell(Mv,ζv)

δ(πv, τv)εM (fv, τv, Xv),

for complex numbers δ(πv, τv). The original representation πv forMv is unitary, and in par-

ticular, has unitary central character. We can therefore restrict the last sum to the set of el-

ements in Tell(Mv, ζv) with unitary central character. But the set of elements in Tell(Mv, ζv)

with unitary central character is precisely the subset Ttemp,ell(Mv, ζv) of tempered elements.

It is therefore sufficient to prove that for any element τv in Ttemp,ell(Mv, ζv), the function

Xv −→ εM (fv, τv, Xv), Xv ∈ aM,v/aZ,v,

is rapidly decreasing.

For the case of tempered τv, we have only to refer back to our proof that εM (fv) is

moderate. Indeed, we can write

εM (fv, τv, Xv) = cεM (fv, τv, Xv) −
(

cθEM (fv, τv, Xv) −
cθM (fv, τv, Xv)

)
,

by Corollary 3.2. As we observed in the proof of Proposition 3.1, cεM (fv) belongs to

I(Mv, ζv). In particular, the function

Xv −→ cεM (fv, τv, Xv), Xv ∈ aM,v/aZ,v,

is actually of compact support. Moreover, [A1, Lemma 5.2] and its endoscopic analogue

[A12] imply that the function

Xv −→ cθEM (fv, τv, Xv) −
cθM (fv, τv, Xv), Xv ∈ aM,v/aZ,v,
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is rapidly decreasing. It follows that the original function εM (fv, τv, Xv) is rapidly de-

creasing in Xv, as required. This completes the proof of assertion (a). Observe that

the argument depends in an essential way on the original representations being unitary.

For it would otherwise be necessary to contend with nonunitary twists of elements τv in

Ttemp,ell(Mv, ζv), and since

εM (fv, τv,λ, Xv) = eλ(Xv)εM (fv, τv, Xv), λ ∈ a∗M,Z ,

the functions in question could then have exponential growth.

For the second half (b) of the lemma, we fix the endoscopic datum M ′ ∈ Eell(M,V ).

We can regard any element in SI(M̃ ′
V , ζ̃

′
V ) as a function on the product of Φ(M̃ ′

V , ζ̃
′
V ) with

a
M̃ ′
/a

Z̃′
. Since M ′ is elliptic, there is a canonical isomorphism X ′ → X from a

M̃ ′
/a

Z̃′
onto

the space aM/aZ . We can therefore take the second variable of a function in SI(M̃ ′
V , ζ̃

′
V )

to lie in aM/aZ . If a
G,Z

M̃ ′
denotes the subspace of elements in a

M̃ ′
whose projection onto

aG lies in aZ , X ′ → X restricts to an isomorphism from a
G,Z

M̃ ′
/a

Z̃′
onto a

G,Z
M /aZ . This is

dual to an isomorphism λ → λ′ from ia∗M,Z/ia
∗
G,Z onto ia∗

M̃ ′,Z̃′
/ia∗

G̃′,Z̃′
with the property

that (ν + λ)′ = ν′ + λ′.

The role of Πν,disc(M,V, ζ) in the proof of (a) is taken by the set Φν′,disc(M̃
′, V, ζ̃′)

attached to M ′. The elements in this set belong to Φ(M̃ ′
V , ζ̃

′
V ), and have unitary central

character. When they occur as the first component of a point in the domain of a function

in SIac(M̃
′
V , ζ̃

′
V ), we suppress the second component from the notation if it is equal to

zero. Then

SM ′

ν′,disc

(
εM ′

(f)α′

)
=

∑

φ′∈Φν′,disc(M̃
′,V,ζ̃′)

bM̃
′

disc(φ
′)εM ′

(f)α′(φ′).

One verifies that the distributions on the right can be expanded as

εM ′

(f)α′(φ′) =

∫

a
G,Z

M
/aZ

εM ′

(f, φ′,−Y ′)αM ′(φ′, Y ′)dY,
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where

αM ′(φ′, Y ′) =

∫

ia∗

M,Z
/ia∗

G,Z

α̂′(ν′ + λ′)e−λ′(Y ′)dλ =

∫

ia∗

M,Z
/ia∗

G,Z

α̂(ν + λ)e−λ(Y )dλ.

It would be enough to show that for any φ′ in Φν′,disc(M̃
′, V, ζ̃′), the function

X −→ εM ′

(f, φ′, X ′), X ∈ a
G,Z
M /aZ ,

is rapidly decreasing. For assertion (b) would then follow, with

εM ′

ν′ (f, λ) =
∑

φ′∈Φν′,disc(M̃
′,V,ζ̃′)

bM̃
′

disc(φ
′)

∫

a
G,Z

M
/aZ

εM ′

(f, φ′, Y ′)eλ(Y )dY,

from an interchange of integrals.

We can assume that f equals a product
∏
v
fv, as in (3.10). We write φ′ =

⊗
v
φ′v, for

elements φ′v ∈ Φ(M̃ ′
V , ζ̃

′
V ) with unitary central characters, and then apply the definitions

(3.12) and (3.12′) of εM ′

(fv). We see without difficulty that it would suffice to prove that

for any v ∈ Vfin(G,M), the function

Xv −→ εM ′

(fv, φ
′
v, X

′
v), Xv ∈ aM,v/aZ,v,

is rapidly decreasing. The function fv ∈ H(Gv, ζv)
0 is of course fixed. In the special case

that M ′ = M∗, we can assume that it lies in the subspace = Huns(Gv, ζv)
0 of H(Gv, ζv)

0,

since there can be at most one nonzero term on the right hand side of (3.12).

By construction [A7], [A12], the set Φ(M̃ ′
v, ζ̃

′
v) of abstract stable characters is a union

of the subset Φell(M̃
′
v, ζ̃

′
v) of elliptic elements with the subset of elements induced from

proper Levi subgroups of M̃ ′
v. If φ̃′v is properly induced,

εM ′

(fv, φ
′
v, X

′
v) = 0,

since εM ′

(fv) is cuspidal. We may therefore assume that φ′
v is elliptic. But the set of

elements in Φell(M̃
′
v, ζ̃

′
v) with unitary central character is the subset Φtemp,ell(M̃

′
v, ζ̃

′
v)
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of tempered elements. It is therefore sufficient to prove that for any element φ′
v ∈

Φtemp,ell(M̃
′
v, ζ̃

′
v), the function

Xv −→ εM ′

(fv, φ
′
v, X

′
v), Xv ∈ aM,v/aZ,v,

is rapidly decreasing.

For the case of tempered φ′
v, we write

εM ′

(fv, φ
′
v, X

′
v) = cεM ′

(fv, φ
′
v, X

′
v) −

cηM (M ′
v, fv, φ

′
v, X

′
v),

by Corollary 3.2. We can then argue as in the earlier proof that εM ′

(fv) is moderate.

Since cεM ′

(fv) belongs to SI(M̃ ′
v, ζ̃

′
v), as we observed in the proof of Proposition 3.1, the

function

Xv −→ cεM ′

(fv, φ
′
v, X

′
v), Xv ∈ aM,v/aZ,v,

actually has compact support. Moreover, the stable analogue [A12] of [A1, Lemma 5.2]

implies that the function

Xv −→ cηM (M ′
v, fv, φ

′
v, X

′
v), X ∈ aM,v/aZ,v,

is rapidly decreasing. Therefore the original function εM ′

(fv, φ
′
v, X

′
v) is also rapidly de-

creasing, as required. This completes the proof of the remaining assertion (b) of the lemma.

�

With Lemma 4.3 in hand, we can now finish the proof of Proposition 4.2. We have to

show that the limits (4.5) and (4.6) are both zero. According to the lemma, we can write

the first limit (4.5) as

lim
m→∞

(
|W (M)|−1

∑

ν

∫

ia∗

M,Z
/ia∗

G,Z

εM,ν(f, λ)α̂m(ν + λ)dλ
)
,

where ν is summed over the infinitesimal characters for MV with ‖Im(ν)‖ ≤ T . The sum

may be taken over a finite subset of h∗
u(r), which is independent of m, and which represents
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a set of Weyl orbits in h∗
u(r)/ia∗M,Z . Moreover, the integral converges absolutely uniformly

in m. If λ+ ν lies outside the W∞-orbit of ν1, we see that

lim
m→∞

(
α̂m(ν + λ)

)
= lim

m→∞

(
α̂1(ν + λ)m

)
= 0,

since 0 ≤ α̂(ν + λ) < 1. We conclude that the limit (4.5) vanishes. The treatment of the

second limit (4.6) is identical. By the lemma, it equals

lim
m→∞

(
|W (M)|−1

∑

ν

∑

M ′∈Eell(M,V )

ι(M,M ′)

∫

ia∗

M,Z
/ia∗

G,Z

εM ′

ν′ (f, λ)α̂m(ν + λ)dλ
)
,

where ν is summed over the set of infinitesimal characters of MV with ‖Im(ν)‖ ≤ T .

Using the same arguments, we deduce that this limit also vanishes. We have shown that

the required limits vanish, and therefore that the identities (4.1) and (4.2) hold, with

ν = ν1. The proof of the proposition is complete. �
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5. Elimination of restrictions on f

The next step will be to remove the local restrictions on f . We shall show that the

identities of Proposition 4.2 remain valid without the constraints on the p-adic unipotent

orbital integrals. This section can be regarded as a general (untwisted) analogue of the

special case in [AC, §16] of inner forms of GL(n). As in the earlier special case, we shall

relax the constraints one p-adic place at a time.

Let v ∈ Vfin be a fixed p-adic valuation. We have at our disposal three sets Π(Gv),

T (Gv), and ΦE(Gv), consisting of virtual characters that are respectively irreducible, stan-

dard and endoscopic. The sets represent three different bases of the complex vector space

of virtual characters on the connected p-adic group Gv. Likewise, we have three subsets

Πtemp(Gv), Ttemp(Gv) and ΦE
temp(Gv), which represent three separate bases of the space

of tempered virtual characters on Gv. It will be best to work with the latter two pairs of

bases, since they behave well under induction. We shall of course also restrict ourselves to

the subbases of elements that have central character on Zv equal to ζv.

We shall consider a fixed connected component Ωv in either of the two sets

Ttemp(Gv, ζv) or Φtemp(Gv, ζv). Then Ωv is a quotient of a compact torus under the action

of some finite group. As such, it acquires a measure dω from the Haar measure on the

torus. Given Ωv, we write Ωv,C for the complexified connected component in the associated

set T (Gv, ζv) or ΦE(Gv, ζv). The next lemma will be stated in terms of a space H(Ωv),

which we define to be the subspace of functions fv ∈ H(Gv, ζv) such that the associated

function fv,G(τv) or fE
v,G(φv) (on either Ttemp(Gv, ζv) or ΦE

temp(Gv, ζv)) is supported on

Ωv. At the beginning of §3, we defined two subspaces of H(Gv, ζv) by imposing constraints

on the unipotent orbital integrals. These provide corresponding subspaces

H(Ωv)
0 = H(Ωv) ∩ H(Gv, ζv)

0

and

H(Ωv)
00 = H(Ωv) ∩ H(Gv, ζv)

00
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of H(Ωv). We shall say that Ωv is elliptic or parabolic according to whether the functions

in H(Ωv) are cuspidal or not. Then Ωv is parabolic if and only if it is induced from an

elliptic component ΩLv
(in either Ttemp,ell(Lv, ζv) or ΦE

temp,ell(Lv, ζv)) attached to a proper

Levi subgroup Lv of Gv over Fv.

Lemma 5.1. (a) Suppose that Ωv is a parabolic component in Ttemp(Gv, ζv), and that fv

is a function in H(Gv
V , ζ

v
V ) such that the identity (4.1) holds for any function f = f vfv,

with fv ∈ H(Ωv)
00. Then (4.1) also holds for any f = f vfv, with fv ∈ H(Ωv).

(b) Suppose that G is quasisplit, that Ωv is a parabolic component in ΦE
temp(Gv, ζv), and

that fv ∈ H(Gv
V , ζ

v
V ) is such that the identity (4.2) holds for any function f = f vfv, with

fv ∈ H(Ωv)
00. Then (4.2) holds for any f = f vfv, with fv ∈ H(Ωv).

Proof. The basic idea is quite simple, and is familiar from the special cases in [AC]

and [A7]. To treat the general case here, we have to deal with the usual minor technical

complications. In particular, we need to account for the split component of the center of

Gv, or rather, its quotient by the split component of Zv. As in the last section, we shall

work with the vector spaces aGv
and aZv

, and the canonical lattices that they contain.

Suppose that Xv is a point in the quotient

aG,v/aZ,v = HGv
(Gv)/HZv

(Zv)

of these lattices. Let H(GXv
v , ζv) be the subspace of functions in H(Gv, ζv) that are sup-

ported on the subset

GXv

v =
{
x ∈ Gv : HGv

(x) + aZ,v = Xv

}

of Gv. We can then define the intersections

H(Ωv, Xv) = H(Ωv) ∩H(GXv

v , ζv)

and

H(Ωv, Xv)
00 = H(Ωv)

00 ∩H(Ωv, Xv).
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Any function in H(Ωv) is obviously a finite sum of functions in the various spaces

H(Ωv, Xv). It is therefore enough to establish the assertions (a) and (b) for functions

fv in H(Ωv, Xv), for a fixed element Xv.

To deal with (a), we consider the pairs of elements

i = (zv, αv), zv ∈ Z(Gv), αv ∈ Runip(Gv, ζv),

that parametrize Shalika germs near the center of Gv. Any such i gives rise to the linear

form

Ji(fv) = fv,G(zvαv), fv ∈ H(Gv, ζv),

on H(Gv, ζv). Having fixed Ωv and Xv, we let I(Ωv, Xv) be a fixed maximal set of pairs {i}

for which the restrictions to H(Ωv, Xv) of the linear forms {Ji} are linearly independent.

By the trivial (abelian) case of the Howe conjecture, I(Ωv, Xv) is a finite set. (The set

is actually empty unless Z(Gv) intersects the group G
Xv

v = GXv
v /Zv.) The subspace

H(Ωv, Xv)
00 of H(Ωv, Xv) equals the intersection

{
fv ∈ H(Ωv, Xv) : Ji(fv) = 0, i ∈ I(Ωv, Xv)

}

of the kernels of linear forms in this finite set. We fix functions

{
f j

v ∈ H(Ωv, Xv) : j ∈ I(Ωv, Xv)
}

with the property that

Ji(f
j) =

{
1, if i = j,
0, if i 6= j,

for any i and j in I(Ωv, Xv). The map

fv −→ f00
v = fv −

∑

i

Ji(fv)f
i
v

is then a projection from H(Ωv, Xv) onto H(Ωv, Xv)
00.
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Consider the distribution on the left hand side of (4.1). It has an expansion

IEν,disc(f) − Iν,disc(f) =
∑

π∈ΠE

ν,disc
(G,V,ζ)

(
aG,E
disc(π) − aG

disc(π)
)
fG(π),

for any function f ∈ H(GV , ζV ). We take f = fvfv, and then consider the distribution as

a linear form in fv. As such, it has a further expansion associated to the basis T (Gv, ζv).

To see this explicitly, we write

fv,G(πv) =
∑

τv∈T (Gv,ζv)

δ(πv, τv)fv,G(τv),

for coefficients δ(πv, τv) attached to any representation πv ∈ Π(Gv, ζv). We assume that

fv belongs to the subspace H(GXv
v , ζv) of H(Gv, ζv). Following our general conventions,

we write a∗Gv,Zv
for the annihilator in a∗Gv

of the subspace aZv
⊂ aGv

. Then fv has an

equivariance property

fv,G(τv,λv
) = eλv(Xv)fv,G(τv), λv ∈ ia∗Gv,Zv

,

with respect to the action of ia∗Gv,Zv
on T (Gv, ζv). Let T (Gv, ζv) denote the space of orbits

of ia∗Gv,Zv
in T (Gv, ζv). The expansion becomes

(5.1) IEν,disc(f) − Iν,disc(f) =
∑

τv∈T (Gv,ζv)

α(τv)fv,G(τv),

where the coefficient

α(τv) = αν,disc(f
v, τv)

equals
∑

π

((
aG,E
disc(π) − aG

disc(π)
)
fv

G(πv)
∑

λv∈ia∗

Gv,Zv

δ(πv, τv,λv
)eλv(Xv)

)
.

Since

α(τv,λv
) = e−λv(Xv)α(τv),

the summand in (5.1) does indeed depend only on the image of τv in T (Gv, ζv). Observe

also that while the last sum is over representations π ∈ ΠE
ν,disc(G, V, ζ) for the subset GZ

V
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of GV , the factors in a given summand depend on a choice of a representative πv ⊗ πv of

π in Πunit(GV , ζV ). However, the product of these factors depends only on π. Finally, we

note that for fixed fv, the sum over τv in (5.1) can be taken over a finite set that depends

only on the support of fv,G (as a function on T (Gv, ζv)).

Suppose that fv is as in (a), and that fv belongs to H(Ωv, Xv). We shall write Ωv

and Ωv,C for the spaces of orbits of ia∗Gv,Zv
in Ωv and Ωv,C respectively. By assumption,

the linear form
∑

ω∈Ωv,C

α(ω)fv,G(ω)

on the right hand side of (5.1) vanishes if fv lies in the subspace H(Ωv, Xv)
00 of H(Ωv, Xv).

Therefore
∑

ω∈Ωv,C

α(ω)f00
v,G(ω) = 0.

It follows from the definition of f 00
v that

∑

ω∈Ωv,C

α(ω)fv,G(ω) =
∑

i∈I(Ωv,Xv)

aiJi(fv),

where

ai =
∑

ω∈Ωv,C

α(ω)f i
v,G(ω).

The function α(ω) on the left hand side of this identity is supported on finitely many

elements in Ωv,C. To deal with the right hand side, we recall that the Fourier transform of

any p-adic orbital integral, as a distribution on Ttemp(Gv, ζv), is a smooth function. This

is a special case of [A6, Theorem 4.1]. (See Remark 4(c) on p. 185 of [A6], as well as

Corollary 9.1 of that paper.) Therefore

Ji(fv) =

∫

Ωv

Ai(ω)fv,G(ω)dω, fv ∈ H(Ωv, Xv),

where each Ai(ω) is a smooth function on Ωv such that

Ai(ωλv
) = e−λv(Xv)Ai(ω), λv ∈ ia∗Gv,Zv

.
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Setting

A(ω) =
∑

i

aiAi(ω),

we conclude that

(5.2)
∑

ω∈Ωv,C

α(ω)fv,G(ω) =

∫

Ωv

A(ω)fv,G(ω)dω, fv ∈ H(Ωv, Xv).

We shall complete the proof of (a) by showing that the discrete distribution on the left

hand side of (5.2) can be compatible with the continuous distribution on the right hand

side only if both sides equal zero. This is a p-adic variant of the comparison we applied to

archimedean multipliers in the last section. The arguments are essentially those of [AC,

p. 191] and [A7, p. 567].

By assumption, the component Ωv is parabolic. It is therefore induced from an elliptic

component

ΩLv
⊂ Ttemp,ell(Lv, ζv)

attached to a proper Levi subgroup Lv of Gv over Fv. We can then identify Ωv with the set

of orbits ΩLv
/W (ΩLv

), where W (ΩLv
) is the stabilizer of ΩLv

in the Weyl group W (Lv)

of (Gv, ALv
). Now the real vector space ia∗Lv,Zv

acts transitively on the elliptic component

ΩLv
. Let iΛ∗

v be the stabilizer in ia∗Lv,Zv
of any point ω0 in ΩLv

. Then iΛ∗
v is a lattice in

ia∗Lv,Zv
. For any choice of base point ω0, we can identify ΩLv

with the compact torus

ia∗v = ia∗Lv,Zv
/iΛ∗

v.

The smoothness condition for the function A(ω) in (5.2) pertains of course to the co-

ordinates defined by the torus, and as we noted earlier, the measure dω is induced from a

Haar measure on the torus.

It is a simple consequence of the trace Paley-Wiener theorem [BDK] that the image

of H(Ωv, Xv) under the map

fv −→ fv,G(ω), ω ∈ Ωv,
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is the ia∗Gv,Zv
-equivariant Paley-Wiener space on Ωv. In other words, the image can be

identified with the space of W (ΩLv
)-invariant functions φv on ΩLv

, which coincide with

finite Fourier series on the torus ia∗v, and which satisfy the condition

φv(ωλv
) = φv(ω)eλv(Xv), ω ∈ ΩLv

, λv ∈ ia∗Gv,Zv
.

We can obviously identify each side of (5.2) with a linear form in φv. We obtain

(5.3)
∑

ω∈ΩLv,C

|W (ΩLv
, ω)||W (ΩLv

)|−1α(ω)φv(ω) =

∫

ΩLv

|W (ΩLv
)|−1A(ω)φv(ω)dω,

where ΩLv,C and ΩLv
are the quotients of ΩLv,C and ΩLv

by ia∗Gv,Zv
, and W (ΩLv

, ω) is

the stabilizer of ω in W (ΩLv
). This identity holds for any function φv that lies in the

ia∗Gv,Zv
-equivariant Paley-Wiener space on ΩLv

, and is symmetric under W (ΩLv
). But

as equivariant functions on ΩLv,C and ΩLv
respectively, both α(ω) and A(ω) are also

symmetric under W (ΩLv
). It follows that (5.3) actually holds for any φv in the full

equivariant Paley-Wiener space on ΩLv
.

To exploit (5.3), we identify ΩLv
with ia∗v by choosing a base point ω0. Then φv

ranges over the space of finite, ia∗Gv,Zv
-equivariant Fourier series on the torus ia∗v. We

shall consider the Fourier transform of each side of (5.3) as a distribution on the dual

group

Λv = Hom(Λ∗
v,Z).

Let ΛXv
v ⊂ Λv be the preimage of Xv under the canonical map from Λv to aGv

/aZ,v. Then

ΛXv
v is an affine sublattice of Λv, on which the kernel Λ0

v of the map acts simply transitively.

The image of the space of test functions φv under Fourier transform is the space of functions

of finite support on ΛXv
v . The Fourier transform of the distribution α(ω) on the left hand

side of (5.3) is a finite linear combination of (nonunitary) exponential functions on ΛXv
v

(relative to the action of Λ0
v). The Fourier transform of the distribution A(ω) on the right

hand side of (5.3) is a rapidly decreasing function on ΛXv
v . The resulting two distributions
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on ΛXv
v are incompatible. They can be equal only if they are both simultaneously equal

to zero. It follows that the left hand side of (5.3) vanishes, and hence, that the left hand

side of (5.2) also vanishes.

We have established that

∑

ω∈Ωv,C

α(ω)fv,G(ω) = 0, fv ∈ H(Ωv, Xv),

It follows from (5.1) that

IEν,disc(f) − Iν,disc(f) =
∑

τ∈T (Gv,ζv)

α(τv)fv,G(τv) = 0,

for any function f = fvfv with fv ∈ H(Ωv, Xv). The same formula therefore holds for any

such function with fv ∈ H(Ωv). This completes the proof of part (a) of Lemma 4.1.

We need only add a few remarks in the case of part (b), since the proof is essentially

the same. In this case, G is quasisplit, and Ωv is a parabolic connected component in

ΦE
temp(Gv, ζv). Here, we take I(Ωv, Xv) to be a maximal set of pairs

i = (zv, βv), zv ∈ Z(Gv), βv ∈ ∆E
unip(Gv, ζv),

such that the endoscopic orbital integrals

Ji(fv) = fE
v,G(zvβv), fv ∈ H(Ωv, ζv),

on H(Ωv, Xv) are linearly independent. We then define a projection

fv −→ f00
v = fv −

∑

i

Ji(fv)f
i
v,

from H(Ωv, Xv) onto H(Ωv, Xv)
00, as in (a).

The distribution on the left hand side of (4.2) has an expansion

SG
ν,disc(f) =

∑

φ∈ΦE

ν,disc
(G,V,ζ)

bGdisc(φ)fE
G(φ).
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Assume that f = fvfv, where fv belongs to H(GXv
v , ζv). We can then consider the distri-

bution as a linear form in fv. We see that

(5.4) SG
ν,disc(f) =

∑

φv∈Φ
E
(Gv,ζv)

β(φv)fE
v,G(φv),

where the set Φ
E
(Gv, ζv) = ΦE(GZv

v , ζv) equals the space of orbits of ia∗Gv,Zv
in ΦE(Gv, ζv),

and the coefficient

β(φv) = βν,disc(f
v, φv)

is defined as a double sum
∑

φ

∑

λv

bGdisc(φ)fv,E
G (φv)

over elements φ ∈ ΦE
ν,disc(G, V, ζ) and λv ∈ ia∗Gv,Zv

such that φ has a representative

φv ⊗ φv,λv
in Φ(Gv, ζv). Suppose that fv is as in (b), and that fv belongs to H(Ωv, ζv).

Combining (5.4) with the projection fv → f00
v , we obtain an identity

∑

ω∈Ωv,C

β(ω)fE
v,G(ω) =

∑

i∈I(Ωv,Xv)

biJi(fv),

where

bi =
∑

ω∈Ωv,C

β(ω)(f i
v,G)E(ω).

Since the endoscopic orbital integrals Ji(fv) are finite linear combinations of invariant

orbital integrals, their Fourier transforms are also given by smooth functions. Therefore

Ji(fv) =

∫

Ωv

Bi(ω)fE
v,G(ω)dω, fv ∈ H(Ωv, Xv),

where each Bi(ω) is a smooth function on Ωv such that

Bi(ωλv
) = e−λv(Xv)Bi(ω).

It follows that

(5.5)
∑

ω∈Ωv,C

β(ω)fE
v,G(ω) =

∫

Ωv

β(ω)fE
v,G(ω)dω, fv ∈ H(Ωv, Xv),
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where

B(ω) =
∑

i

βiBi(ω).

The rest of the proof of (b) is the same as that of (a). We identify Ωv with a set of

orbits ΩLv
/W (ΩLv

), for an elliptic component

ΩLv
⊂ ΦE

temp,ell(Lv, ζv)

attached to a proper Levi subgroup Lv ⊂ Gv. For any base point ω0 ∈ ΩLv
, we identify

ΩLv
in turn with a compact torus

ia∗v = ia∗Lv,Zv
/iΛ∗

v.

The proof of (b) is then established by transforming (5.5) into an identity between distri-

butions on a corresponding affine lattice ΛXv
v . �

Corollary 5.2(a). (a) The identity (4.1) of Proposition 4.2(a) holds for any function f

in HM (GV , ζV ).

(b) If G is quasisplit, the identity (4.2) of Proposition 4.2(b) holds for any function f in

Huns
M (Gv, ζv).

Proof. Proposition 4.2(a) applies to any function in HM (GV , ζV )00. We have to show

that it remains valid for functions in the larger space HM (GV , ζV ). Now HM (GV , ζV )00 is

spanned by functions f =
∏

v∈V

fv that satisfy the following conditions.

(i) For each place v ∈ Vfin(G,M), fv belongs to H(Gv, ζv)
0.

(ii) At some place v ∈ Vfin, fv belongs to H(Gv, ζv)
00.

(iii) At two places v ∈ V , fv is M -cuspidal.

The larger space HM (GV , ζV ) is spanned by functions f = Πfv that satisfy only condition

(iii). Notice that if fv is M -cuspidal, the restriction of the function fv,G to any connected

component of Ttemp(Gv, ζv) is also M -cuspidal. We can therefore span HM (GV , ζV ) by

functions that satisfy (iii), and the following support condition.
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(sa) For each place v ∈ Vfin, there is a connected component Ωv of Ttemp(Gv, ζv) such that

fv belongs to H(Ωv).

We consider a function f =
∏
v
fv that satisfies (iii) and (sa), for fixed components

Ωv in the sets Ttemp(Gv, ζv). To establish part (a) of the corollary, it is enough to show

that any such f satisfies the identity (4.1). We are free to enlarge the set V if we choose.

In particular, the left hand side of (4.1) remains unchanged if V is replaced by a larger

set V1 = V ∪ {v1}, and f is replaced by a function f1 = fuv1
. The local component uv1

here stands for the unit in an unramified Hecke algebra at v1. It lies in H(Ωv1
, ζv1

), where

ζv1
is an unramified character on Zv1

, and Ωv1
is the parabolic component of unramified

representations in Ttemp(Gv1
, ζv1

). We may therefore assume that the set

Vpar = Vpar(f) =
{
v ∈ Vfin : Ωv is parabolic

}

is nonempty.

Suppose that f satisfies the extra constraint that fv belongs to H(Gv, ζv)
00, for each

v ∈ Vpar. Then f satisfies the condition (ii). If v lies in the complement of Vpar in Vfin, Ωv

is elliptic, and H(Gv, ζv) equals H(Ωv, ζv)
0 by definition. Therefore f satisfies condition

(i) as well as (ii) and (iii). In other words, f belongs to HM (GV , ζV )00, and consequently

satisfies the identity (4.1). To remove the extra constraints, we apply Lemma 5.1(a) to

each of the places v ∈ Vpar. We thereby deduce that the identity remains in force without

the requirement that fv lie in H(Ωv, ζv)
00. This establishes that (4.1) holds for any f that

satisfies (iii) and (sa), which in turn yields the required assertion of part (a).

The same argument applies to part (b), except that Huns
M (GV , ζV )00 and Huns

M (GV , ζV )

play the roles of HM (GV , ζV )00 and HM (GV , ζV ). The space Huns
M (GV , ζV )00 is spanned by

functions f =
∏

v∈V

fv that satisfy conditions (i)–(iii), and also the following supplementary

condition.

(iv) At some place v ∈ V , fG
v = 0.

The larger space Huns
M (Gv, ζv) is spanned by functions f = Πfv that satisfy only conditions
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(iii) and (iv). Observe that if fv is either M -cuspidal or unstable, the restriction of the

function fE
v,G to any connected component of ΦE

temp(Gv, ζv) has the same property. We can

therefore span Huns
M (GV , ζV ) by functions that satisfy (iii), (iv), and the following support

condition.

(sb) For each place v ∈ Vfin, there is a connected component Ωv of ΦE
temp(Gv, ζv) such that

fv belongs to H(Ωv, ζv).

We can then derive the assertion of part (b) as above. �

73



§6. Local trace formulas

Our concern has been the global trace formula, and the stabilization of its various

terms. However, there will come a point in the next section when we have to apply the

local trace formula. In the present section, we shall lay the groundwork for this. In

particular, we shall take up the study begun in [A10, §9] of how to stabilize the local trace

formula.

For the next three sections, F will be a local field. We take G to be a reductive

K-group over F , which for the moment is arbitrary. In this context, Z stands for a central

induced torus in G over F , and ζ is a character on Z(F ). Before we discuss stabilization,

we have first to reformulate the invariant local trace formula of [A5] so that it is compatible

with the canonically normalized weighted characters of [A8]. As might be expected from

the global constructions in [I, §2–3], the result will be a little simpler than the formula of

[A5, §4] that depends on a noncanonical choice of normalizing factors.

We temporarily adopt notation from [A10, §8–9], in which V = {v1, v2} is reduced to

the role of an index set of order two. Then FV = F × F , GV = G(FV ) = G(F ) × G(F ),

and ζV = ζ × ζ−1, while

f = f1 × f2, fi ∈ C(G, ζ) = C
(
G(F ), ζ

)
,

is a function in the Schwartz space C(GV , ζV ). The geometric side of the local trace formula

will be the linear form

(6.1) I(f) =
∑

M∈L

|WM
0 ||WG

0 |−1(−1)dim(AM /AG)

∫

ΓG-reg,ell(M,V,ζ)

IM (γ, f)dγ,

defined [A10, (9.2)] in terms of the invariant distributions IM (γ, f) in [A10, §4]. We have

written ΓG-reg,ell(M,V, ζ) for the subset of strongly G-regular, elliptic elements in the basis

Γ(M, ζ) = Γ
(
M(F ), ζ

)
, identified with its diagonal image

{
(γ, γ) : γ ∈ ΓG-reg,ell(M, ζ)

}
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in Γ(MV , ζV ). (The set ΓG-reg,ell(M,V, ζ) is bijective with the family ΓG-reg,ell(M) of

strongly G-regular, elliptic conjugacy classes in M(F ) = M(F )/Z(F ) used to state [A10,

(9.2)].) The spectral side will be a distribution

(6.2) Idisc(f) =

∫

Tdisc(G,V,ζ)

iG(τ)fG(τ)dτ

that is essentially discrete. Here we are following notation of [A5, §3] (with obvious mod-

ifications for the character ζ). We have written Tdisc(G, V, ζ) for the diagonal image

{
(τ, τ∨) : τ ∈ Tdisc(G, ζ)

}

in Ttemp(GV , ζV ) of the subset Tdisc(G, ζ) of Ttemp(G, ζ) = Ttemp

(
G(F ), ζ

)
defined as on

p. 96 of [A5]. As on the geometric side, we do not generally distinguish between the

element τ attached to G(F ) and the corresponding pair (τ, τ∨) associated to GV . Thus,

iG(τ) is the function [A5, (3.2)] on Tdisc(G, ζ), and dτ is a measure on Tdisc(G, ζ) defined

as in [A5, (3.5)] (with ia∗G,Z playing the role of ia∗G), while

fG(τ) = (f1)G(τ)(f2)G(τ∨) = f1,G(τ)f2,G(τ).

Proposition 6.1. I(f) = Idisc(f).

Proof. We can afford to be brief, since the proof is similar to that of [A5, Theorem

4.2]. The discussion of [A5, §4] applies only to a function in the Hecke space, but it extends

easily to the Schwartz space by the arguments of [A6, §5]. We note in passing that while

the formula of [A5, §4] is close to the assertion of this proposition, the invariant local trace

formula established in the paper [A6, §5] is of a rather different nature. The latter was

designed to prove the qualitative theorems in [A6, §4] for distributions on G(F ), rather

than for the comparison of distributions on different groups.

The starting point is the noninvariant trace formula, which consists of two different

expansions of a noninvariant linear form J(f). As formulated in [A5, Proposition 4.1], the
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expansions are

(6.3) J(f) =
∑

M∈L

|WM
0 ||WG

0 |−1(−1)dim(AM /AG)

∫

ΓG-reg,ell(M,V,ζ)

JM (γ, f)dγ

and

(6.4) J(f) =
∑

M∈L

|WM
0 ||WG

0 |−1(−1)dim(AM /AG)

∫

Tdisc(M,V,ζ)

iM (τ)JM (τ, f)dτ.

The point here is that the distribution JM (τ, f), defined for example as in [A5, §4], actually

equals a canonically normalized weighted character. To put it another way,

JM (τ, f) = φM (τ, f) = φM (f1 × f2, τ × τ∨),

where

φM : C(GV , ζV ) −→ I(MV , ζV )

is the mapping of [A8, §3] and [A10, §4]. This property is not hard to establish from

the definitions just cited. Since we have already proved the analogous global property

in [I, §3], we shall leave the details to the reader. (The property is closely related to

the analyticity assertions of [A4, Lemma 12.1] and [A8, Proposition 2.3]. Unnormalized

weighted characters are generally only meromorphic.)

Following the usual recipe, we define invariant linear forms

IL : C(LV , ζV ) −→ C, L ∈ L,

inductively by setting

J(f) =
∑

L∈L

|WL
0 ||WG

0 |−1(−1)dim(AL/AG)ÎL
(
φL(f)

)
.

It follows by induction from (6.3) and the definition

JM (γ, f) =
∑

L∈L(M)

ÎL
M

(
γ, φL(f)

)
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that IG(f) is equal to the expansion (6.1) for I(f). On the other hand, if we define

invariant linear forms

IL
M (τ) : C(LV , ζV ) −→ C, L ∈ L,

inductively by setting

JM (τ, f) =
∑

L∈L(M)

ÎL
M

(
τ, φL(f)

)
,

then

IG
M (τ, f) =

{
fG(τ), if M = G,
0, if M 6= G.

It follows by induction from (6.4) that IG(f) is also equal to the expansion (6.2) for Idisc(f).

We have shown that I(f) equals Idisc(f), as required. �

The proposition asserts that the expansions on the right hand sides of (6.1) and (6.2)

are equal. This is the invariant local trace formula we were seeking. It differs from the

earlier formula in [A5, Theorem 4.2] as follows. On the geometric side, the invariant

distributions IM (γ, f) in (6.1) are defined in terms of the weighted characters of [A8],

while their counterparts in [A5, (4.10)] use the weighted characters on p. 101 of [A5]. On

the spectral side, the distribution Idisc(f) in (6.2) is essentially discrete in the variable τ ,

while its counterpart [A5, (4.11)] contains continuous terms that arise from normalizing

factors for intertwining operators.

We turn now to the question of stabilizing the terms in (6.1) and (6.2). Suppose that

G′ is an endoscopic datum for G. Following the convention in [A10, §9], we shall identify

G′ with the diagonal endoscopic datum

G′
V = G′ ×G′

for GV = G×G. We recall that if G′ represents the datum (G′,G′, s′, ξ′), then G′ represents

the adjoint datum
(
G′,G′, (s′)−1, ξ′

)
. Recall that the Langlands-Shelstad transfer factor

attached to (G,G′) depends on a choice of auxiliary data G̃′ → G′ and ξ̃′: G′ → LG̃′ for

77



G′. We would like to choose compatible auxiliary data for G′. Since G′ equals G′ as a

quasisplit group, we can set G̃′ = G̃′. The choice of L-embedding

ξ̃′ : G′ = G′ −→ LG̃′ = LG̃′

is then dictated by the following lemma, which was suggested to me by Kottwitz.

Lemma 6.2. Given ξ̃′, we can choose ξ̃′ so that the relative transfer factor for (G,G′) is

the inverse of the relative transfer factor for (G,G′).

Proof. This is Lemma 8.1 of [A10], which was stated essentially without proof.

However, there is one point that ought to be verified in detail. In fact, the description of ξ̃′

given on p. 258 of [A10] is not correct, since the map ξ̃′ defined there is not an embedding

of the required type. (Its restriction to the subgroup Ĝ′ = Ĝ′ is not the identity embedding

of this group into
̂̃
G′ =

̂̃
G′.) We need to see how the choice of ξ̃′ is forced on us by the

transfer factor for (G,G′).

We may assume that the group G̃′ = G̃′ equals G′ [LS, (4.4)]. Then ξ̃′ is simply

an L-isomorphism, which we use to identify G ′ with LG′. We can then treat ξ′ as an L-

embedding of LG′ into LG. With this assumption, the relative transfer factor for (G,G′) is

defined as a product of four terms [LS, (3.2)–(3.5)]. The relative transfer factor for (G,G′)

is defined by a similar product, except that the element s′ in the factors ∆I and ∆1 [LS,

(3.2), (3.4)] has to be replaced by its inverse (s′)−1. If {χα} are the χ-data for G′ on which

the other two factors ∆II and ∆2 [LS, (3.3), (3.5)] depend, we are free to take {χ−1
α } to

be the χ-data for G′. It is then clear from the definitions [LS, (3.2)–(3.4)] that the three

factors ∆1, ∆II and ∆1 for G′ are all inverses of the corresponding factors ∆I, ∆II and ∆1

for G′. The remaining factor

∆2 = ∆2(δ
′, γ), δ′ ∈ ∆G-reg(G

′), γ ∈ Γreg(G),

for G′ is absolute, in the sense that it can be defined without reference to a base point.

It is also the only factor that depends on the choice of ξ̃′. We are now treating ξ̃′ as an
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L-automorphism of LG′. The choice of ξ̃′ is therefore equivalent to that of an L-embedding

ξ′ = ξ′ ◦ (ξ̃′)−1 : LG′ −→ LG,

which coincides with ξ′ on Ĝ′. We can assume that the restriction of ξ̃′ to the Weil group

WF of F preserves a Γ-splitting of Ĝ′. Then ξ′ is of the form

ξ′(g′ × w) = z′(w)ξ′(g′ × w), g′ ∈ Ĝ′, w ∈WF ,

where z′ is a 1-cocycle from WF to the center Z(Ĝ′) of Ĝ′. We have to show that z′ can

be chosen so that ∆2(δ
′, γ) equals the inverse of the corresponding factor ∆2(δ

′, γ) for G′.

This is the point that is not immediately obvious from the definitions.

The assertion is not in itself hard to verify, but it does require a recapitulation of the

various objects [LS, (2.5), (2.6), (3.5)] that go into the construction of ∆2(δ
′, γ). The χ-data

are attached to the maximal torus T in G∗ (the underlying quasisplit inner form of G) that

is the image of the centralizer of (a representative of) δ′ under a fixed admissible embedding.

Their role is to provide two L-embeddings ξ′T : LT → LG′ and ξT : LT → LG. The factor

∆2 is defined in terms of these embeddings by the local Langlands correspondence on T (F ).

To conserve notation, we assume that the restrictions of ξ ′T , ξ′ and ξT to the relevant dual

groups are simply the trivial injections of embedded subgroups T̂ ⊂ Ĝ′, Ĝ′ ⊂ Ĝ and T̂ ⊂ Ĝ.

The factor is then defined by

∆2(δ
′, γ) = 〈a, δ〉,

where δ is the image of δ′ in T (F ), and a is the 1-cocycle from WF to T̂ defined by

ξ′ ◦ ξ′T = aξT .

Our task is to choose ξ′ so that the corresponding cocycle a for G′ maps to the image of

a−1 in H1(WF , T̂ ).

The value of the L-embedding ξT at an element w ∈WF is given by a product

ξT (w) = r(w)n(w).
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Here r: WF → T̂ is the 1-chain defined in [LS, (2.5)] in terms of the χ-data {χα} and a

fixed gauge on the roots of (Ĝ, T̂ ), while

n(w) = n
(
ωT (σ)

)
× w

is the element in LG defined in [LS, (2.1)] in terms of a fixed ΓF -splitting

(
T̂ , B̂, {Xα : α ∈ ∆(B̂, T̂ )}

)

for (Ĝ, T̂ ). We recall that σ is the image of w in the Galois group ΓF = Gal(F/F ), while

ωT (σ) is the element in the Weyl group Ω of (Ĝ, T̂ ) defined by the action of ΓF on T , and

n
(
ωT (σ)

)
is a representative of ωT (σ) in the normalizer N̂ of T̂ in Ĝ. The value at w of

the second embedding ξ′T is given by a corresponding product

ξ′T (w) = r′(w)n′(w).

In this product, n′(ω) is defined in terms of a fixed splitting

(
T̂ , B̂′, {Xβ : β ∈ ∆(B̂′, T̂ )}

)

for (Ĝ′, T̂ ) such that B̂′ = Ĝ′ ∩ B̂ [LS, (3.1)]. The two elements n(w) and ξ′
(
n′(w)

)
in LG

have the same action by conjugation on T̂ . Their quotient

b(w) = ξ′
(
n′(w)

)
n(w)−1

therefore lies in T̂ . Since the quotient

c(w) = r′(w)r(w)−1

also lies in T̂ , we obtain a decomposition

a(w) = b(w)c(w).
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We must compare this with the corresponding decomposition for a(w). Now a(w) is defined

by replacing ξ′ with ξ′ = z′ξ′, for a 1-cocycle z′ ∈ Z1
(
WF , Z(Ĝ′)

)
to be chosen, and by

replacing the χ-data {χα} by {χ−1
α }. This has the effect of replacing b(w) by z′(w)b(w),

and c(w) by c(w)−1, as one sees easily from the construction in [LS, (2.5)]. It follows that

a(w)a(w) =
(
b(w)c(w)

)(
z′(w)b(w)c(w)−1

)
= z′(w)b(w)2.

It would be enough to show that the 1-cocycle b(w)2 in Z1(WF , T̂ ) maps into the image

of H1
(
WF , Z(Ĝ′)

)
in H1(WF , T̂ ). For we could then take z′(w) to be any element in

Z1
(
WF , Z(Ĝ′)

)
whose image in H1(WF , T̂ ) equals that of b(w)−2. This would in turn

yield a formula

∆2(δ
′, γ)∆2(δ

′, γ) = 〈aa, δ〉 = 〈z′b2, δ〉 = 1

that gives the desired relation between the two factors.

The map θ: w → ωT (σ)×w is a homomorphism from WF to the group LΩ = ΩoWF .

The map w → n(w) is the composition of this homomorphism with a function

ν : ω × w −→ n(ω) × w

from LΩ to the group LN = N̂ o WF , where WF acts on N̂ by means of the fixed ΓF -

splitting of (Ĝ, T̂ ). To define n(ω), Langlands and Shelstad first set

n(ωα) = n(α) = exp(Xα) exp(−X−α) exp(Xα),

for any simple root α, and for the root vectorsXα andX−α given by the splitting. Following

[Sp], they then define

n(ω) = n(α1) · · ·n(αn),

for an arbitrary element ω ∈ Ω with reduced decomposition ω = ωα1
· · ·ωαn

into simple

reflections. There are of course similar maps θ′: WF → LΩ′ and ν′: LΩ′ → LN ′ for G′.
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We therefore have a diagram

LΩ′ ν′

−→ LN ′

↗θ
′

WF

yξ′

yξ′

↘θ

LΩ
ν

−→ LN

with vertical arrows obtained from the L-embedding ξ ′: LG′ → LG. The square is not

generally commutative. However, the obstruction

β(θ′) = ξ′
(
ν′(θ′)

)
ν
(
ξ′(θ′)

)−1
, θ′ ∈ LΩ′,

does belong to T̂ . Since

b(w) = β
(
θ′(w)

)
, w ∈WF ,

it would obviously be enough to arrange things so that for any θ′ ∈ LΩ′, β(θ′)2 lies in

Z(Ĝ′).

The map ν depends on our fixed splitting
(
T̂ , B̂, {Xα}

)
for (Ĝ, T̂ ). We shall expand

the set {Xα} into a complete family of root vectors {Xβ}, where β runs over the set

Φ(Ĝ, T̂ ) of all roots of (Ĝ, T̂ ). We claim that this can be done in such a way that if

γ = θβ, β, γ ∈ Φ(Ĝ, T̂ ), θ ∈ LΩ,

then

Ad
(
ν(θ)

)
Xβ = Ad(u)Xγ,

for some element u ∈ T̂ with u2 = 1. It is clearly enough to show that the condition holds

if β = γ, and Xβ = Xγ is any associated root vector. In the special case that β = γ

is simple, the condition follows (with u = 1) from [Sp, Proposition 11.2.11]. If β = γ is

arbitrary, we choose ω ∈ Ω so that α = ωβ is simple. Then (ω−1θω)α = α, and

ν(ω−1θω)Xα = Xα.
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Since Lemma 2.1.A of [LS] implies that

ν(θ)ν(ω) = uν(ω)ν(ω−1θω),

for some element u ∈ T̂ with u2 = 1, the condition holds in this case as well. The claim

follows. Having chosen the family {Xβ}, we take

(
T̂ , B̂′, {Xβ : β ∈ ∆(B̂′, T̂ )}

)
, B̂′ = Ĝ′ ∩ B̂,

to be the splitting for (Ĝ′, T̂ ). To ensure that this is a ΓF -splitting, we might have to

replace ξ′ by an L-embedding whose restriction to WF differs from that of ξ′ by some

T̂ -conjugate. Such a change serves only to multiply a by a 1-coboundary from WF to T̂ ,

and therefore has no effect on the image of a in H1(WF , T̂ ).

We can now complete the argument. Suppose that θ′ is an element in LΩ′. Then

β(θ′)ν(θ) = ξ′(n′),

where θ = ξ′(θ′) and n′ = ν′(θ′). Assume first that θ′ belongs to the subgroup WF of LΩ′.

Let γ be a simple root of (Ĝ′, T̂ ), and set β = θ−1γ. Then Ad
(
ξ′(n′)

)
Xβ equals Xγ , since

n′ preserves the splitting for (Ĝ′, T̂ ) and ξ′ is a homomorphism. Therefore

Xγ = Ad
(
ξ′(n′)

)
Xβ = Ad

(
β(θ′)

)
Ad

(
ν(θ)

)
Xβ = Ad

(
β(θ′)u

)
Xγ,

for an element u ∈ T̂ with u2 = 1. It follows that γ
(
β(θ′)2

)
equals 1 for any simple root

γ of (Ĝ′, T̂ ). We conclude that β(θ′)2 belongs to Z(Ĝ′), as required. Assume now that θ′

belongs to the subgroup Ω′ of LΩ′. Then ξ′(n′) = n′ = n′(θ′), and ν(θ) = ν(θ′) = n(θ′),

since ξ′ restricts to the trivial embedding of Ĝ′. Consider the special case that θ′ = ωβ,

for a simple root β of (Ĝ′, T̂ ). In this case, we choose ω ∈ Ω so that α = ωβ is a simple

root for (Ĝ, T̂ ). It then follows from [LS, Lemma 2.1.A] and the definitions above that

n′(θ′) = n(β) = exp(Xβ) exp(−X−β) exp(Xβ)

= Int(u)Int
(
n(ω)

)−1(
exp(Xα) exp(−X−α) exp Xα

)

= Int(u)
(
n(ω)−1n(α)n(ω)

)

= Int(u)Int(u′)n(ω−1ωαω) = (uu′)ω(uu′)−1n(θ),
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for elements u, u′ ∈ T̂ of square 1. Therefore β(θ′) equals the product uu′ω(uu′)−1, an

element whose square is also equal to 1. Finally, if θ′ is an arbitrary element in Ω′, we write

θ′ as a product ωβ1
· · ·ωβn

of simple reflections in Ω′. It then follows from [LS, Lemma

2.1.A], and what we have just proved, that

n′(θ′) = n′(ωβ1
) · · ·n′(ωβn

)

= u1n(ωβ1
)u2n(ωβ2

) · · ·unn(ωβn
)

= un(ωβ1
) · · ·n(ωβn

) = uu′n(θ),

where u1, . . . , un, u and u′ are all elements in T̂ of square 1. Therefore β(θ′) equals uu′,

an element whose square is again equal to 1. We have now only to recall that LΩ′ is

a semidirect product of the two subgroups Ω′ and WF . We conclude that β(θ′)2 lies in

Z(Ĝ′) for any element θ′ in LΩ′. This is what we set out to prove. As explained above,

the embedding

ξ′(w) = β
(
θ′(w)

)−2
ξ′(w), w ∈WF ,

provides a factor ∆2(δ
′, γ) that is the inverse of ∆2(δ

′, γ). �

We return to the setting of Proposition 6.1, in which f ∈ C(GV , ζV ) is a function of

the form f1 × f2. Lemma 6.2 applies directly to the transfer

f −→ f ′ = fG′

V = fG′

1 × f
G′

2

of f to an endoscopic group G′
V = G′×G′. According to the discussion on p. 269 of [A10],

which is based on the assertion of Lemma 6.2, f ′ is equal to the product

f ′
1 × f ′

2 = fG′

1 × fG′

2 .

In particular, f ′ is a function in SI(G̃′
V , ζ̃

′
V ), where ζ̃ ′V = ζ̃ ′ × (ζ̃ ′)−1. The transfer

mappings were used in [A10, §9] to construct supplementary linear forms IE(f) and SG(f)

from I(f). They are defined by the familiar formula

IE(f) =
∑

G′∈E0
ell

(G)

ι(G,G′)Ŝ′(f ′) + ε(G)SG(f),
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in which the linear forms Ŝ′ = ŜG̃′

on SI(G̃′
V , ζ̃

′
V ) are determined inductively by the

further requirement that IE(f) = I(f) in case G is quasisplit. We recall that

ι(G,G′) = |OutG′(G)|−1|Z(Ĝ′)Γ/Z(ĜΓ)|−1,

and that ε(G) equals 1 or 0, according to whether or not G is quasisplit. One of the main

results of [A10] was Theorem 9.1. This theorem provides geometric expansions

(6.5) IE(f) =
∑

M∈L

|WM
0 ||WG

0 |−1(−1)dim(AM /AG)

∫

ΓG-reg,ell(M,V,ζ)

IEM (γ, f)dγ

and

SG(f) =
∑

M∈L

|WM
0 ||WG

0 |−1(−1)dim(AM /AG)
∑

M ′∈Eell(M)

ι(M,M ′)(6.6)

∫

∆G-reg,ell(M̃
′,V,ζ̃′)

n(δ′)−1SG
M (M ′, δ′, f)dδ′,

in case that G is quasisplit, that are reminiscent of the global geometric expansions of [I,

Proposition 10.1].

In [A10, §10], we also stabilized a special case of the spectral side, in which the function

f1 was cuspidal. (The results were used in the cancellation of p-adic singularities in §3.)

The formal aspects of the process work in general, being no different from the construction

above. For any function f = f1 × f2, we set

IEdisc(f) =
∑

G′∈E0
ell

(G)

ι(G,G′)Ŝ′
disc(f

′) + ε(G)SG
disc(f),

for linear forms Ŝ′
disc = ŜG̃′

disc on SI(G̃′
V , ζ̃

′
V ) that are defined inductively by the condition

that IEdisc(f) = Idisc(f) in case G is quasisplit. The linear form SG
disc is defined as usual

only when G is quasisplit. It follows inductively from Proposition 6.1 and the two sets of

definitions that

(6.7) IE(f) = IEdisc(f)
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in general, and that

(6.8) SG(f) = SG
disc(f),

in case G is quasisplit.

The linear forms IEdisc(f) and SG
disc(f) have expansions that are parallel to (6.2). To

state them, we have first to define the relevant coefficients by local analogues of the global

definitions [I, (7.7), (7.8)]. If τ belongs to Ttemp(GV , ζV ), we set

(6.9) iG,E(τ) =
∑

G′

∑

φ′

ι(G,G′)sG̃′

(φ′)∆G(φ′, τ) + ε(G)
∑

φ

sG(φ)∆G(φ, τ),

with G′, φ′ and φ summed over the sets E0
ell(G), Φtemp(G̃′

V , ζ̃
′
V ) and ΦE

temp(GV , ζV ), re-

spectively, and with coefficients sG̃′

(φ′) defined inductively by the requirement that

(6.10) iG,E(τ) = iG(τ),

in the case that G is quasisplit. It is understood that iG(τ) is defined to be 0 for any τ

in the complement of Tdisc(G, V, ζ) in Ttemp(GV , ζV ). Like the original coefficients iG(τ),

both iG,E(τ) and sG(φ) are supported on sets that are discrete modulo the diagonal action

of ia∗G,Z . Following the general prescription in [I, §7], we can define ia∗
G,Z -discrete subsets

T E
disc(G, V, ζ) ⊃ Tdisc(G, V, ζ) and ΦE

disc(G, V, ζ) of Ttemp(GV , ζV ) and ΦE
temp(GV , ζV ), re-

spectively, which contain the support of the respective coefficients iG,E(τ) and sG(φ). The

sums over φ′ and φ in (6.9) may then be restricted to the subsets

Φdisc(G̃
′, V, ζ̃′) = ΦE

disc(G̃
′, V, ζ̃′) ∩ Φtemp(G̃′

V , ζ̃
′
V )

and ΦE
disc(G, V, ζ) of Φtemp(G̃′

V , ζ̃
′
V ) and ΦE

temp(GV , ζV ) respectively. We note that the

Haar measure on ia∗G,Z determines natural measures dτ , dφ′, and dφ on the respective

spaces T E
disc(G, V, ζ), Φdisc(G̃

′, V, ζ̃′) and ΦE
disc(G, V, ζ).

Proposition 6.3. (a) If G is arbitrary,

(6.11) IEdisc(f) =

∫

TE

disc
(G,V,ζ)

iG,E(τ)fG(τ)dτ.
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(b) If G is quasisplit,

(6.12) SG
disc(f) =

∫

ΦE

disc
(G,V,ζ)

sG(φ)fE
G(φ)dφ.

Proof. The assertions of the proposition have the same form as those of Lemmas 7.2

and Lemma 7.3 of [I]. The proofs are similar. �

Corollary 6.4. (a) Assume that Local Theorem 1(a) holds for G and its Levi sub-

groups. Then

iG,E(τ) = iG(τ), τ ∈ T E
disc(G, V, ζ).

(b) Assume that G is quasisplit, and that Local Theorem 1(b) holds for G and its Levi

subgroups. Then the coefficient sG(φ) vanishes on the complement of Φdisc(G, V, ζ) in

ΦE
disc(G, V, ζ).

Proof. Consider part (a). We first combine the assertion of Local Theorem 1(a) with

the splitting formulas [A10, (4.6), (6.2)] for the product f = f1 × f2. We obtain

IEM (γ, f) = IM (γ, f), γ ∈ ΓG-reg,ell(M,V, ζ),

in the usual way. It follows from the expansions (6.1) and (6.5) that IE(f) = I(f).

Therefore

IEdisc(f) = IE(f) = I(f) = Idisc(f).

The identity between the coefficients iG,E(τ) and iG(τ) then follows from a comparison of

the expansions (6.2) and (6.11) for Idisc(f) and IEdisc(f). The proof of (b) is similar. �

Remarks. 1. Part (a) of Corollary 6.4 is equivalent to the assertion that IEdisc(f) =

Idisc(f). Part (b) is equivalent to the assertion that the distribution SG(f) is stable. This

second assertion is of course required to complete the inductive definition of IEdisc(f).

2. If F is archimedean, Corollary 6.4 could be established directly from Langlands’s

parametrization of tempered representations [L2], the character identities of Shelstad [Sh],

and local analogues of the results in [A3].
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We now return to the induction hypothesis of §1, with fixed integers dder and rder.

Since our intention is to apply the local trace formula to the proof of Local Theorem 1,

and since the archimedean case is treated in [A13], we take F to be a p-adic field. The K-

group G is then just a connected reductive group over F . We assume that (G,F ) satisfies

Assumption 5.2(2) of [I], and that dim(Gder) = dder. Given G, we fix a Levi subgroup M

with dim(AM ∩Gder) = rder. For simplicity, we shall assume that Gder is simply connected,

and that the central induced torus Z in G is trivial. If G′ is any endoscopic group for G,

we can then take the central extension G̃′ to be G′ itself.

We recall that ∆E
G-reg,ell(M) denotes the set of isomorphism classes of pairs (M ′, δ′),

where M ′ is an elliptic endoscopic datum for M , and δ′ belongs to the set ∆G-reg,ell(M
′) of

G-regular, elliptic stable conjugacy classes in M ′(F ). Then ∆E
G-reg,ell(M) can be identified

with the quotient of

{
(M ′, δ′) : M ′ ∈ Eell(M), δ′ ∈ ∆G-reg,ell(M

′)
}
,

under the action of the finite group OutM (M ′) on ∆G-reg,ell(M
′). If δ is the image in

∆E
G-reg,ell(M) of a pair (M ′, δ′), we shall write δ and δ−1 for the images of the respective

pairs (M ′, δ′) and
(
M ′, (δ′)−1

)
. We recall also that ∆G-reg,ell(M) can be identified with a

subset of ∆E
G-reg,ell(M). It will be convenient to set

∆E,0
G-reg,ell(M) =

{
∆E

G-reg,ell(M), if G is not quasisplit,

∆E
G-reg,ell(M) − ∆G-reg,ell(M), if G is quasisplit.

If G is quasisplit and δ is the image in ∆E
G-reg,ell(M) of (M ′, δ′), Lemma 3.1 of [A10]

tells us that the linear form

ε(f∗, δ) = SG
M (M ′, δ′, f∗), f∗ ∈ H(G),

depends only on δ. Local Theorem 1(b) asserts that this linear form vanishes if δ lies in

∆E,0
G-reg,ell(M). The local trace formula allows a modest step in this direction.

Lemma 6.5. Suppose that G is quasisplit, and that

(6.13) ε(f∗, δ) = ε(δ)fE
∗,M (δ), δ ∈ ∆E,0

G-reg,ell(M), f∗ ∈ H(G),
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for a smooth function ε(δ) on the complement ∆E,0
G-reg,ell(M) of ∆G-reg,ell(M). Then

(6.14) ε(δ) + ε(δ−1) = 0.

Proof. The lemma will be a simple consequence of the local trace formula, in the

form of a local analogue of Lemma 2.3(b). Let Huns
M (G, V ) be the subspace of H(G, V )

spanned by functions f = f1 × f2 such that both f1 and f2 are M -cuspidal, and such

that either fG
1 = 0 or fG

2 = 0. If f belongs to this space, the expression (6.6) simplifies.

Arguing as in the proof of Lemma 2.3(b), we see that SG(f) equals

|W (M)|−1(−1)dim(AM /AG)
∑

M ′∈Eell(M)

ι(M,M ′)

∫

∆G-reg,ell(M
′)

n(δ′)−1
(
SG

M (M ′, δ′, f1)f
M ′

2 (δ′) + SG
M (M ′, δ′, f2)f

M ′

1 (δ′)
)
dδ′.

If δ is the image of (M ′, δ′) in ∆E
G-reg,ell(M), the last integrand equals

n(δ′)−1
(
ε(f1, δ)f

E

2,M (δ) + ε(f2, δ)f
E
1,M(δ)

)
.

According to the definitions [A7, §1,3],

ι(M,M ′)n(δ′)−1 = |OutM (M ′)|−1|Z(M̂ ′)Γ/Z(M̂)Γ|−1|(T̂ ′)Γ/Z(M̂ ′)Γ
)−1

= |OutM (M ′)|−1n(δ)−1,

where T ′ = Mδ′ ,and

n(δ) = |(T̂ ′)Γ/Z(M̂)Γ|.

Setting

cM = |W (M)|−1(−1)dim(AM /AG),

and noting that OutM (M ′) acts freely on ∆G-reg,ell(M
′), we see that SG(f) equals

cM

∫

∆E

G-reg,ell
(M)

n(δ)−1
(
ε(f1, δ)f

E

2,M (δ) + ε(f2, δ)f
E
1,M (δ)

)
dδ.
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Suppose that, in addition to the conditions above, both f1 and f2 are unstable. Then

fE
1,M and f

E

2,M are both supported on the subset ∆E,0
G-reg,ell(M) of ∆E

G-reg,ell(M). Our

expression for SG(f) reduces to

(6.15) cM

∫

∆E,0

G-reg,ell
(M)

n(δ)−1
(
ε(δ) + ε(δ)

)
fE
1,M(δ)f

E

2,M (δ)dδ.

Since SG(f) equals SG
disc(f), this in turn equals the expansion

(6.16)

∫

ΦE

disc
(G,V )

sG(φ)fE
G(φ)dφ

for SG
disc(f) given by (6.12).

It is not hard to show that the equality between (6.15) and (6.16) forces each expression

to vanish. The argument is similar to that of §5, except simpler, since the linear forms in

(6.15) and (6.16) are tempered. We shall give a brief sketch. Let f2 be fixed, and consider

(6.15) and (6.16) as linear forms on the space of functions

φ1 −→ fE
1,G(φ1), φ1 ∈ ΦE

temp(G), f1 ∈ Huns
M (G).

The distribution corresponding to (6.15) can be identified with a smooth function on the

image of the space

ΦE,0
temp,ell(M) = ΦE

temp,ell(M) − Φtemp,ell(M)

in ΦE
temp(G). We note that ΦE,0

temp,ell(M) is a disjoint union of compact tori, of dimension

equal to that of AM . The distribution attached to (6.16), on the other hand, is supported on

a finite union of ia∗G-orbits in ΦE
temp(G). The two distributions are incompatible. Applying

the usual comparison argument, we see without difficulty that each distribution equals zero.

Therefore, the expressions (6.15) and (6.16) both vanish.

We have established that (6.15) vanishes for any function f = f1 × f2, with fi ∈

Huns
M (G). The Weyl group W (M) of (G,AM ) operates freely on ∆E,0

G-reg,ell(M), the domain

of integration in (6.15), and the integrand in (6.15) is invariant under this action. If α is
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any W (M)-invariant function on the Paley-Wiener space on ∆E,0
G-reg,ell(M), we can choose

f so that the function

fE
M (δ) = fE

1,M (δ)f
E

2,M (δ)

equals α(δ). It follows that the coefficients of fE
M (δ) in (6.15) vanish. In particular,

ε(δ) + ε(δ) = 0.

The last step will be to show that ε(δ) equals ε(δ−1). To this end, we consider the

opposition involution θ0 of G. By definition, θ0 is the unique automorphism of G that

preserves a given F -splitting, and maps any strongly regular element x to a conjugate of

x−1. It follows easily from the definition that θ0 commutes with any automorphism of G

that preserves the splitting. Since G is quasisplit, this implies that θ0 is defined over F .

We reserve the symbol θ for the G(F )-conjugate

θ = Int(wM ) ◦ θ0, wM ∈ G(F ),

of θ0 that maps M to itself, and restricts to the opposition involution of M . Then θ is also

an involution of G that is defined over F .

As in the discussion preceding [A10, Lemma 3.1], θ determines an involution θ′ on the

set of pairs (M ′, δ′), and an involution θ on ∆E
G-reg,ell(M). From the symmetry condition

of [A10, Lemma 3.1], we obtain

ε(θf∗, θδ) = SG
M (θ′M ′, θ′δ′, θf∗) = SG

M (M ′, δ′, f∗) = ε(f∗, δ),

for any f∗ ∈ H(G), where θf∗ = f∗ ◦ θ
−1. Since

(θf∗)
E
M (θδ) = fE

∗,M(δ),

by similar considerations, we see that

ε(δ) = ε(θδ), δ ∈ ∆E,0
G-reg,ell(M).
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Now the dual of θ restricts to the opposition involution of M̂ , which restricts in turn

to the opposition involution of M̂ ′. It follows from the definitions that θ′(M ′, δ′) equals
(
M ′, (δ′)−1

)
, and therefore that θδ = (δ)−1. We conclude that

ε(δ) = ε
(
(θδ)−1

)
= ε

(
θ(δ−1)

)
= ε(δ−1).

The formula (6.1) follows. �

For later use, we recall that elements in ∆E
G-reg,ell(M) can be represented in slightly

different form. Suppose that δ ∈ ∆E
G-reg,ell(M) is the image of a pair (M ′, δ′). Suppose

also that T ′ → T ∗ is an admissible embedding [LS, (1.3)] of the torus T ′ = M ′
δ′ into the

quasisplit inner form M∗ of M , and that δ∗ ∈ T ∗(F ) is the corresponding image of δ′.

The stable conjugacy class of δ∗ in M∗(F ) (which we can also denote by δ∗) then depends

only on δ. The endoscopic datum M ′ also gives a second piece of information. It provides

an element s′M in T̂ ′, which can be pulled back under the dual mapping T̂ ∗ → T̂ ′ to an

element κ∗ in the group

K(M∗
δ∗) = K(T ∗) = π0

(
(T̂ ∗)Γ/Z(M̂)Γ

)
, Γ = Gal(F/F ).

We have thus a correspondence

(M ′, δ′) −→ (δ∗, κ∗).

If M∗
G-reg,ell(F ) denotes the set of G-regular, elliptic elements in M ∗(F ), we write

DE
G-reg,ell(M) for the quotient of the set

{
(δ∗, κ∗) : δ∗ ∈M∗

G-reg,ell(F ), κ∗ ∈ K(M∗
δ∗)

}

defined by stable conjugacy in M∗(F ). The correspondence (M ′, δ′) → (δ∗, κ∗) then

determines a canonical bijection

δ −→ d, δ ∈ ∆E
G-reg,ell(F ),
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from ∆E
G-reg,ell(M) onto DE

G-reg,ell(M).

The bijection δ → d was part of the proof of [A7, Lemma 2.2] and [A10, Lemma 2.3].

We shall use it in §7 in conjunction with a fixed elliptic torus T ⊂ M over F . Any such

T can be mapped to a maximal torus T ∗ ⊂ M∗ over F by the inverse of an admissible

isomorphism i: T ∗ → T [K2, §9]. Since i is unique up to stable conjugacy, we can thereby

identify any stable conjugacy class in M ∗
G-reg,ell(F ) that intersects T ∗(F ) with an orbit in

TG-reg(F ) under the rational Weyl group WF (M,T ) of (M,T ). The quotient of the set

{
(t, κ) : t ∈ TG-reg(F ), κ ∈ K(T )

}

by WF (M,T ) represents in this way a subset of DE
G-reg,ell(M). If t belongs to TG-reg(F ),

let F(t) be the set of elements in ∆E
G-reg,ell(M) whose image in DE

G-reg,ell(M) can be

represented by a pair of the form (t, κ). There is then a canonical bijection

δ −→ κ(δ), δ ∈ F(t),

from F(t) onto K(T ). One observes that an element δ ∈ F(t) belongs to the subset

∆G-reg,ell(M) of ∆E
G-reg,ell(M) if and only if κ(δ) = 1. Moreover, for any such δ, δ is the

element in F(t) with κ(δ) = κ(δ)−1, and δ−1 is the element in F(t−1) with κ(δ−1) = κ(δ).
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§7. Local Theorem 1

We have reached the critical stage of our extended induction argument. We recall

that the induction hypotheses were stated formally at the end of §1, in terms of two fixed

positive integers dder and rder. In the next two sections, we shall prove Local Theorem 1.

This will take care of the part of the induction argument that depends on rder. We shall

establish Global Theorems 1 and 2 in §9, thereby completing the induction argument.

The setting will be that of the latter part of §6. Then G is a connected reductive group

over the p-adic local field F that satisfies Assumption 5.2(2) of [I], with dim(Gder) = dder.

Furthermore, M is a fixed Levi subgroup of G with dim(AM ∩ Gder) = rder. Since rder

is positive, M is proper in G. We have finished our discussion of the local trace formula.

We can therefore allow f to stand for a function on G(F ), as in the statement of Local

Theorem 1, rather than on G(F ) × G(F ) (as in the last section). Our goal is to prove

Local Theorem 1 for G.

The discussion will be simpler if we do not have to deal with central data.

Lemma 7.1. Assume that Local Theorem 1 is valid under the restriction that Gder is

simply connected and Z = 1. Then it is also valid without this restriction.

Proof. The proof is similar to that of Proposition 2.1 of [II]. It is actually simpler,

since we are working in a local context, with elements whose centralizers are connected.

We shall therefore be brief.

The first step is to reduce Local Theorem 1 to the case that Gder is simply connected.

Given G and M , let G̃ be a z-extension of G [K1, §1], and let M̃ be the preimage of M

in G̃. Then G̃ is a central extension of G by an induced torus C̃ over F such that G̃der

is simply connected, and M̃ is a Levi subgroup of G̃. The pair (G̃, M̃) then satisfies the

conditions we imposed on (G,M) above. We write Z̃ for the preimage of Z in G̃, and ζ̃

for the pullback of ζ to Z̃(F ). We have to check that if Local Theorem 1 holds for G̃, M̃ ,

Z̃, and ζ̃, then it is also valid for G, M , Z and ζ.
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Recall [K1, §1] that G(F ) ∼= G̃(F )/C̃(F ). We can therefore identify functions (or

distributions) on G(F ) with functions (or distributions) on G̃(F ) that are invariant under

translation by C̃(F ). In particular, there is a canonical isomorphism f → f̃ from H(G, ζ)

onto H(G̃, ζ̃). We can also assume that the fixed bases ΓG-reg,ell(M̃, ζ̃), ∆E
G-reg,ell(M̃, ζ̃),

etc., of ζ̃-equivariant distributions for G̃ are the images of the corresponding bases

ΓG-reg,ell(M, ζ), ∆E
G-reg,ell(M, ζ), etc., for M under the canonical maps γ → γ̃, δ → δ̃,

etc., of distributions. It follows from the definitions that

IM (γ, f) = I
M̃

(γ̃, f̃), γ ∈ ΓG-reg,ell(M, ζ), f ∈ H(G, ζ).

The endoscopic and stable analogues of these distributions satisfy similar formulas. As in

the proof of [II, Proposition 2.1], we obtain identities

IEM (γ, f) = IE
M̃

(γ̃, f̃)

and also

SG
M (M ′, δ′, f) = SG̃

M̃
(M̃ ′, δ̃′, f̃), M ′ ∈ Eell(M), δ′ ∈ ∆G-reg,ell(M̃

′, ζ̃ ′),

in the case that G is quasisplit. (The last identity is really a tautology, since we can take

δ′ = δ̃′.) It follows from these formulas that the assertions of Local Theorem 1 are valid

for G, M , Z, and ζ if they hold for G̃, M̃ , Z̃ and ζ̃.

The second step is to reduce Local Theorem 1 to the case that Z is trivial. Given G,

M , Z and ζ, we define a projection

f −→ f ζ =

∫

Z(F )

ζ(z)fzdz, f ∈ H(G),

from H(G) onto H(G, ζ), where fz(x) = f(zx) for any x ∈ G(F ). We have to compare

linear forms on H(G) at a given function f with the values of corresponding linear forms

on H(G, ζ) at f ζ .
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Suppose that γζ belongs to the fixed basis ΓG-reg,ell(M, ζ) of ζ-equivariant distributions

on M(F ) [I, §1], and that γ ∈ ΓG-reg,ell(M) is a conjugacy class that maps to γζ . We can

then compare the orbital integral on H(G, ζ) at γζ with the orbital integral on H(G) at γ.

The relation is

f ζ
G(γζ) = (γ/γζ)

−1

∫

Z(F )

fz,G(γ)ζ(z)dz, f ∈ H(G),

where (γ/γζ) is the ratio of the given invariant measure on γ with the signed measure that

comes with γζ . A similar relation holds for weighted orbital integrals, and the associated

invariant distributions. It follows directly from the definitions that

(7.1) IM (γζ , f
ζ) = (γ/γζ)

−1

∫

Z(F )

IM (γ, fz)ζ(z)dz.

If we combine this with the discussion at the end of [I, §4] and the definitions in [I, §6], we

see that

(7.2) IEM (γζ , f
ζ) = (γ/γζ)

−1

∫

Z(F )

IM (γ, fz)ζ(z)dz.

In the case that G is quasisplit, we also obtain

(7.3) SG
M (M ′, δ′ζ , f

ζ) = (δ′/δ′ζ)
−1

∫

Z(F )

SG
M (M ′, δ′, fz)ζ(z)dz,

for M ∈ Eell(M) and δ′ζ ∈ ∆G-reg,ell(M̃
′, ζ̃′), and for an element δ′ ∈ ∆G-reg,ell(M̃

′, η̃′) that

maps to δ′ζ . The ratio (δ′/δ′ζ) is defined in the obvious way [I, (1.6)]. The general assertions

of Local Theorem 1 apply to the distributions on the left hand sides of (7.1)–(7.3). The

corresponding assertions for the case that Z is trivial apply to the distributions on the right

hand sides. It follows from these formulas that Local Theorem 1 hold for arbitrary (Z, ζ)

if it is valid in the case that Z is trivial. This gives the second reduction, and completes

the proof of the lemma. �

We have reduced the proof of Local Theorem 1 for G, M , Z and ζ to the case that

Gder is simply connected and Z is trivial. We assume from now on that these conditions
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hold. In particular, the role of the general basis ΓG-reg,ell(M, ζ) can be taken simply by the

family ΓG-reg,ell(M) of strongly G-regular, elliptic conjugacy classes in M(F ). Moreover,

if M ′ belongs to Eell(M), we can replace the basis ∆G-reg,ell(M̃
′, ζ̃′) by the corresponding

family ∆G-reg,ell(M
′) of stable conjugacy classes in M ′(F ). This is because the derived

group of M is also simply connected, so there exists an admissible embedding LM ′ → LM

of L-groups [L4]. Elliptic conjugacy classes of course meet elliptic maximal tori. It will be

convenient to let T denote an arbitrary, but fixed elliptic maximal torus in M . We will

then work with those classes that have representatives in TG-reg(F ).

The proof of Local Theorem 1 will be global. We shall use all the global information

we accumulated over the first half of the paper. The local objects F , G, M and T have

been fixed. They are assumed implicitly to have been equipped with a quasisplit inner

twist

ψ : (G,M) −→ (G∗,M∗),

by which we mean an M∗-inner class of isomorphisms from (G,M) to a quasisplit pair

(G∗,M∗). We are also going to fix a suitable finite Galois extension E of F , over which

G, M and T split. Given E, we propose to choose global objects corresponding to the

components of the local datum (F,E,G,M, T, ψ). We shall denote these by the same

symbols, but augmented as in [A7, §7–9] by a dot on top. Thus, (Ḟ , Ė, Ġ, Ṁ, Ṫ , ψ̇) stands

for the following set of objects: a finite Galois extension Ḟ ⊂ Ė of number fields, a trio of

connected reductive groups

Ṫ ⊂ Ṁ ⊂ Ġ

over Ḟ that split over Ė, with Ṁ being a Levi subgroup in Ġ and Ṫ an elliptic maximal

torus in Ṁ , and a quasisplit inner twist

ψ̇ : (Ġ, Ṁ) −→ (Ġ∗, Ṁ∗).

If v is any valuation of Ḟ that lies in the set Vfin(Ġ, Ṁ), and for which Ėv is a field,

the completion (Ḟv, Ėv, Ġv, Ṁv, Ṫv, ψ̇v) is a local datum of the kind we started with. In
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particular, it makes sense to speak of an isomorphism from (F,E,G,M, T, ψ) to such a

completion. Any such isomorphism would of course map the Galois group Γ = Gal(E/F )

isomorphically onto the decomposition group Γ̇v = Gal(Ėv/Ḟv) of Γ̇ = Gal(Ė/Ḟ ).

Lemma 7.2. We can choose E and (Ḟ , Ė, Ġ, Ṁ, Ṫ , ψ̇), together with isomorphisms

(7.4) φu : (F,E,G,M, T, ψ) −→ (Ḟu, Ėu, Ġu, Ṁu, Ṫu, ψ̇u), u ∈ U,

for a finite set U of p-adic valuations {u} of Ḟ such that Ėu is a field, with the following

properties.

(i) (Ġ, Ḟ ) satisfies Assumption 5.2(1) of [I].

(ii) If G is quasisplit over F , Ġ is quasisplit over Ḟ .

(iii) For any valuation v 6∈ U , Ġv is quasisplit over Ḟv.

(iv) |U | ≥ 3.

(v) There is a place v 6∈ U such that Ėv is a field.

Proof. The lemma is a simple exercise in the approximation of local data by global

data. A less elaborate version, with some details omitted, was given in [A7, pp. 576–577].

In the discussion here, we shall make use of [I, Lemma 5.3], which asserts that the global

form (1) and the local form (2) of Assumption 5.2 of [I] both remain valid under inner

twists of the group, and under finite extensions of the ground field.

The local pair (G,F ) satisfies Assumption 5.2(2) of [I]. This implies that (G∗, F ) is

isomorphic to a completion (Ġ∗
u, Ḟu), for a quasisplit global pair (Ġ∗, Ḟ ) that satisfies

Assumption 5.2(1). Let Ė be a finite Galois extension of Ḟ such that Ġ∗ splits over Ė, and

such that T splits over the completion of Ė defined by the valuation u of Ḟ . Replacing

Ḟ by the fixed field of a decomposition group in Gal(Ė/Ḟ ) over u, we can assume that

E = Ėu is a field. Then E is a finite Galois extension of F over which G∗ and T split.

Moreover, the associated Galois groups satisfy

Gal(E/F ) ∼= Gal(Ėu/Ḟu) ∼= Gal(Ė/F ).
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It follows easily that there is a Levi subgroup Ṁ∗ of Ġ∗ over Ḟ , and an isomorphism

φ∗u : (F,E,G∗,M∗) −→ (Ḟu, Ėu, Ġ
∗
u, Ṁ

∗
u).

The local field E ⊃ F will be the required extension. However, we shall still have to modify

the global fields Ė ⊃ Ḟ in order to accommodate the extra conditions.

Since M∗ is quasisplit over F , the torus T ⊂ M transfers to M ∗. More precisely, we

can find a maximal torus T ∗ ⊂ M∗ over F , together with an isomorphism i: T ∗ → T over

F that is admissible in the sense of [K3, §9], which is to say that i is M -conjugate to the

restriction of ψ−1 to T ∗. Let Ṁ∗
u(T ) be the set of elements in Ṁ∗

u = Ṁ∗(Ḟu) that are

Ṁ∗
u-conjugate to φ∗u

(
T ∗(F )

)
. The set of strongly G-regular points in Ṁ∗

u(T ) is open in

Ṁ∗
u , and intersects any open neighbourhood of 1 in Ṁ∗

u in a nonempty open set. Since

the closure of Ṁ∗(Ḟ ) in Ṁ∗
u contains an open neighbourhood of 1 [KR, Lemma 1(a)],

Ṁ∗(Ḟ ) intersects the set of strongly G-regular points in Ṁ∗
u(T ). Let Ṫ ∗ be the centralizer

in Ṁ∗ of any point in this intersection. Then Ṫ ∗ is a maximal torus in Ṁ∗ over Ḟ that

is Ṁ∗
u-conjugate to φ∗u(T ∗). Replacing φ∗u with an M∗

u -conjugate, we can assume that φ∗
u

takes T ∗ to Ṫ ∗.

The torus Ṫ ∗ need not split over Ė. However, it does split over the completion Ėu.

We can therefore find a finite Galois extension Ė′ of Ḟ over which Ṫ splits, and which

embeds in Ėu. Replacing Ė′ by the composite Ė′Ė, if necessary, we can also assume that

Ė′ contains Ė. If u′ is the valuation in Ė′, obtained from an embedding of Ė′ into Ėu,

the decomposition group for Ė′/Ḟ at u′ is a subgroup of Gal(Ė′/Ḟ ) that is isomorphic to

Gal(E/F ). Let Ḟ ′ ⊂ Ė′ be the fixed field of this subgroup. The associated valuation u′ on

Ḟ ′ has the property that Ė′
u′ is a field such that Ė′

u′/Ḟ ′
u′ is isomorphic to E/F . Replacing

Ḟ ⊂ Ė by Ḟ ′ ⊂ Ė′, if necessary, we can assume that Ṫ does split over Ė.

We have constructed quasisplit global objects, and an isomorphism

(7.5) φ∗u : (F,E,G∗,M∗, T ∗) −→ (Ḟu, Ėu, Ġ
∗
u, Ṁ

∗
u , Ṫ

∗
u ).
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It is easy to modify the construction so that there are several such isomorphisms. Let Ḟ ′′

be a large finite extension of Ḟ in which u splits completely, and let Ė′′ be a composite

of Ė with Ḟ ′′. If u′′ is any valuation on Ḟ ′′ over u, Ė′′
u′′ is a field such that Ė′′

u′′/Ḟ ′′
u′′ is

isomorphic to E/F . Replacing Ḟ ⊂ Ė by Ḟ ′′/Ė′′, if necessary, we can assume that there

are isomorphisms (7.5) for each u in an arbitrarily large finite set U+ of p-adic valuations

on Ḟ .

The local inner twist

ψ : (G,M) −→ (G∗,M∗)

determines an element αG in the image of H1(F,M∗ ∩ G∗
ad) in H1(F,G∗

ad). Recall that

there is a canonical bijection from H1(F,G∗
ad) onto the finite abelian group π0

(
Z(Ĝsc)

Γ
)∗

[K3, Theorem 1.2]. Let nG be the order of the image of αG in π0

(
Z(Ĝsc)

Γ
)∗

. We take U

to be any proper subset of U+, with |U | ≥ 3, such that nG divides |U |. The element

⊕

u∈U

φ∗u(αG)

then lies in the kernel of the composition of maps

⊕

u∈U

H1(Ḟu, Ġ
∗
u,ad)

∼
−→

⊕

u∈U

π0

(
Z(Ĝ∗

sc)
Γ̇u

)∗
−→ π0

(
Z(Ĝ∗

sc)
Γ
)∗
.

According to [K3, Theorem 2.2, Corollary 2.5], we can build a global inner form of Ġ∗ from

the local inner forms of {Ġ∗
u : u ∈ U} associated to the classes {φ∗

u(αG)}. More precisely,

taking [A10, Lemma 2.1] and [I, Lemma 4.1] into consideration, we see that we can find a

global inner twist

ψ̇ : (Ġ, Ṁ) −→ (Ġ∗, Ṁ∗),

where Ġ is a reductive group over Ḟ with Levi subgroup Ṁ , together with isomorphisms

φu : (F,E,G,M) −→ (Ḟu, Ėu, Ġu, Ṁu), u ∈ U,

such that each map φ∗u ◦ψ is Ṁ∗
u-conjugate to ψ̇u ◦ φu. It is clear that Ġ is quasisplit over

Ḟ if G is quasisplit over F , and that Ġv is quasisplit over Ḟv in general, for each v 6∈ U .
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The last point is to transfer the maximal torus Ṫ ∗ of Ṁ∗ to a maximal torus Ṫ of Ṁ .

For each v ∈ U , the map

iv = φv ◦ i ◦ (φ∗v)
−1 : Ṫ ∗

v −→ Ṁv

is admissible, and in particular, is defined over Ḟv. We may as well also fix admissible

maps iv: Ṫ
∗
v → Ṁv for the valuations v in the complement of U , subject to the natural

conditions [K2, (9.2.1)] at the unramified places. Since Ṁv is quasisplit for each such v,

this is possible. We seek an admissible global embedding

j : Ṫ ∗ −→ Ṁ

over Ḟ that is Ṁv-conjugate to iv for each v. There is a general obstruction to the

existence of such an embedding, which is defined in [K2, §9] as an element in the dual of

the finite abelian group K(Ṫ ∗). The group K(Ṫ ∗), taken relative to Ṁ∗, is defined to be

the subgroup of elements in π0

((
T̂ ∗/Z(M̂∗)

)Γ̇)
whose image in H1

(
Ḟ , Z(M̂∗)

)
is locally

trivial. If v belongs to U+, it follows from the fact that Ėv is a field that

K(Ṫ ∗) = π0

(
(T̂ ∗

v )Γ̇v/Z(M̂∗
v )Γ̇v

)
= K(Ṫ ∗

v ).

The local group K(Ṫ ∗
v )∗ acts simply transitively on the set of Ṁv-conjugacy classes of

admissible embeddings iv. We are certainly free to modify iv at any v outside U . Replacing

iv by its image under the appropriate element in K(Ṫ ∗
v )∗, for some v in the complement

of U in U+, we can assume that the global obstruction vanishes. We then obtain a global

embedding j that maps Ṫ ∗ to a maximal torus Ṫ in Ṁ . The torus Ṫ over Ḟ provides

the last component of the global datum (Ḟ , Ė, Ġ, Ṁ, Ṫ , ψ̇). Replacing φu by some Ṁu-

conjugate, for each u ∈ U , we can assume that φu maps T to Ṫu. These maps become the

required isomorphisms (7.4). �

We fix the various objects provided by the lemma. We also fix a place u0 ∈ U , and use

the isomorphism φu0
to identify the local datum (F,E,G,M, T, ψ) with the completion of
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(Ḟ , Ė, Ġ, Ṁ, Ṫ , ψ̇) at u0. Let V be a finite set of valuations that contains U , and also all

the ramified places for Ė, Ġ and Ṫ . If f is a given function in H(G), we choose a function

ḟ =
∏

v∈V

ḟv

in H(Gv) such that ḟu0
= f . Since |U | ≥ 3, we can fix two other places u1 and u2 in

U . We assume that if v equals u1 or u2, the function ḟv is supported on the open subset

of elements in Ġv that are stably conjugate to points in ṪG-reg(Ḟv). Then ḟ belongs to

the space HṀ (ĠV ), which was introduced in the context of global K-groups in §2. The

connected group Ġ is a component of an (essentially) unique global K-group [I, §4], and

we can regard ḟ as a function on the K-group that is supported on ĠV . The various

global results of §2–5 therefore makes sense for ḟ . We shall apply them to our study of

the relevant linear forms in f .

As always, we have to separate the discussion into the two parts (a) and (b). Recall

that we are trying to prove Local Theorem 1 for (G,M). The assertion (a) of the theorem

is trivial if G is quasisplit, while assertion (b) applies only to this case. We may as well

then treat (a) and (b) as two disjoint cases, corresponding respectively to whether G is

not, or is, quasisplit over F . This corresponds in turn to whether Ġ is not, or is, quasisplit

over Ḟ .

To deal with (a), we shall apply the formula (2.4) of Proposition 2.2(a). We first recall

that our function ḟ ∈ HM (ĠV ) satisfies an identity

IEν,disc(ḟ) − Iν,disc(ḟ) = 0, ν ∈ ih∗
u/W∞,

by Corollary 5.2(a). This implies that the term

∑

t

(
IEt,disc(ḟ) − It,disc(ḟ)

)
=

∑

ν

(
IEν,disc(ḟ) − Iν,disc(ḟ)

)

on the right hand side of (2.4) vanishes. We also note that ḟ vanishes on an invariant

neighbourhood of the center of ĠV , since the corresponding property holds for ḟu1
and
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ḟu2
. Therefore the other term

∑

z

(
IEz,unip(ḟ , S) − It,unip(ḟ , S)

)

on the right hand side of (2.4) vanishes as well. It follows that the left hand side

IEpar(ḟ) − Ipar(ḟ)

of (2.4) equals zero. Applying the expansion (2.8) of Lemma 2.3(a) for this linear form,

we see that

(7.6)
∑

v∈Vfin(Ġ,Ṁ)

∑

γ̇∈Γ(Ṁ,V )

aṀ (γ̇)
(
IE
Ṁ

(γ̇v, ḟv) − IṀ (γ̇v, ḟv)
)
ḟv

Ṁ
(γ̇v) = 0.

The left hand side of (7.6) can be identified with the expansion [I, (2.11)] of the linear form

IṀ
orb(ḣ), for some function ḣ ∈ H(ṀV ). Since Ṁ is a proper Levi subgroup, our induction

hypotheses imply that

IṀ
orb(ḣ) = IṀ,E

orb (ḣ) =
∑

Ṁ ′∈E(Ṁ,V )

ι(Ṁ, Ṁ ′)ŜṀ ′

orb(ḣ′).

Given the expansion for ŜṀ ′

orb(ḣ′) in [I, Lemma 7.2(b)], together with the induction hypoth-

esis (1.4) that the function bṀ
′

(δ̇′) is supported on the subset ∆(Ṁ ′, V ) of ∆E(Ṁ ′, V ), we

can then rewrite the left hand side of (7.6) as an expansion in terms of Ṁ ′ and δ̇′. We

conclude that

(7.7)
∑

Ṁ ′∈Eell(Ṁ,V )

ι(Ṁ, Ṁ ′)
∑

v∈Vfin(Ġ,Ṁ)

∑

δ̇′∈∆(Ṁ ′,V )

bṀ
′

(δ̇′)εṀ (ḟv, δ̇
′
v)(ḟ

v)Ṁ ′(
(δ̇′)v

)
= 0,

where

εṀ (ḟv, δ̇
′
v) =

∑

γ̇v∈Γ(Ṁv)

∆(δ̇′v, γ̇v)
(
IE
Ṁ

(γ̇v, ḟv) − IṀ (γ̇v, ḟv)
)
,

for any element δ̇′v in ∆(Ṁ ′
v). (We cannot actually claim that the function

γ̇ −→
∑

v

(
IE
Ṁ

(γ̇v, ḟv) − IṀ (γ̇v, ḟv)
)
ḟv

Ṁ
(γ̇v), γ̇ ∈ ΓG-reg(ṀV ),
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belongs to I(ṀV ), since ḟ is not required to lie in H0(GV ). However, the conditions at

u1 and u2 allow us to truncate the function near the singular set without changing the

value of the left hand side of (7.6). Alternatively, one can simply note that the proof of [I,

Lemma 7.2] is formal, and does not require that the underlying function lie in the Hecke

space.)

For the second case (b), in which Ġ is quasisplit, we have to impose the extra condition

that ḟv be unstable for some v. The function ḟ then lies in Huns
Ṁ

(ĠV ). In this case, we

apply the formula (2.5) of Proposition 2.2(b). It follows from Corollary 5.2(b) that the

term
∑

t

SĠ
t,disc(ḟ) =

∑

ν

SĠ
ν,disc(ḟ)

on the right hand side of (2.5) vanishes. Since ḟ vanishes on an invariant neighbourhood

of the center of ĠV , the other term

∑

z

SĠ
z,unip(ḟ , S)

on the right hand side of (2.5) also vanishes. Therefore the left hand side

SĠ
par(ḟ)

of (2.5) equals zero. Applying the expansion (2.9) of Lemma 2.3(b) for this linear form,

we see that

(7.8)
∑

Ṁ ′∈Eell(Ṁ,V )

ι(Ṁ, Ṁ ′)
∑

v∈Vfin(Ġ,Ṁ)

∑

δ̇′∈∆(Ṁ ′,V )

bṀ
′

(δ̇′)εṀ ′

(ḟv, δ̇
′
v)(ḟ

v)Ṁ ′(
(δ̇′)v

)
= 0,

where

εṀ ′

(ḟv, δ̇
′
v) = SĠ

Ṁ
(Ṁ ′

v, δ̇
′
v, ḟv).

The formulas (7.7) and (7.8), corresponding to the two cases (a) and (b), are almost

identical. We shall analyze them together. Suppose that in addition to the conditions we

have already imposed, the function ḟ is admissible in the sense of [I, §1]. The summands
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in (7.7) and (7.8) are then supported on classes δ̇′ that are admissible. This means that

we can take S = V in the expansion [I, (10.11)] for bṀ
′

(δ̇′). It is then a consequence of the

definitions that the right hand side of [I, (10.11)] vanishes. Therefore, the global coefficient

bṀ
′

(δ̇′) in (7.7) and (7.8) reduces to the more elementary “elliptic” coefficient bṀ ′

ell (δ̇′). We

shall apply the global descent formula [II, Corollary 2.2(b)] to this latter coefficient.

We can assume that the summands in (7.7) and (7.8) corresponding to a given

δ̇′ ∈ ∆(Ṁ ′, V ) are nonzero. It follows from the conditions on ḟu1
and ḟu2

, and the global

descent formula for bṀ
′

ell (δ̇′), that δ̇′ belongs to the subset ∆G-reg,ell,V (Ṁ ′) of elements in

∆(Ṁ ′, V ) that lie in ∆G-reg,ell(Ṁ
′), and are V -admissible. (Recall that ∆G-reg,ell(Ṁ

′)

denotes the set of strongly G-regular, elliptic stable conjugacy classes in Ṁ ′(Ḟ ), and can

be identified with a subset of ∆(Ṁ ′, V ).) Since δ̇′ is strongly regular, the global descent

formula is very simple. We obtain

bṀ
′

ell (δ̇′) = jṀ ′

(V, δ̇′)bṪ
′

ell(1) = τ(Ṁ ′)τ(Ṫ ′)−1τ(Ṫ ′) = τ(Ṁ ′),

where Ṫ ′ is the centralizer of δ̇′ in Ṁ ′. It follows from the formula [K2, Theorem 8.3.1] for

ι(Ṁ, Ṁ ′) that

ι(Ṁ, Ṁ ′)bṀ
′

ell (δ̇′) = τ(Ṁ)τ(Ṁ ′)−1|OutṀ (Ṁ ′)|−1τ(Ṁ ′) = τ(Ṁ)|OutṀ (Ṁ ′)|−1.

The Tamagawa number τ(Ṁ) is nonzero, and is of course independent of Ṁ ′ and δ̇′.

Moreover, the group OutṀ (Ṁ ′) acts freely on the set of pairs

{
(Ṁ ′, δ̇′) : Ṁ ′ ∈ Eell(Ṁ), δ̇′ ∈ ∆G-reg,ell(Ṁ

′)
}

that are relevant to Ṁ . We write ∆E
G-reg,ell(Ṁ) for the quotient. We also write

∆E
G-reg,ell,V (Ṁ) for the subset of orbits in ∆E

G-reg,ell(Ṁ) for which Ṁ ′ lies in Eell(Ṁ, V )

and δ̇′ lies in ∆G-reg,ell,V (Ṁ ′). The summands in (7.7) and (7.8) then depend only on the

image δ̇ of (Ṁ ′, δ̇′) in ∆E
G-reg,ell,V (Ṁ). In order to combine the two cases (a) and (b), we

set

ε(ḟv, δ̇v) =

{
εṀ (ḟv, δ̇

′
v), if Ġ is not quasisplit,

εṀ ′

(ḟv, δ̇
′
v), if G is quasisplit.
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The equations (7.7) and (7.8) can then be written together in the form

(7.9)
∑

δ̇∈∆E

G-reg,ell,V
(Ṁ)

∑

v∈Vfin(Ġ,Ṁ)

ε(ḟv, δ̇v)ḟ
v,E

Ṁ
(δ̇v) = 0.

To see how to separate the terms in (7.9), we should view the indices δ̇ in terms of

the global form of the set DE
G-reg,ell(M) defined in §6. Let DE

G-reg,ell(Ṁ) be the quotient

of the set of Ṁ -relevant pairs in

{
(δ̇∗, κ̇∗) : δ̇∗ ∈ Ṁ∗

G-reg,ell(Ḟ ), κ̇∗ ∈ K(Ṁ∗
δ̇∗

)
}

that is defined by stable conjugacy in Ṁ∗(Ḟ ). The group Ṫ ∗ = Ṁ∗
δ̇∗

here is of course a

maximal torus in Ṁ∗ over Ḟ , and the global group K(Ṁ∗
δ̇∗

) = K(Ṫ ∗) is defined in [K3,

(4.6)]. As in the local case, there is a correspondence (Ṁ ′, δ̇′) → (δ̇∗, κ̇∗) that yields a well

defined bijective mapping δ̇ → ḋ from ∆E
G-reg,ell(Ṁ) onto DE

G-reg,ell(Ṁ). This mapping

underlies some of the basic constructions of [L5]; it is also a special case of either [K3,

Lemma 9.7] or [II, Proposition 3.1]. Now, suppose that Ṫ ⊂ Ṁ is the elliptic torus

provided by Lemma 7.2. The quotient of the set

{
(ṫ, κ̇) : ṫ ∈ ṪG-reg,ell(Ḟ ), κ̇ ∈ K(Ṫ )

}

by the rational Weyl group WḞ (Ṁ, Ṫ ) then represents a subset of DE
G-reg,ell(Ṁ). We note

that if v is any valuation such that Ėv is a field, the definition [K3, (4.6)] reduces to

K(Ṫ ) = π0

(
T̂ Γ̇/Z(M̂)Γ̇

)
= π0

(
T̂ Γ̇v/Z(M̂)Γ̇v

)
= K(Ṫv).

Following notation at the end of §6, we set F(ṫ) equal to the fibre in ∆E
G-reg,ell(Ṁ) of a

given point ṫ in ṪG-reg(Ḟ ), and we write δ̇ → κ(δ̇) for the canonical bijection from F(ṫ) onto

K(Ṫ ). Our immediate concern will be the case that ṫ lies in the subset ṪG-reg,V (Ḟ ) of V -

admissible elements in ṪG-reg(Ḟ ). The fibre F(ṫ) will then be contained in ∆E
G-reg,ell,V (Ṁ).

We are going to isolate the contribution to (7.9) of those elements δ̇ in F(ṫ).
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The sum over δ̇ in (7.9) can be restricted to a finite set that depends only on the

support of ḟ . (See for example [A2, §3].) Having once chosen a bound for the support of

ḟ , which we take to be an admissible subset of ĠV , we can shrink any of the functions ḟv

without enlarging this finite set or affecting the admissibility of ḟ . We note that by [A10,

Lemma 3.1], the summand in (7.9) depends only on the W (Ṁ)-orbit of δ̇, relative to the

free action of the Weyl group W (Ṁ) of (Ġ, AṀ ) on ∆G-reg,ell,V (Ṁ). We can therefore

regard (7.9) as a sum over a finite set of W (Ṁ)-orbits in ∆G-reg,ell,V (Ṁ). Let ṫ be a fixed

point in ṪG-reg,V (Ḟ ). If v belongs to V , we shall write ṫĠv for the stable conjugacy class of

ṫ in Ġv. Having fixed ṫ, we consider the distribution

ḟv −→ ḟE
v,Ṁ

(δ̇v) =
∑

γ̇v∈Γ(Ṁv)

∆Ṁ (δ̇v, γ̇v)ḟv,Ṁ(γ̇v), ḟv ∈ H(Ġv),

on Ġv associated to an arbitrary element δ̇ in ∆E
G-reg,ell,V (Ṁ). The support of this distri-

bution equals ṫĠv if wδ̇ lies in F(ṫ) for some w ∈W (Ṁ), and is otherwise disjoint from ṫĠv .

Now suppose that v equals one of our two places u1 and u2 in U . In this case, we assume

that the function ḟv is supported on a small neighbourhood of ṫĠv . If δ̇ indexes a nonzero

summand in (7.9), one of the terms

ḟE
ui,Ṁ

(δ̇ui
),

must be nonzero, from which it follows that the W (Ṁ)-orbit of δ̇ meets F(ṫ). The identity

(7.9) therefore reduces to

(7.10)
∑

δ̇∈F(ṫ)

∑

v∈Vfin(Ġ,Ṫ )

ε(ḟv, δ̇v)ḟ
v,E

Ṁ
(δ̇v) = 0.

We have replaced the set Vfin(Ġ, Ṁ) in (7.9) by the subset

Vfin(Ġ, Ṫ ) =
{
v ∈ Vfin : dim(aĠv

Ṫv

) = dim(aĠ
Ṫ

)
}

of places at which Ṫv is Ṁv-elliptic, since the induction hypothesis (1.2) and the appropriate

descent formula imply that ε(ḟv, δ̇v) vanishes if v lies in the complement of this subset.
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We have imposed strict support constraints on the functions ḟv, when v equals u1 or

u2. However, we are still free to specify the values taken by the functions

γ̇v −→ ḟv,Ṁ(γ̇v), v ∈ {u1, u2},

on the Ṁv-conjugacy classes in the Ṁv-stable conjugacy class ṫṀv . To see how to do this

in a way that exploits the conditions of Lemma 7.2, we recall an elementary property of

the local transfer factors. If γ̇v and γ̇0
v are Ṁv-conjugacy classes in ṫṀv , and δ̇ belongs to

F(ṫ), we have

∆Ṁ (δ̇v, γ̇v) =
〈
inv(γ̇0

v , γ̇v), κ̇v

〉
∆Ṁ (δ̇v, γ̇

0
v),

where κ̇v is the image of the element κ̇ = κ(δ̇) in K(Ṫv), and inv(γ̇0
v , γ̇v) is the element in

the set

E(Ṫv) ∼= K(Ṫv)
∗

that measures the difference between γ̇0
v and γ̇v. Therefore

ḟE
v,Ṁ

(δ̇v) = ∆Ṁ (γ̇v, γ̇
0
v)

( ∑

γ̇v

〈
inv(γ̇0

v , γ̇v), κ̇v

〉
ḟv,Ṁ (γ̇v)

)
.

We recall that

E(Ṫv) = Im
(
H1(Ḟv, Ṫsc,v) −→ H1(Ḟv, Ṫv)

)
,

where Ṫsc here stands for the preimage of Ṫ in the simply connected cover of Ṁder. Since

v in p-adic, E(Ṫv) equals the set D(Ṫv) [L4, p. 702] that, together with with the base point

γ̇0
v , parametrizes the Ṁv-conjugacy classes in ṫṀv . We note that it is immaterial whether

the groups E(Ṫv) and K(Ṫv) are defined relative to Ṁv or Ġv. To put it another way, the

set of Ṁv-conjugacy classes {γ̇v} in ṫṀv is bijective with the set of Ġv-conjugacy classes in

ṫĠv . It follows that the linear forms

γ̇v −→ ḟv,Ṁ(γ̇v), ḟv ∈ H(Ġv),

form a basis of the space of invariant distributions on Ġv that are supported on ṫĠv . We

are assuming that v equals u1 or u2. Therefore K(Ṫ ) is isomorphic to K(Ṫv), and δ̇ → κ̇v
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is a bijection from F(ṫ) onto K(Ṫv). Since K(Ṫv) is dual to E(Ṫv), we conclude that the

linear forms

δ̇ −→ ḟE
v,Ṁ

(δ̇v), δ̇ ∈ F(ṫ), ḟv ∈ H(Ġv),

are also a basis of the space of invariant distributions on Ġv that are supported on ṫĠv .

Let σ̇ be a fixed element in F(ṫ), and set σ = σ̇u0
. Suppose that the original function

f = ḟu0
in H(G) is such that

fE
M (σ) = 0.

For each u in {u1, u2}, we fix ḟu so that

ḟE
u,Ṁ

(δ̇u) =

{
1, if δ̇ = σ̇,
0, otherwise,

for any δ̇ ∈ F(ṫ). This is possible by the discussion above. If v lies in the complement

of {u0, u1, u2} in V , we take ḟv to be a function such that ḟE
v,Ṁ

(σ̇v) = 1. The functions

ḟu1
and ḟu2

are assumed to satisfy the earlier conditions, and ḟ =
∏

v∈V

ḟv is required to be

admissible. If G is quasisplit, we can also assume that ḟ Ġ
u0

= fG = 0, if κ(σ̇) = 1, and that

ḟ Ġ
u1

= ḟ Ġ
u2

= 0, if κ(σ̇) 6= 1. This is possible because for any u ∈ U , the linear forms

ḟu −→ ḟE
u,Ṁ

(δ̇u), δ̇ ∈ F(ṫ), κ(δ̇) 6= 1,

on Huns(Ġv) are linearly independent. The function ḟ is then unstable. In all cases, ḟ has

the appropriate constraints, and therefore satisfies (7.10). The complement in V of any v

of course contains one of the places u1 or u2. It follows that the terms in (7.10) with δ̇ 6= σ̇

all vanish. If δ̇ = σ̇, the terms with v 6= u0 also vanish, while the term with v = u0 equals

a nonzero multiple of ε(f, σ). The identity (7.10) therefore implies that ε(f, σ) = 0.

We have reached the conclusion that ε(f, σ) vanishes for any function f ∈ H(G) such

that fE
M (σ) = 0, and such that fG = 0, in case G is quasisplit and κ(σ̇) = 1. This relation

applies to the point σ = σ̇u0
, for any σ̇ in the fibre F(ṫ), any element ṫ in ṪG-reg,V (Ḟ ), and

any V that is large relative to the support of f . The set V at this point actually plays no
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role. For if ṫ is any element in ṪG-reg(Ḟ ), we can always choose the finite set V such that

ṫ lies in ṪG-reg,V (Ḟ ). The relation therefore holds, with the conditions on f , for any σ̇ in

F(ṫ). Reformulated in terms of the next lemma, it will be the main step in our proof of

Local Theorem 1.

Lemma 7.3. (i) There is a smooth function ε(δ) on the set ∆E,0
G-reg,ell(M) defined in §6

such that

(7.11) ε(f, δ) = ε(δ)fE
M (δ), f ∈ H(G), δ ∈ ∆E,0

G-reg,ell(M).

(ii) If G is quasisplit and δ lies in ∆G-reg,ell(M), the distribution

δ −→ ε(f, δ), f ∈ H(G),

is stable.

Proof. Since the original elliptic torus T ⊂ M was arbitrary, it would be enough to

treat points δ in F(t), for elements t ∈ TG-reg(F ). Let κ be a fixed element in K(T ). For

any given t, we then take δ to be the point in F(t) with κ(δ) = κ.

Suppose that δ lies in ∆E,0
G-reg,ell(M). We first consider the special case that t = ṫu0

,

for a rational element ṫ ∈ TG-reg(Ḟ ). Then δ equals δ̇u0
, for the element δ̇ ∈ F(ṫ) such that

κ(δ̇)u0
equals κ. The conditions on δ rule out the case that Ġ is quasisplit and κ(δ̇) = 1.

The relation ε(f, δ̇u0
) = 0 is then valid for any function f ∈ H(G) with fE

M (δ̇u0
) = 0. This

relation in turn implies that there is a complex number ε(δ̇u0
) such that

ε(f, δ̇u0
) = ε(δ̇u0

)fE
M (δ̇u0

),

for any f ∈ H(G) at all. Now the functions ε(f, δ) and f E
M (δ) vary smoothly with t.

Moreover, Ṫ (Ḟ ) is dense in T (F ) = Ṫ (Ḟu0
), since Ḟv is a field for some v 6= u0 [KR,

Lemma 1(b)]. It follows that

ε(f, δ) = ε(δ)fE
M (δ)

in general, for a function ε(δ) that varies smoothly with t. This gives the assertion (i).
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For the assertion (ii), we assume that G is quasisplit and κ = 1. The element δ then

lies in ∆G-reg,ell(M). Let f ∈ H(G) be a function with fG = 0. If t is of the form ṫu0
, δ is

of the form δ̇u0
, for the element δ̇ ∈ F(ṫ) with κ(δ̇) = 1. In this case, we have established

that ε(f, δ) = 0. Since Ṫ (Ḟ ) is dense in T (F ), the equation ε(f, δ) = 0 then holds in

general. The assertion (ii) follows. �

We have established the local identity (7.11) for G by representing G as a completion

Ġu0
of the global group Ġ. A similar identity can be established for the other completions

Ġv, v ∈ Vfin(Ġ, Ṁ),

of Ġ, by embedding any Ġv in its own (possibly different) global group. We obtain

ε(ḟv, δ̇v) = ε(δ̇v)ḟE
v,Ṁ

(δ̇v), ḟv ∈ H(Ġv), δ̇v ∈ ∆E,0
G-reg,ell(Ṁv),

for a smooth function ε(δ̇v) on ∆E,0
G-reg,ell(Ṁv).

Corollary 7.4. Suppose that G is not quasisplit. Suppose also that ṫ belongs to ṪG-reg(Ḟ ),

and that δ̇ is an element in F(ṫ). Then

(7.12)
∑

u∈U

ε(δ̇u) = 0.

Proof. If u belongs to U , Ġu is not quasisplit. In this case, δ̇ lies in ∆E,0
G-reg,ell(Ṁ)

by definition, and the function ε(δ̇u) is defined. If v is a valuation outside of U , Ġv is

quasisplit. In this case

ε(ḟv, δ̇v) = εṀ (ḟv, δ̇
′
v) =

∑

γ̇v

∆(δ̇′v, γ̇v)
(
IE
Ṁ

(γ̇v, ḟv) − IṀ (γ̇v, ḟv)
)

= 0,

again by definition. The identity (7.10) becomes

∑

σ̇∈F(ṫ)

( ∑

u∈U

ε(σ̇u)
)
ḟE

Ṁ
(σ̇) = 0.
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This formula holds for any large finite set V ⊃ U , and any admissible function ḟ in H(ĠV ).

We can clearly choose ḟ so that

ḟE
M (σ̇) =

{
1, if σ̇ = δ̇,
0, if σ̇ 6= δ̇,

for any σ̇ ∈ F(ṫ). The formula (7.12) follows. �

We are now in a position to prove part (a) of Local Theorem 1. This corresponds to

the case that G is not quasisplit. The assertion is that if γ belongs to ΓG-reg,ell(M), the

distribution

IEM (γ, f)− IM (γ, f), f ∈ H(G),

vanishes. Recall that

εM (f, δ′) =
∑

γ∈ΓG-reg,ell(M)

∆(δ′, γ)
(
IEM (γ, f)− IM (γ, f)

)
,

for any pair (M ′, δ′) that represents a point δ in ∆E
G-reg,ell(M). The last formula can

be inverted by the adjoint relations [A7, Lemma 2.2] for transfer factors. It is therefore

enough to prove that for any such δ, the distribution

εM (f, δ′) = ε(f, δ), f ∈ H(G),

vanishes.

Since G is not quasisplit, we will be able to apply the last corollary. Suppose that κ

belongs to K(T ). Then κ equals κ̇u0
, for a unique element κ̇ in K(Ṫ ). For each u ∈ U ,

we choose a point ṫu in ṪG-reg(Ḟu), and we let δ̇u be the element in F(ṫu) such that

κ(ṫu) equals κ̇u. The group Ṫ (Ḟ ) is dense in Ṫ (ḞU ). This follows from [KR, Lemma

1(b)], and the condition (v) of Lemma 7.2 that Ėv is a field for some v 6∈ U . We can

therefore approximate the points {ṫu} simultaneously by an element ṫ in ṪG-reg,ell(Ḟ ), and

the points {δ̇u} simultaneously by the element δ̇ ∈ F(ṫ) such that κ(δ̇) equals κ̇. We

now apply Corollary 7.4 to δ̇. Since the functions ε(δ̇u) are smooth, the identity (7.12)
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of Corollary 7.4 extends to the general family of points {δ̇u}. The points were of course

chosen independently of each other, so (7.12) implies that each of the functions

ε(κ̇u) = ε(δ̇u), u ∈ U,

is constant. Furthermore, from [A10, Lemma 3.1] and the existence of the isomorphisms

(7.4), we see that for any u ∈ U , ε(κ̇u) equals ε(κ). The formula (7.12) then yields

ε(κ) = |U |−1
∑

u∈U

ε(κ̇u) = 0.

We conclude that

ε(δ) = ε(κ) = 0, t ∈ TG-reg(F ),

for the element δ = δ̇u0
in F(t) with κ(δ) = κ. But the objects t, κ, and T were completely

arbitrary. It follows that

ε(f, δ) = ε(δ)fE
M (δ) = 0, f ∈ H(G),

for any element δ in the set ∆E,0
G-reg,ell(M) = ∆E

G-reg,ell(M). This completes the proof of

part (a) of Local Theorem 1.

It remains to establish part (b) of Local Theorem 1. We are now in the case that G

is quasisplit. There are actually two assertions. One is that if δ belongs to ∆G-reg,ell(M),

the distribution

f −→ SG
M (δ, f), f ∈ H(G),

is stable. This has already been proved. Since

SG
M (δ, f) = εM∗

(f, δ) = ε(f, δ),

the assertion is just part (ii) of Lemma 7.3. The other assertion is that if δ belongs to

the complement ∆E,0
G-reg,ell(M) of ∆G-reg,ell(M), and is represented by a pair (M ′, δ′), the

distribution

SG
M (M ′, δ′, f) = εM ′

(f, δ′) = ε(f, δ), f ∈ H(G),
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vanishes. This is more difficult. It requires a property of weak approximation on Ṫ , whose

proof we postpone until the next section. In the remaining part of this section, we shall

formulate an analogue of Corollary 7.4, which will be used in conjunction with Lemma 6.5

to establish the approximation property.

Suppose that V is a finite set of valuations of Ḟ that contains U , and outside of which

Ġ, Ṫ and Ė are unramified. We assume also that V contains the finite set Vfund(Ġ) of

Assumption 5.2(1) of [I], outside of which the generalized fundamental is assumed to hold.

Given V , we write S(Ė, V ) for the set of valuations v 6∈ V that split completely in Ė, and

W (Ė, V ) for the complement of S(Ė, V ) in the set of all valuations of Ḟ .

Corollary 7.5. Suppose that G is quasisplit. Suppose also that ṫ is a point in ṪG-reg(Ḟ )

such that ṫv is bounded for every v in the complement of V in W (Ė, V ), and that δ̇ is an

element in F(ṫ) with κ(δ̇) 6= 1. Then ε(δ̇v) is defined for any v in Vfin(Ġ, Ṫ ), and

(7.13)
∑

v∈Vfin(Ġ,Ṫ )

ε(δ̇v) = 0.

Proof. If v belongs to Vfin(Ġ, Ṫ ), the map

aĠv

Ṫv

−→ aĠ
Ṫ

is an isomorphism. It follows easily that the canonical map

K(Ṫ ) = π0

(
T̂ Γ̇/Z(Ĝ)Γ̇

)
−→ K(Ṫv) = π0

(
T̂ Γ̇v/Z(Ĝ)Γ̇v

)
,

which we are denoting by κ̇ → κ̇v, is injective. Set κ̇ = κ(δ̇). Then κ̇v 6= 1. Since

κ̇v = κ(δ̇v), the point δ̇v lies in ∆E,0
G-reg,ell(Ṁv), and the function ε(δ̇v) is defined.

The required identity (7.13) would follow directly from (7.10), were it not for the fact

that V has been chosen here independently of δ̇. Given δ̇, we choose a finite set V + of

valuations containing V , such that δ̇ is V +-admissible. We can then apply (7.10) to V +.

Isolating the element δ̇ ∈ F(ṫ) by an admissible function ḟ+ ∈ H(ĠV +), as in the proof of
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Corollary 7.4, we see that
∑

v∈V +

fin
(Ġ,Ṫ )

ε(δ̇v) = 0.

To establish (7.13), it would be enough to show that ε(δ̇v) = 0 for every v in the complement

of V in V +
fin(Ġ, Ṫ ).

We first observe that V +
fin(Ġ, Ṫ ) is contained in W (Ė, V ). Indeed, if v belongs to the

complement S(Ė, V ) of W (Ė, V ), Ṫv is a split torus over Ḟv. The group

K(Ṫv) = π0

(
T̂ Γ̇v/Z(Ĝ)Γ̇v

)
= π0

(
T̂ /Z(Ĝ)

)

is then trivial, and κ̇v = 1. In particular, v cannot lie in V +
fin(Ġ, Ṫ ).

Suppose that v lies in the complement of V in V +
fin(Ġ, Ṫ ). Then v belongs to the

complement of V in W (Ė, V ), so the element ṫv in Ṫv is bounded. This implies that δ̇v is

bounded, as is the element δ̇′v attached to any pair (Ṁ ′, δ̇′) that represents δ̇. Let ḟv be

the characteristic function of a hyperspecial maximal compact subgroup of Ġv. We shall

apply the identity

ε(ḟv, δ̇v) = ε(δ̇v)ḟ
E
v,Ṁ

(δ̇v).

According to Assumption 5.2(1) of [I], the standard fundamental lemma is valid for Ġv.

It asserts that the factor

ḟE
v,Ṁ

(δ̇v) = ḟṀ ′

v (δ̇′v)

on the right hand side of the identity equals ḣṀ ′

v (δ̇′v), where ḣv is the characteristic function

of a hyperspecial maximal compact subgroup of Ṁ ′
v. As a bounded, G-regular stable

conjugacy class in Ṁ ′
v, δ̇

′
v intersects the support of ḣ′v. It follows that the stable orbital

integral ḣṀ ′

v (δ̇′v) is nonzero. The factor ḟE
v,Ṁ

(δ̇v) is therefore nonzero. The generalized

fundamental lemma is valid for (Ġv, Ṁv), again by Assumption 5.2(1) of [I]. It can be

applied to the term

ε(ḟv, δ̇v) = εṀ ′

(ḟv, δ̇
′
v) = SG

M (Ṁ ′
v, δ̇

′
v, ḟv)
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on the left hand side of the identity. The generalized fundamental lemma was actually

formulated [I, Conjecture 5.1] in terms of the weighted orbital integrals JṀ (·, ḟv). However,

one sees easily from the unramified local analogue of [A9, Theorem 5] (which is actually

a consequence of this theorem) that it is equivalent to the special case of Local Theorem

1(b) in which G is unramified, and f is a unit in the Hecke algebra. In other words, the

generalized fundamental lemma implies that SG
M (Ṁ ′

v, δ̇
′
v, ḟv) vanishes. The factor ε(ḟv, δ̇v)

is therefore equal to zero. Putting the two pieces of information together, we conclude

that ε(δ̇v) = 0, as required. This completes the proof of the corollary. �
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§8. Weak approximation

In this section, we shall finish the proof of Local Theorem 1. We fix local data F ,

G, M , T and ψ as at the beginning of the last section. We can then make use of the

Galois extension E ⊃ F and global datum (Ḟ , Ė, Ġ, Ṁ, Ṫ , ψ̇) provided by Lemma 7.2.

We also fix the place u0 ∈ U as before, and use the isomorphism φu0
in (7.4) to identify

(F,E,G,M, T, ψ) with the completion of (Ḟ , Ė, Ġ, Ṁ, Ṫ , ψ̇) at u0.

We assume that G is quasisplit over the local field F . The group Ġ is then quasisplit

over the global field Ḟ . We can also assume that the inner twists ψ and ψ̇ are each equal

to 1. To complete the proof of Local Theorem 1, we have to show that if δ belongs to

∆E,0
G-reg,ell(M), and is represented by a pair (M ′, δ′), the linear form

SG
M (M ′, δ′, f) = εM ′

(f, δ′) = ε(f, δ), f ∈ H(G),

vanishes. This is equivalent to showing that the function

ε(δ), δ ∈ ∆E,0
G-reg,ell(M),

of Lemma 7.3 vanishes. We shall establish the result as a general property of any family of

such functions that satisfy the global identity (7.13) of Corollary 7.5, and the local identity

(6.14) of Lemma 6.5.

Suppose that V is a finite set of valuations of Ḟ that contains U . As usual, we assume

that Ġ, Ṫ and Ė are unramified outside of V . We also assume that

(8.1) Ṫ (A) = Ṫ (Ḟ )Ṫ (ḞV )ṘV ,

where

ṘV =
∏

v 6∈V

Ṙv

is the maximal compact subgroup of Ṫ (AV ). As at the end of §7, we write S(Ė, V ) for

the set of valuations v 6∈ V that split completely in Ė, and W (Ė, V ) for the complement

of S(Ė, V ) in the set of all valuations.
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Lemma 8.1. Suppose that for each v ∈ V , ev(ṫv) is a smooth function on ṪG-reg(Ḟv) that

depends only on the isomorphism class of (Ḟv, Ėv, Ġv, Ṁv, Ṫv). Assume that

(8.2)
∑

v∈V

ev(ṫv) = 0,

for any element ṫ ∈ TG-reg(Ḟ ) such that for each w in the complement of V in W (Ė, V ),

the point ṫw is bounded. Assume also that the function e = eu0
satisfies the formula

(8.3) e(t) + e(t−1) = 0, t ∈ TG-reg(F ).

Then e vanishes identically on TG-reg(F ).

Proof. Before we can exploit the identities (8.2) and (8.3), we have first to make

some simple remarks relating to Langlands duality for tori. This discussion will be quite

general. It applies to the case that Ṫ is any torus over Ḟ , Ė is any finite Galois extension

of Ḟ that splits Ṫ , and V is any finite set of valuations of Ḟ that satisfies (8.1), and outside

of which Ė is unramified.

Suppose that W is any set of valuations of Ḟ that contains V . Then

ṘV
W =

∏

v∈W−V

Ṙv

is a maximal compact subgroup of

Ṫ (AV
W ) =

{
ṫV ∈ Ṫ (A) : ṫv = 1 for any v ∈ V ∪ cW

}
.

We shall write ṪV,W for the closure in

ṪV =
∏

v∈V

Ṫv =
∏

v∈V

Ṫ (Ḟv)

of the subgroup

(8.4) ṪV ∩ Ṫ (Ḟ )ṘV
W Ṫ (AW ).
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For example, we could take W to be the set of all valuations of Ḟ . In this case, the group

(8.4) is already closed. It is equal to the discrete subgroup

Γ̇V = ṪV ∩ Ṫ (Ḟ )ṘV

of ṪV . We can of course also take W to be the set W (Ė, V ), in which case we shall write

ṪV,Ė = ṪV,W (Ė,V ).

Observe that under the stated conditions of the lemma, the identity (8.2) is valid for any

strongly Ġ-regular element ṫV =
∏

v∈V

ṫv in ṪV,Ė . This is because for any w 6= V , an element

ṫw ∈ Ṫw is bounded if and only if it lies in Ṙw.

The global Weil group WḞ acts on the dual torus T̂ = ̂̇T . We shall consider subgroups

of the continuous cohomology group H1(WḞ , T̂ ). If W is any set of valuations of Ḟ , we

write H1(WḞ , T̂ )W for the kernel of the map

H1(WḞ , T̂ ) −→
⊕

v 6∈W

H1(WḞv
, T̂ ).

The quotient

H1(WḞ , T̂ )W = H1(WḞ , T̂ )/H1(WḞ , T̂ )W

then maps injectively into the direct sum over v 6∈ W of the groups H1(WḞv
, T̂ ). If W is

the empty set, for example, H1(WḞ , T̂ )W is the group H1(WḞ , T̂ )`t of locally trivial classes

in H1(WḞ , T̂ ). According to the Langlands correspondence for tori [L1], the associated

quotient H1(WḞ , T̂ )`t is dual to Ṫ (A)/Ṫ (Ḟ ). Let us write H1
V (·, ·) for the subgroup of

classes in a given cohomology group that are unramified at each place outside of V . Then

H1
V (WḞ , T̂ )`t is dual to the group

Ṫ (A)/Ṫ (Ḟ )RV ∼= ṪV /ṪV ∩ Ṫ (Ḟ )ṘV = ṪV /Γ̇V .

More generally, suppose that W is any set of valuations that contains V . We claim that

the closed subgroup

H1
V (WḞ , T̂ )`t

W = H1
V (WḞ , T̂ )W /H1

V (ẆḞ , T̂ )`t
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of H1
V (WḞ , T̂ )`t is the annihilator of the closed subgroup ṪV,W /Γ̇V of ṪV /Γ̇V . Indeed,

the elements in H1
V (WḞ , T̂ )`t

W correspond to continuous characters on Ṫ (A)/Ṫ (Ḟ ) that

are trivial on ṘV
W Ṫ (AW ), from which it follows that H1

V (WḞ , T̂ )`t
W annihilates ṪV,W /Γ̇V .

Conversely, since the embedding

Ṫw −→ Ṫ (A)/Ṫ (Ḟ )

is dual to the restriction

H1(WḞ , T̂ )`t −→ H1(WḞw
, T̂ ),

any element in H1
V (WḞ , T̂ )`t that annihilates ṪV,W /Γ̇V belongs to H1

V (WḞ , T̂ )`t
W . The

claim follows. We conclude that the group H1
V (WḞ , T̂ )`t

W is dual to the quotient ṪV /ṪV,W .

If W = V , the assertion is a special case of [KR, Lemma 1(a)]. We shall be concerned with

the case that W equals the set W (Ė, V ).

The action of WḞ on T̂ factors through the quotient

Gal(Ė/Ḟ ) ∼= WĖ/Ḟ /WĖ/Ė
∼= WḞ /WĖ .

The inflation map embeds the relative cohomology group

H1(Ė/Ḟ , T̂ ) = H1
(
Gal(Ė/Ḟ ), T̂

)

into H1(WḞ , T̂ ). We claim that H1(Ė/Ḟ , T̂ ) equals the subgroup

H1(WḞ , T̂ )Ė = H1(WḞ , T̂ )W (Ė,V )

of H1(WḞ , T̂ ). To see this, we first note that H1(Ė/Ḟ , T̂ ) is the kernel of the map

(8.5) H1(WḞ , T̂ ) −→ H1(WĖ , T̂ ) = H1(WĖ/Ė , T̂ ),

and that H1(WḞ , T̂ )Ė is the kernel of the map

(8.6) H1(WḞ , T̂ ) −→
⊕

w∈S(Ė,V )

H1(Ḟw, T̂ ).
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Let S∼(Ė, V ) be the set of valuations of Ė that divide those valuations of Ḟ that lie in

S(Ė, V ). The composition of (8.5) with the map

H1(WĖ/Ė , T̂ ) −→
⊕

w∼∈S∼(Ė,V )

H1(Ėw∼, T̂ )

is then equal to the composition of (8.6) with the map

⊕

w∈S(Ė,V )

H1(Ḟw, T̂ ) −→
⊕

w∼∈S∼(Ė,V )

H1(Ėw∼ , T̂ ).

The last two maps are both injective. This is obvious in the case of the second map. For the

first map, it is a consequence of the analogue of the Tchebotarev density theorem for the

idele class group CĖ
∼= WĖ/Ė [Se, Theorem 2, p. I-23], and the fact that S∼(Ė, V ) is a set of

valuations of Ė of positive density whose associated Frobenius elements map surjectively

onto any finite quotient of CĖ . We have shown that the two groups H1(Ė/Ḟ , T̂ ) and

H1(WḞ , T̂ )Ė represent the kernel of the same map. They are therefore equal, as claimed.

In particular, the elements in H1(WḞ , T̂ )Ė are unramified outside of V , since the same is

true of the elements in H1(Ė/Ḟ , T̂ ). We apply what we have just observed to the quotient

of each group by the subgroup of locally trivial classes. We conclude that H1(Ė/Ḟ , T̂ )`t

equals the group

H1
V (WḞ , T̂ )`t

Ė
= H1

V (WḞ , T̂ )`t
W (Ė,V )

.

It then follows from the remarks of the previous paragraph that H1(Ė/Ḟ , T̂ )`t can be

identified with the group of characters of ṪV /Γ̇V that are trivial on the closed subgroup

ṪV,Ė/Γ̇V . In other words, H1(Ė/Ḟ , T̂ )`t is in duality with ṪV /ṪV,Ė .

At this point, we return to conditions of the lemma. In particular, we assume that

Ṫ satisfies the conditions of the earlier Lemma 7.2. Following §7, we identify the Global

Galois group Gal(Ė/Ḟ ) with the local Galois group Gal(E/F ) = Gal(Ėu0
/Ḟu0

) at the

fixed place u0 ∈ U . Since Ėu0
is a field, the group H1(Ė/Ḟ , T̂ )`t is trivial. Therefore

H1(E/F, T̂ ) = H1(Ė/Ḟ , T̂ ) = H1(Ė/Ḟ , T )`t.
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For any place v ∈ V , we set

Ṫv,Ė = Ṫv ∩ ṪV,Ė = Ṫ (Ḟv) ∩ ṪV,Ė .

According to the local Langlands correspondence for tori, the group H1(WḞv
, T̂ ) is dual

to Ṫv. Since H1(E/F, T̂ ) represents the annihilator of ṪV,Ė/Γ̇V in the group of characters

on ṪV /Γ̇V , Ṫv,Ė is just the subgroup of Ṫv annihilated by the image of the composition

H1(E/F, T̂ ) −→ H1(Ėv/Ḟv, T̂ ) −→ H1(WḞv
, T̂ ).

Consider the case that v belongs to the subset U of V . The restriction map of H1(E/F, T̂ )

to H1(Ėu/Ḟu, T̂ ) is then an isomorphism, which identifies H1(E/F, T̂ ) with the character

group of Ṫu/Ṫu,Ė . But H1(E/F, T̂ ) has also been identified with the character group of

ṪV /ṪV,Ė . It follows that the canonical injection

(8.7) Ṫu/Ṫu,Ė −→ ṪV /ṪV,Ė

is actually an isomorphism.

We are now ready to apply the identity (8.2). Suppose that v belongs to V , and that

ṫv is an element in ṪĠ-reg(Ḟv). We can then find a Ġ-regular element ṫV in ṪV,Ė whose

image in Ṫv equals ṫv. To see this, we have only to choose a place u ∈ U distinct from v,

and then use the bijectivity of the map (8.7). Suppose that α is a point in Ṫv,Ė such that

the product ṡv = αṫv is also strongly Ġ-regular. The element ṡV = αṫV obviously remains

in ṪV,Ė , and has the same component as ṫV at each place w in V − {v}. Applying the

extension of the identity (8.2) to elements in ṪV,Ė , we see that

ev(ṡv) − ev(ṫv) =
∑

w∈V

ew(ṡw) −
∑

w∈V

ew(ṫw) = 0.

The function ev is therefore invariant under translation by Ṫv,Ė. In other words, it extends

to a function on Ṫv/Ṫv,Ė.
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The last step will be to apply the identity (8.3). Suppose that x is the trivial coset

T (F )Ė = Ṫu0,Ė in T (F )/T (F )Ė = Ṫu0
/Ṫu0,Ė . Then (8.3) yields

e(x) = 1
2

(
e(x) + e(x)

)
= 1

2

(
e(x) + e(x−1)

)
= 0.

To deal with the other cosets, we choose two places u1 and u2 in U that are distinct from

u0. Then there are isomorphisms

(F,E,G,M, T ) −→ (Ḟui
, Ėui

, Ġui
, Ṁui

, Ṫui
), i = 1, 2,

of local data. By assumption, we have

e(x) = eui
(ẋui

), x ∈ T (F )/T (F )Ė,

where x→ ẋui
denotes the isomorphism

T (F )/T (F )Ė −→ Ṫui
/Ṫui,Ė

, i = 1, 2.

Suppose that x and y are points in T (F )/T (F )Ė. For each v in the complement of

{u0, u1, u2} in V , choose a point ṫv in Ṫv,Ė, and set

ṫV = xy · ẋ−1
u1

· ẏ−1
u2

·
∏

v

ṫv, v 6∈ {u0, u1, u2}.

Letting the valuations u in (8.7) run over the set {u0, u1, u2}, we see that ṫV belongs to

ṪV,Ė . Set

ε0 =
∑

v

ev(ṫv), v 6∈ {u0, u1, u2}.

It then follows from (8.3) and the extension of (8.2) to ṪV,Ė that

e(xy) − e(x) − e(y) + ε0 = e(xy) + e(x−1) + e(y−1) + ε0

=
∑

v∈V

ev(ṫv) = 0.

Taking x = y = 1, we deduce that ε0 = 1. Therefore

e(xy) = e(x) + e(y),
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for any points x and y in T (F )/T (F )Ė. In other words, e is a homomorphism from the

finite group T (F )/T (F )Ė to the additive group C. Any such homomorphism must be

trivial. It follows that the original function e on TG-reg(F ) vanishes identically. �

We can now complete the proof of Local Theorem 1. Let κ be any element in K(T )

with κ 6= 1, and let κ̇ be the element in K(Ṫ ) such that κ = κ̇u0
. Then κ̇ 6= 1. If v belongs

to the subset Vfin(Ġ, Ṫ ) of V , the element κ̇v ∈ K(Ṫv) is also distinct from 1, as we saw at

the beginning of the proof of Corollary 7.5. In this case we set

ev(ṫv) = ε(δ̇v), ṫv ∈ ṪG-reg(Ṫv),

where δ̇v is the element in F(ṫv) such that κ(δ̇v) = κ̇v. If v lies in the complement of

Vfin(Ġ, Ṫ ) in V , we simply set ev(ṫv) = 0. The relations (8.2) and (8.3) then follow from

Corollary 7.5 and Lemma 6.5, respectively. The last lemma asserts that e(t) vanishes

identically on TG-reg(F ). Therefore

ε(δ) = 0, t ∈ TG-reg(F ),

where δ is the element in F(t) with κ(δ) = κ. But any element δ in ∆E,0
G-reg,ell(M) can

be expressed in this form, for some choice of T , κ and t. In other words, ε(δ) vanishes

identically on the set ∆E,0
G-reg,ell(M). This is what we needed to show in order to establish

the remaining assertion of Local Theorem 1.

We have shown that the assertions of Local Theorem 1 all are valid for G and M .

This completes the part of the induction argument that depends on the integer

rder = dim(AM ∩Gder).

Letting rder vary, we conclude that Local Theorem 1 holds for any Levi subgroup M of G.

The group G was fixed at the beginning of §7. The choice was subject only to Assumption

5.2(2) of [I], and the condition that dim(Gder) = dder. Therefore, as we noted in §1, all

the local theorems stated in [I, §6] hold for any G with dim(Gder) = dder, so long as the
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relevant half of Assumption 5.2 of [I] is valid. Of course, this last assertion depends on the

global induction assumption (1.4). To complete the induction argument, we must establish

the global theorems for K-groups G with dim(Gder) = dder. We do so in §9.

The arguments that have lead to a proof of Local Theorem 1 generalize the techniques

of Chapter 2 of [AC]. In particular, the discussion in §7 and §8 here is loosely modeled on

[AC, §2.17]. The analogue in [AC] of Local Theorem 1 is Theorem A(i), stated in [AC,

§2.5]. There is actually a minor gap at the end of the proof of this result. The misstatement

occurs near the top of p. 196 of [AC], with the sentence “But as long as k is large enough

...”. For one cannot generally approximate elements in a local group by rational elements

that are integral almost everywhere. The gap could be filled almost immediately with

the local trace formula (and its Galois-twisted analogue) for GL(n). We shall resolve the

problem instead by more elementary means. We shall establish a second lemma on weak

approximation that is in fact simpler than the last one.

We may as well apply the “dot” notation above to the setting of [AC, §2.17]. Then

Ė/Ḟ is a cyclic extension of number fields. There are actually two cases to consider. If

Ė = Ḟ , Ġ is an inner form of the general linear group GL(n). If Ė 6= Ḟ , the problem

falls into the general framework of twisted endoscopy. In this case, Ġ is a component in a

nonconnected reductive group Ġ+ over Ḟ with Ġ0 = ResĖ/Ḟ

(
GL(n)

)
. In either case, Ṁ is

a proper “Levi subset” of Ġ. Suppose that V ⊃ Vram(Ġ) is a finite set of valuations outside

of which Ġ and Ė are unramified. The problem is to show that the smooth function

e(γ̇V ) = εṀ (γ̇V ), γ̇V ∈ ṀG-reg,V ,

in [AC, (2.17.6)] vanishes. The formula (8.2) has an analogue here. It is the partial

vanishing property

(8.8) e(γ̇V ) = 0,

which applies to any γ̇ ∈ ṀG-reg(Ḟ ) such that γ̇w is bounded for every w in the complement
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of V in the set W (Ė, V ) defined as above. This property follows from [AC, (2.17.4), and

Lemmas 2.4.2 and 2.4.3], as on p. 194–195 of [AC].

Lemma 8.2. Suppose that e(γ̇V ) is any smooth function on MĠ-reg,V that vanishes under

the conditions of (8.8). Then e(γ̇V ) vanishes for any γ̇V in ṀG-reg,V .

Proof. Suppose Ė = Ḟ . Then W (Ė, V ) equals V , by definition. Since ΓḞ acts

trivially on Z(̂̇M), Ṁ(Ḟ ) is dense in ṀV [KR, Lemma 1(b)]. The lemma then follows in

this case from (8.8).

We can therefore assume that Ė 6= Ḟ . If W is any set of valuations of Ḟ , let W∼

denote the set of valuations of Ė that divide valuations in W . We also write Ġ∼ for the

general linear group of rank n over Ė, and Ṁ∼ for the Levi subgroup of Ġ∼ corresponding

to Ṁ . There is then a bijection γ̇ → γ̇∼ from Ṁ(Ḟ ) onto Ṁ∼(Ė), and a compatible

bijection γ̇V → γ̇V ∼ from ṀĠ-reg,V onto Ṁ∼

Ġ-reg,V ∼
. It would be enough to show that the

smooth function

e∼(γ̇V ∼) = e(γ̇V ), γ̇V ∈ ṀĠ-reg,V ,

on Ṁ∼

Ġ-reg,V ∼
vanishes.

It follows from [KR, Lemma 1(b)] that Ṁ∼(Ė) is dense in Ṁ∼

V ∼ . We may therefore

assume that γ̇V ∼ is the image of an element in Ṁ∼

Ġ-reg(Ė), and in particular that γ̇V ∼ lies

in Ṫ∼

Ġ-reg(ĖV ∼), for a maximal torus Ṫ∼ in Ṁ∼ over Ė. Set

W∼ = W∼(Ė, V ) = W (Ė, V ∼).

Following the notation of the proof of the last lemma, we write Ṫ∼

V ∼,W∼ for the closure in

Ṫ∼

V ∼ = Ṫ∼(ĖV ∼) of the set of points γ̇∼ in Ṫ∼(Ė) that are bounded at each valuation in

the complement of V ∼ in W∼. If γ̇∼ is of this form, and is also Ġ-regular, the preimage γ̇

of γ̇∼ in Ṁ(Ḟ ) satisfies (8.8). It follows that

e∼(γ̇V ∼) = 0,
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for any Ġ-regular point γ̇V ∼ in Ṫ∼

V ∼,W∼ . It would therefore be enough to show that Ṫ∼

V ∼,W∼

equals Ṫ∼

V ∼ . Replacing V ∼ by a finite set V ∼

1 that contains V ∼, if necessary, we can assume

that Ṫ∼ is unramified outside of V ∼. For if γ̇V ∼

1
is any point in Ṫ∼

V ∼

1
that is bounded at

each place in W∼ ∩ (V ∼

1 − V ∼), and γ̇∼ is a point in Ṫ∼(Ė) that is bounded at each place

in W∼ − V ∼

1 , and approximates γ̇V ∼ , then γ̇∼ is bounded at each place in the set

W∼ − V ∼ = (W∼ − V ∼

1 ) ∪
(
W∼ ∩ (V ∼

1 − V ∼)
)
,

and approximates the component γ̇V ∼ of γ̇V ∼

1
in Ṫ∼

V ∼ .

We shall again use Langlands duality for tori. As in the proof of the last lemma, the

quotient Ṫ∼

V ∼/Ṫ∼

V ∼,W∼ is dual to the group

H1
V ∼(WĖ ,

̂̇T∼)`t
W∼ = H1

V ∼(WĖ ,
̂̇T∼)W∼/H1(WĖ ,

̂̇T )`t.

Recall that H1
V ∼(WĖ ,

̂̇T∼)W∼ is the kernel of the map

H1
V ∼(WĖ ,

̂̇T∼) −→
⊕

w∼∈S∼

H1(Ėw∼, ̂̇T∼),

where H1
V ∼(WĖ ,

̂̇T∼) denotes the subgroup of elements in H1(WĖ ,
̂̇T∼) that are unramified

outside of V ∼, and

S∼ = S∼(Ė, V ) = S(Ė, V ∼).

We have only to show that any class in H1
V ∼(WĖ ,

̂̇T∼)W∼ is locally trivial. Now Ṡ∼ repre-

sents a set of valuations on Ė of positive density. It follows from results on equidistribution

[Se, Theorem 2, p. I-23] that any class in H1
V ∼(WĖ ,

̂̇T∼)W∼ is the inflation of a class in

H1(Ė∼/Ė, ̂̇T∼), for a Galois extension Ė∼ ⊃ Ė that splits Ṫ∼, and is unramified outside

of V ∼. But Ṫ∼ is a maximal torus in a general linear group. We can therefore assume by

Shapiro’s lemma that Gal(Ė∼/Ė) acts trivially on the dual torus ̂̇T∼. Furthermore, any

conjugacy class in Gal(Ė∼/Ė) is the Frobenius class of some valuation in S∼. It follows

that any element in H1(Ė∼/Ė, ̂̇T∼) that is locally trivial at each place in S∼ is in fact

trivial. The group H1
V ∼(WĖ ,

̂̇T )W∼ is therefore actually zero. We conclude that Ṫ∼

V ∼,W∼

equals Ṫ∼

V ∼ , as required. �
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§9. Global Theorems 1 and 2

We are now at the final stage of our induction argument. Our task is to prove Global

Theorems 1 and 2. This will take care of the part of the argument that depends on the

remaining integer dder.

We revert back to the setting of the first half of the paper, in which F is a global

field. Then G is a global K-group over F that satisfies Assumption 5.2 of [I], such that

dim(Gder) = dder. As usual, (Z, ζ) represents a pair of central data for G. Let V be a

finite set of valuations of F that contains Vram(G, ζ). The local results completed in §8

imply that Local Theorems 1′ and 2′ of [I, §6] are valid for functions f in H(GV , ζV ). The

resulting simplification of the formulas established in §2–5 will lead directly to a proof of

the global theorems.

Recall the linear forms Ipar(f), IEpar(f) and SG
par(f) introduced in §2. According to

Local Theorem 1′(a), we have

IEpar(f) − Ipar(f) =
∑

M∈L0

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M,V,ζ)

aM (γ)
(
IEM (γ, f)− IM (γ, f)

)
= 0,

for any f in H(GV , ζV ). If G is quasisplit, the two assertions of Local Theorem 1′(b) imply

that

SG
par(f) =

∑

M∈L0

|WM
0 ||WG

0 |−1
∑

M ′∈Eell(M,V )

ι(M,M ′)
∑

δ′∈∆(M̃ ′,V,ζ̃′)

bM̃
′

(δ′)SG
M (M̃ ′, δ′, f)

=
∑

M∈L0

|WM
0 ||WG

0 |−1
∑

δ∗∈∆(M∗,V,ζ∗)

bM
∗

(δ∗)SG
M (M∗, δ∗, f) = 0,

for any function f in Huns(GV , ζV ). The left hand sides of the expressions (2.4) and (2.5)

in Proposition 2.2 thus vanish. It remains only to consider the corresponding right hand

sides.

We have already finished the part of the general induction argument that applies to

the integer rder. The assertions of Corollary 5.2 therefore hold for any Levi subgroup M

of G, and in particular, if M equals the minimal Levi subgroup M0. In other words, the
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identity

(9.1) IEν,disc(f) − Iν,disc(f) = 0

of Proposition 4.2(a) is valid for any f in the space HM0
(GV , ζV ) = H(GV , ζV ). Similarly,

if G is quasisplit, the identity

(9.2) SG
ν,disc(f) = 0

of Proposition 4.2(b) is valid for any f in the space Huns
M0

(GV , ζV ) = Huns(GV , ζV ). In

particular, the terms

IEt,disc(f) − It,disc(f) =
∑

{ν: ‖Im(ν)‖=t}

(
IEν,disc(f) − Iν,disc(f)

)
, f ∈ H(GV , ζV ),

and

SG
t,disc(f) =

∑

{ν: ‖Im ν‖=t}

SG
ν,disc(f), f ∈ Huns(GV , ζV ),

on the right hand sides of (2.4) and (2.5) both vanish. Having already observed that the

left hand sides of these formulas vanish, we conclude that the sum of the remaining terms

on each right hand side vanishes. In other words,

(9.3)
∑

z

(
IEz,unip(f, S) − Iz,unip(f)

)
= 0, f ∈ H(GV , ζV ),

and

(9.4)
∑

z

SG
z (f, S) = 0, f ∈ Huns(GV , ζV ),

in the case that G is quasisplit.

We have two theorems to establish. The geometric Global Theorem 1 applies to

any finite set of valuations S ⊃ Vram(G, ζ), and to elements γ̇S ∈ ΓE
ell(G,S, ζ) and

δ̇S ∈ ∆E
ell(G,S, ζ) that are admissible in the sense of [I, §1]. According to [II, Proposi-

tion 2.1] (and the trivial case of [II, Corollary 2.2]), the global descent formulas of [II]

129



reduce Global Theorem 1 to the case of unipotent elements. We can therefore assume that

γ̇S and δ̇S belong to the respective subsets ΓE
unip(G,S, ζ) and ∆E

unip(G,S, ζ) of ΓE
ell(G,S, ζ)

and ∆E
ell(G,S, ζ). To deal with this case, we shall apply the formulas (9.3) and (9.4), with

V equal to S, and f = ḟS an admissible function in H(GS , ζS).

The formulas (2.1) and (2.2) provide expansions for the summands on the left hand

side of (9.3). We obtain

∑

z∈Z(G)S,o

∑

α̇S∈ΓE

unip
(G,S,ζ)

(
aG,E
ell (α̇S) − aG

ell(α̇S)
)
ḟS,G(zα̇S)

=
∑

z

∑

α̇S

(
aG,E
unip(α̇S, S) − aG

unip(α̇S, S)
)
ḟS,z,G(α̇S)

=
∑

z

(
IEz,unip(ḟS, S) − Iz,unip(ḟS, S)

)
= 0,

since the identities aG,E
ell (α̇S) = aG,E

unip(α̇S, S) and aG
ell(α̇S) = aG

unip(α̇S, S) are trivial conse-

quences of the fact that V = S. But the linear forms

ḟS −→ ḟS,G(zα̇S), z ∈ Z(G)S,o, α̇S ∈ ΓE
unip(G,S, ζ),

on the subspace of admissible functions in H(GS , ζS) are linearly independent. We conclude

that

aG,E
ell (α̇S) − aG

ell(α̇S) = 0,

for any element α̇S in ΓE
unip(G,S, ζ). This completes the proof of part (a) of Global

Theorem 1 for γ̇S unipotent, and hence in general.

To deal with part (b) of Global Theorem 1, we take G to be quasisplit, and set

∆E,0
unip(G,S, ζ) = ∆E

unip(G,S, ζ)− ∆unip(G,S, ζ).

The formula (2.3) provides an expansion for the summands on the left hand side of (9.4).
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Taking ḟS to be unstable, we obtain
∑

z∈Z(G)S,o

∑

β̇S∈∆E,0

unip
(G,S,ζ)

bGell(β̇S)ḟE
S,G(zβ̇S)

=
∑

z

∑

β̇S∈∆E

unip
(G,S,ζ)

bGunip(β̇S , S)ḟE
S,z,G(β̇S)

=
∑

z

SG
z (ḟS , S) = 0,

since ḟE
S,z vanishes on ∆unip(G,S, ζ). But the linear forms

ḟS −→ ḟE
S,G(zβ̇S), z ∈ Z(G)S,o, β̇S ∈ ∆E,0

unip(G,S, ζ),

on the subspace of admissible functions in Huns(GS , ζS) are linearly independent. We

conclude that

bGell(β̇S) = 0,

for any element β̇S in the complement ∆E,0
unip(G,S, ζ) of ∆unip(G,S, ζ) in ∆E

unip(G,S, ζ).

This completes the proof of part (b) of Global Theorem 1 for δ̇S unipotent, and hence in

general.

The spectral Global Theorem 2 concerns adelic elements π̇ ∈ ΠE
t,disc(G, ζ) and

φ̇ ∈ ΦE
t,disc(G, ζ). We shall apply the formulas (9.1) and (9.2), which pertain to func-

tions f ∈ H(GV , ζV ). Recall that for any f in H(GV , ζV ), ḟ = fuV is a function in the

adelic Hecke algebra H(G, ζ) = H
(
G(A), ζ

)
. Conversely, any ḟ ∈ H(G, ζ) can be obtained

in this way from a function f ∈ H(GV , ζV ), for some finite set V ⊃ Vram(G, ζ).

We combine (9.1) with the expansions in [I, (3.6)] and the first part of [I, Lemma

7.3(a)]. We obtain
∑

π̇∈ΠE

t,disc
(G,ζ)

(
aG,E
disc(π̇) − aG

disc(π̇)
)
ḟG(π̇)

= IEt,disc(ḟ) − It,disc(ḟ)

= IEt,disc(f) − It,disc(f)

=
∑

{ν: ‖Im(ν)‖=t}

(
IEν,disc(f) − Iν,disc(f)

)
= 0,
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for ḟ and f related as above. But the linear forms

ḟ −→ ḟG(π̇), π̇ ∈ ΠE
t,disc(G, ζ),

on H(G, ζ) are linearly independent. We conclude that

aG,E
disc(π̇) − aG

disc(π̇) = 0,

for any element π̇ in Πt,disc(G, ζ). This is the required assertion of part (a) of Global

Theorem 2.

To deal with part (b) of Global Theorem 2, we take G to be quasisplit, and we set

ΦE,0
t,disc(G, ζ) = ΦE

t,disc(G, ζ) − Φt,disc(G, ζ).

We combine (9.2) with the first expansion in [I, Lemma 7.3(b)]. Assume that ḟ belongs

to Huns(G, ζ). Then ḟ = fuV , for some V and some f ∈ Huns(GV , ζV ). We obtain

∑

φ̇∈ΦE,0

t,disc
(G,ζ)

bGdisc(φ̇)ḟE
G(φ̇)

=
∑

φ̇∈ΦE

t,disc
(G,ζ)

bGdisc(φ̇)ḟE
G(φ̇) = SG

t,disc(ḟ)

= SG
t,disc(f) =

∑

{ν: ‖Im(ν)‖=t}

SG
t,disc(f) = 0,

since ḟE
G vanishes on Φt,disc(G, ζ). But the linear forms

ḟ −→ ḟE
G(φ̇), φ̇ ∈ ΦE,0

t,disc(G, ζ),

on Huns(G, ζ) are linearly independent. We conclude that

bGdisc(φ̇) = 0,

for any φ̇ in the complement ΦE,0
t,disc(G, ζ) of Φt,disc(G, ζ) in ΦE

t,disc(G, ζ). This is the

required assertion of part (b) of Global Theorem 2.
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We have shown that the assertions of Global Theorems 1 and 2 are all valid for G. As

we recalled in §1, this implies that all the global theorems in [I, §7] hold for G. With the

proof of Global Theorems 1 and 2, we have completed the part of the induction argument

that depends on the remaining integer dder. We have thus finished the last step of an

inductive proof that began formally in §1, but which has really been implicit in definitions

and results from [I] and [II], and related papers.
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§10. Concluding remarks

We have solved the problems posed in §1. That is, we have proved Local Theorem 1

and Global Theorems 1 and 2. This completes the proof of the local theorems stated in [I,

§6] and the global theorems stated in [I, §7].

The results are valid for any K-group that satisfies Assumption 5.2 of [I]. We recall

once again that any connected reductive group G1 is a component of an essentially unique

K-group G. The theorems for G, taken as a whole, represent a slight generalization of the

corresponding set of theorems for G1.

Recall that Assumption 5.2 of [I] is the assertion that various forms of the fundamental

lemma are valid. It has been established in a limited number of cases [I, §5]. For example,

it holds if G equals SL(p), for p prime. The assumption includes the standard form of the

fundamental lemma for both the group and its Lie algebra. I expect that the equivalence of

the two must be known, for almost all places v, but I have not checked it myself. Granting

this, Assumption 5.2 of [I] also holds if G is an inner K-form of GSp(4) or SO(5).

The theorems yield a stabilization of the trace formula. This amounts to the con-

struction of a stable trace formula, and a decomposition of the ordinary trace formula

into stable trace formulas for endoscopic groups. We shall conclude the paper with a brief

recapitulation of the process.

Suppose that F is global, and that G is a K-group over F with central data (Z, ζ).

Let f be a function in H(G, V, ζ), where V is a finite set of valuations of F that contains

Vram(G, ζ). The ordinary trace formula is the identity given by two different expansions

I(f) =
∑

M∈L

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M,V,ζ)

aM (γ)IM(γ, f)(10.1)

and

I(f) =
∑

t

It(f)(10.2)

=
∑

t

∑

M∈L

|WM
0 ||WG

0 |−1

∫

Πt(M,V,ζ)

aM (π)IM(π, f)dπ
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of a linear form I(f) on H(G, V, ζ). The stable trace formula applies to the case that G is

quasisplit. It is the identity given by two different expansions

S(f) =
∑

M∈L

|WM
0 ||WG

0 |−1
∑

δ∈∆(M,V,ζ)

bM (δ)SM (δ, f)(10.3)

and

S(f) =
∑

t

St(f)(10.4)

=
∑

t

∑

M∈L

|WM
0 ||WG

0 |−1

∫

Φt(M,V,ζ)

bM (φ)SM (φ, f)

of a stable linear form S(f) = SG(f) on H(G, V, ζ). The theorems assert that the terms

in these two expansions are in fact stable, and that the more complicated expansions in [I]

reduce to the ones above. (See [I, Lemma 7.2(b), Lemma 7.3(b), (10.5) and (10.18)].) The

actual stabilization can be described in terms of the endoscopic trace formula, a priori, a

third trace formula. It is the identity given by two different expansions

IE(f) =
∑

M∈L

|WM
0 ||WG

0 |−1
∑

γ∈ΓE(M,V,ζ)

aM,E(γ)IEM(γ, f)(10.5)

and

IE(f) =
∑

t

IEt (f)(10.6)

=
∑

t

∑

M∈L

|WM
0 ||WG

0 |−1

∫

ΠE

t
(M,V,ζ)

aM,E(π)IEM(π, f)dπ

of a third linear form IE(f) on H(G, V, ζ). The theorems assert that there is a term by

term identification of these two expansions with the original ones.

The linear form I(f) is defined explicitly by either of the two expansions (10.1) and

(10.2). The other two linear forms are defined inductively in terms of I(f) by setting

(10.7) IE(f) =
∑

G′∈E0
ell

(G,V )

ι(G,G′)Ŝ′(f ′) + ε(G)S(f),

and also IE(f) = I(f) in case G is quasisplit. Since the terms in (10.3) and (10.4) are

stable, the linear form S(f) is indeed stable. Since the terms in (10.5) and (10.6) are equal
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to the corresponding terms in (10.1) and (10.2), respectively, IE(f) equals I(f) in general.

The definition (10.7) therefore reduces to the identity

(10.8) I(f) =
∑

G′∈E(G,V )

ι(G,G′)Ŝ′(f ′).

In particular, it represents a decomposition of the ordinary trace formula into stable trace

formulas for endoscopic groups.

The reason for stabilizing the trace formula is to establish relationships among the

spectral coefficients aG(π), bG(φ) and aG,E(π). These are of course the terms that concern

automorphic representations. The relationships among them are given by Global Theorem

2. The proof of this theorem is indirect, being a consequence of the relationships established

among the complementary terms, and of the trace formulas themselves. Having completed

the process, one might be inclined to ignore the stable trace formula, and the relationships

among the complementary terms. However, the general stable trace formula is likely to

have other applications. For example, its analogue for function fields will surely be needed

to extend the results of Lafforgue for GL(n).

The theorems also yield a stabilization of the local trace formula. Suppose that F is

local, and that G is a local K-group over F with central data (Z, ζ). Let f = f1 × f2 be

a function in H(G, V, ζ), where V = {v1, v2} as in §6. The ordinary local trace formula is

the identity given by two different expansions

I(f) =
∑

M∈L

|WM
0 ||WG

0 |−1(−1)dim(AM /AG)

∫

ΓG-reg,ell(M,V,ζ)

IM (γ, f)dγ(10.9)

and

Idisc(f) =

∫

Tdisc(G,V,ζ)

iG(τ)fG(τ)dτ(10.10)

of a linear form I(f) = Idisc(f) on H(G, V, ζ). The stable local trace formula applies to the

case that G is quasisplit. It is the identity given by two different expansions

S(f) =
∑

M∈L

|WM
0 ||WG

0 |−1(−1)dim(AM /AG)

∫

∆G-reg,ell(M,V,ζ)

n(δ)−1SM (δ, f)dδ(10.11)

and
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Sdisc(f) =

∫

Φdisc(G,V,ζ)

sG(φ)fG(φ)dφ(10.12)

of a stable linear form

S(f) = SG(f) = SG
disc(f) = Sdisc(f)

on H(G, V, ζ). The theorems assert that the terms in these two expansions are in fact

stable, and that the more complicated expressions (6.6) and (6.12) reduce to the ones

above. (See [A10, (9.8)].) The actual stabilization can again be described in terms of what

is a priori a third trace formula. The endoscopic local trace formula is the identity given

by two different expansions

IE(f) =
∑

M∈L

|WM
0 ||WG

0 |−1(−1)dim(AM /AG)

∫

ΓG-reg,ell(M,V,ζ)

IEM (γ, f)dγ(10.13)

and

IEdisc(f) =

∫

TE

disc
(G,V,ζ)

ιG,E(τ)fG(τ)dτ(10.14)

of a third linear form IE(f) = IEdisc(f) on H(G, V, ζ). The theorems assert that there is a

term by term identification of these two expansions with the original ones.

The linear form I(f) = Idisc(f) is defined by the right hand side of (10.9) or (10.10).

The other two linear forms are defined inductively in terms of I(f) by setting

(10.15) IE(f) =
∑

G′∈E0
ell

(G)

ι(G,G′)Ŝ′(f ′) + ε(G)S(f),

and also IE(f) = I(f) in case G is quasisplit. Since the terms in (10.11) and (10.12) are

stable, the linear form S(f) is indeed stable. Since the terms in (10.13) and (10.14) are

equal to the corresponding terms in (10.9) and (10.10), respectively, IE(f) equals I(f) in

general. The definition (10.15) therefore reduces to the identity

(10.16) I(f) =
∑

G′∈E(G)

ι(G,G′)Ŝ′(f ′).

In particular, it represents a decomposition of the ordinary local trace formula into stable

local trace formulas for endoscopic groups.
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It is interesting to note that the stabilization of the local trace formula is almost

completely parallel to that of the global trace formula. This seems remarkable, especially

since the terms in the various local expansions stand for completely separate objects. The

stable local trace formula is not so deep as its global counterpart. It has no direct bearing

on automorphic representations, even though it was required at one point for the global

stabilization. However, one could imagine direct applications of the stable local trace

formula to questions in p-adic algebraic geometry.
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