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Abstract. Differential equations have a central place in the invariant
harmonic analysis of Harish-Chandra on real groups. Related differential
equations also play a role in the noninvariant harmonic analysis that
arises from the study of automorphic forms. We shall establish some
interesting identities among these latter equations. The identities we
obtain are likely to be useful for the comparison of automorphic forms
on different groups.

1. The differential equations. Suppose that G is a real, reductive algebraic group,

and that T is a maximal torus in G which is defined over R. We write Treg(R) for the

open dense subset of elements in T (R) that are strongly regular, in the sense that their

centralizer in G equals T . Harish-Chandra reduced many fundamental questions on the

harmonic analysis of G(R) to the study of a family of functions on Treg(R). We are referring

to the invariant orbital integrals

IG(γ, f) = JG(γ, f) = fG(γ) , γ ∈ Treg(R), f ∈ C
(
G(R)

)
,

which can be defined for any function f in Harish-Chandra’s Schwartz space C
(
G(R)

)
by

(1.1) IG(γ, f) = |D(γ)|
1
2

∫

T (R)\G(R)

f(x−1γx)dx , γ ∈ Treg(R).
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(See [HC6].) As usual, dx stands for a G(R)-invariant measure on T (R)\G(R),

D(γ) = det
(
1 − Ad(γ)

)
g/t

is the Weyl discriminant, and g and t denote the respective Lie algebras of G and T .

Differential equations play a central role in Harish-Chandra’s theory of orbital inte-

grals. We first recall the Harish-Chandra homomorphism, which is a map

hT = hT,G : Z −→ S
(
t(C)

)
,

from the center Z = Z(G) of the universal enveloping algebra of g(C) to the symmetric

algebra on t(C). The homomorphism is injective, and its image is the subalgebra S
(
t(C)

)Ω

of elements in S
(
t(C)

)
that are invariant under the Weyl group Ω = Ω(G, T ) of (G, T ).

Any element h ∈ S
(
t(C)

)
can be identified with a translation invariant differential operator

∂(h) on T (R). Harish-Chandra’s differential equations take the form

(1.2) IG(γ, zf) = ∂
(
hT (z)

)
IG(γ, f), z ∈ Z.

It is of course implicit in the equations that IG(γ, f) is a smooth function of γ ∈ Treg(R).

This is a surprisingly deep fact. Harish-Chandra actually used the analogous equations

for functions in C∞
c

(
G(R)

)
[HC3, Theorem 3] to establish the absolute convergence of the

orbital integral (1.1), the smoothness of the resulting function of γ, and the differential

equations (1.2) for Schwartz functions. (See [HC4, Theorem 3], [HC5, Theorem 4], [HC6,

Theorem 5], and [HC7, §17].)

Invariant orbital integrals are a special case of a more general family of tempered

distributions. These distributions are the weighted orbital integrals, which first arose in

the study of automorphic forms. They depend on a Levi component M of some parabolic

subgroup of G over R which contains T , as well as a choice of maximal compact subgroup

KR of G(R). Let aM be the Lie algebra of the R-split component AM of the center of
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M . We assume that aM is orthogonal to the Lie algebra of KR with respect to the Killing

form.

The weighted orbital integral of a Schwartz function f ∈ C
(
G(R)

)
is defined by a

noninvariant integral

(1.3) JM (γ, f) = |D(γ)|
1
2

∫

T (R)\G(R)

f(x−1γx)vM (x)dx , γ ∈ Treg(R),

over the conjugacy class of γ. The weight factor

vM (x) = lim
ζ→0

∑

P∈P(M)

vP (ζ, x)θP (ζ)−1

is obtained from the (G,M)-family of functions

vP (ζ, x) = e−ζ(HP (x)), P ∈ P(M),

of ζ ∈ ia∗M , according to the limit in [A2, Lemma 6.2]. We are following standard nota-

tion and terminology, as for example in [A2]. Thus, P(M) denotes the set of parabolic

subgroups P = MNP of G over F with Levi component M , while HP : G(R) → aM is the

function of Harish-Chandra defined by the decomposition

G(R) = NP (R)M(R)KR .

The function θP (ζ) is a product of linear forms ζ(α∨), taken over the simple roots α of

(P,AM), and scaled by a factor that depends on a choice of metric on aM . The integral

(1.3) converges absolutely, and defines a smooth function of γ in Treg(R) [A1, §8]. The

proof of these facts exploits the techniques Harish-Chandra applied to (1.1). In particular,

it relies on a family of differential equations parametrized by the operators in Z.

The differential equations satisfied by JM (γ, f) are more complicated than the earlier

ones. Instead of having just one term, the right hand side consists of a sum of terms, taken

over the finite set L(M) = LG(M) of Levi subgroups of G that contain M . If L belongs
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to L(M), S
(
t(C)

)Ω
is a subalgebra of S

(
t(C)

)Ω(L,T )
. There is consequently an injective

homomorphism

h−1
T,L ◦ hT : z −→ zL , z ∈ Z,

from Z into Z(L). The differential equations take the form

(1.4) JM (γ, zf) =
∑

L∈L(M)

∂L
M (γ, zL)JL(γ, f) ,

where ∂L
M (γ, zL) is a (real) analytic differential operator on Treg(R) that depends only on

L. (See [A3, Proposition 11.1] or [A1, Lemma 8.5].) For the term with L = M , we have

(1.5) ∂M
M (γ, zM) = ∂

(
hT,M (zM )

)
= ∂

(
hT (z)

)

[A3, Lemma 12.4]. This is just the differential operator that occurs on the right hand side

of (1.2).

Weighted orbital integrals have two drawbacks. They depend on KR, and they are not

invariant under conjugation of f by G(R). However, there is a natural way to construct a

parallel family of distributions with better properties. Following [A5, §3], for example, we

define invariant tempered distributions

IM (γ, f) = IG
M (γ, f) , γ ∈ Treg(R),

on G(R) inductively by a formula

(1.6) IM (γ, f) = JM (γ, f)−
∑

L∈L(M)
L6=G

ÎL
M

(
γ, φL(f)

)
.

Here

φL : C
(
G(R)

)
−→ I

(
L(R)

)

is the continuous linear map from C
(
G(R)

)
to the invariant Schwartz space I

(
L(R)

)

of L(R), defined by the canonically normalized weighted characters of [A5]. The space
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I
(
L(R)

)
can be identified with the family of functions on Πtemp

(
L(R)

)
(the set of irre-

ducible tempered representations of L(R)) of the form

gL : π −→ gL(π) = tr
(
π(g)

)
, g ∈ C

(
L(R)

)
,

while ÎL
M (γ) is the continuous linear form on I

(
L(R)

)
defined by

ÎL
M (γ, gL) = IL

M (γ, g) .

The tempered distributions IM (γ) on G(R) are both invariant and independent of the

choice of KR. They are the more natural generalizations of invariant orbital integrals.

The invariant distributions satisfy the same differential equations as the noninvariant

ones. It follows from the definition of φL that

φL(zf) = ẑLφL(f) , z ∈ Z, f ∈ C
(
G(R)

)
,

where ẑL is the function on Πtemp

(
L(R)

)
defined by the infinitesimal character. An easy

induction argument on (1.4) and (1.6) then yields differential equations

(1.7) IM (γ, zf) =
∑

L∈L(M)

∂L
M (γ, zL)IL(γ, f) ,

for elements z ∈ Z. Recall that ∂M
M (γ, zM) is the differential operator that occurs on

the right hand side of (1.2). In particular, (1.7) represents a natural generalization of

(1.2). We can regard it as a nonhomogeneous family of linear differential equations in

an unknown function γ → IM (γ, f). One is often in a position to assume inductively

that the functions γ → IL(γ, f) with L 6= M are, in one sense or another, known. The

corresponding summands in (1.7) can therefore be regarded as the nonhomogeneous terms.

We are going to investigate the behaviour of the differential equations (1.7) under

endoscopic transfer. To allow for induction arguments, it is convenient to work with a

slight generalization of the objects above. Suppose that Z is a central torus in G over R,
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and that ζ is a character on Z(R). We assume that Z is induced, by which we mean that

Z(R) is a product of a number of a number of copies of C∗ and of R∗. There is a natural

Schwartz space C
(
G(R), ζ

)
of ζ−1-equivariant functions on G(R), and the distributions

IG(γ, f), JM (γ, f) and IM (γ, f) can all be defined for functions f in C
(
G(R), ζ

)
. The

resulting functions of γ then lie in the space C∞
(
Treg(R), ζ

)
of smooth, ζ−1-equivariant

functions on Treg(R). We can of course identify C
(
G(R), ζ

)
with a space of sections of a line

bundle on G(R)/Z(R). Let Z(ζ) = Z(G, ζ) be the algebra of G(R)-biinvariant differential

operators on this line bundle. The differential equations (1.2), (1.4) and (1.7) then hold

for functions f ∈ C
(
G(R), ζ

)
and elements z ∈ Z(ζ).

2. Differential operators and transfer. In this section, we shall consider some

elementary points on the transfer of differential operators. We recall that if φ: X → Y

is a diffeomorphism between differential manifolds, and φ∗: C∞(Y ) → C∞(X) is the

corresponding pullback map of functions,

φ : D −→ φD = (φ∗)−1 ◦D ◦ φ∗

is an isomorphism from the space of (smooth) differential operators onX to the correspond-

ing space for Y . A similar remark applies to differential operators on vector bundles. For

example, C∞
(
Treg(R), ζ

)
is the space of smooth sections of a line bundle on Treg(R)/Z(R),

so we can consider differential operators ∂ on this space. Let ΩR = ΩR(G, T ) be the sub-

group of elements in the Weyl group Ω that map T (R) to itself. Then ΩR is a group of

diffeomorphisms of Treg(R) that contains the subgroup Ω0
R

= Ω
(
G(R), T (R)

)
of elements

in Ω induced from G(R). We shall say that ∂ is ΩR-invariant if ω∂ = ∂ for every ω in ΩR.

We would like to examine the behaviour of differential operators on C∞
(
Treg(R), ζ

)

under the Langlands-Shelstad transfer factors. Let ψ: G→ G∗ be a quasisplit inner twist

for G, fixed for once and for all, and let G′ be an endoscopic group for G. (See [L-S, (1.2)].)
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We assume that G′ has a maximal torus T ′ over R that is an image of T [L-S, (1.3)]. This

means that there is an isomorphism from T to T ′ over R of the form

φ = i−1 ◦ Int(h) ◦ ψ ,

where i is an admissible embedding of T ′ into G∗ (in the sense of [L-S, (1.3)]), and h is

an element in G∗(C) such that hψ(T )h−1 equals i(T ′). We identify φ with the associated

diffeomorphism from Treg(R) onto the set T ′
G-reg(R) of strongly G-regular elements in

T ′(R). The map φ is not uniquely determined by T ′ and T . However, any other such

map is of the form φ ◦ ω, for some element ω ∈ ΩR. In particular, the restriction of φ

to the subgroup Z of T is independent of the choice of φ, and allows us to identify Z

with a subgroup of T ′. If ∂ is a differential operator on C∞
(
Treg(R), ζ

)
, φ∂ is then a

differential operator on C∞
(
T ′

reg(R), ζ
)
. If ∂ is ΩR-invariant, we shall write ∂

′
= φ∂, since

this differential operator is independent of the choice of φ. We shall reserve the symbol ∂ ′

for a differential operator that is more directly related to the transfer factor for G′.

Recall that G′ really stands for a full endoscopic datum (G′,G′, s′, ξ′) for G [L-S, (1.2)].

The transfer factor depends on such a datum, as well as some supplementary objects. We

fix a central extension G̃′ of G′ by an induced torus C̃ ′ over R, and an L-embedding

ξ̃′: G′ → LG̃′. (See [L-S, (4.4)] and [A4, §2].) If T ′ ⊂ G′ is an image of T as above, let

T̃ ′ be the preimage of T ′ in G̃′. The transfer factor can then be defined as a function

∆G(σ′, γ) on T̃ ′
G-reg(R) × Treg(R) [L-S, §3 and (4.4)], [K-S, §4 and (5.1)]. The preimage

Z̃ ′ of Z in G̃′ is a central induced torus in G̃′ over R that contains C̃ ′. According to

[L-S, Lemma 4.4A], there is a character η̃′ on Z̃ ′(R) such that

(2.1) ∆G(σ′ε, γεG) = η̃′(ε)−1∆G(σ′, γ),

for any element ε ∈ Z̃ ′(R) with image εG in Z(R). We write ζ̃ ′ for the character on Z̃ ′(R)

that is the product of η̃′ with pullback of ζ. (In [A4] and [A6], it was C̃ ′ and η̃′ that were

denoted by Z̃ ′ and ζ̃ ′.)
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The role of the transfer factor is of course to map functions on Treg(G) to functions

on T̃ ′
G-reg(R). If aG belongs to C∞

(
Treg(R), ζ

)
, the function

(2.2) a′(σ′) =
∑

γ

∆G(σ′, γ)aG(γ) , σ′ ∈ T̃ ′
G-reg(R),

defined by a sum over γ in the set of Ω0
R
-orbits in Treg(R), belongs to C∞

(
T̃ ′

G-reg(R), ζ̃ ′
)
.

The sum can be taken over a finite set, of order |Ω0
R
\ΩR|, that represents the set of

conjugacy classes in the stable conjugacy class of σ′ in G(R). We shall extend the dif-

ferential operator ∂
′

on C∞
(
T ′

G-reg(R), defined above, to a differential operator ∂ ′ on

C∞
(
T̃ ′

G-reg(R), ζ̃ ′
)
.

Following Shelstad [S3], we first construct a homomorphism from C∗ into Z(
̂̃
G′)0,

where as usual, Z(
̂̃
G′) denotes the center of the dual group

̂̃
G′ of G̃′. Recall that G′

represents an endoscopic datum (G′,G′, s′, ξ′), in which G′ is a split extension of the Weil

group WR of R by Ĝ′, and ξ′ is an L-embedding of G′ into LG. For any u ∈ C
∗, we

choose a point δ′(u) ∈ G′ such that the element ξ′
(
δ′(u)

)
in LG is of the form ε(u) × u,

for some ε(u) ∈ Z(Ĝ). The element ξ̃′
(
δ′(u)

)
in LG̃′ is then of the form ε̃′(u) × u, for

some ε̃′(u) ∈ z(
̂̃
G′). Now Z(Ĝ)0 is a subgroup of Z(

̂̃
G)0. The quotient ε(u)ε̃′(u)−1 is

independent of the choice of δ′(u), and we obtain a homomorphism

u −→ z(u) = ε(u)ε̃′(u)−1 , u ∈ C∗,

from C∗ into Z(
̂̃
G′)0.

Let X = X∗

(
Z(

̂̃
G′)0

)
be the dual of the character module of Z(

̂̃
G′)0. We can identify

X ⊗ C with the Lie algebra of Z(
̂̃
G′)0, which in turn is an extension of the Lie algebra of

̂̃
Z ′. We write

z(u) = uµ′

uν′

, u ∈ C∗,

for elements µ′, ν′ ∈ X ⊗ C such that µ′ − ν′ lies in X.
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Lemma 2.1. The projection of µ′ onto the Lie algebra of
̂̃
Z ′ equals the differential dη̃′ of

the character η̃′ on Z̃ ′(R).

Proof. The proof is an exercise in a few of the basic definitions from [L-S]. We can

take G̃′ to be an endoscopic datum for G̃, where G̃ is a z-extension of G [K, §1]. Given our

construction of µ′, and the definition of the transfer factor for (G,G′) in terms of (G̃′, G̃)

[L-S, (4.4)], we see that the lemma holds for G if it can be established for G̃. We may

therefore assume that G̃′ = G′, G′ = LG′, and ξ̃′ = 1. Consequently, Z̃ ′ equals Z, and

ξ′(u) = z(u) × u = uµ′

uν′

× u , u ∈ C∗.

The character η̃′ is constructed in the proof of [L-S, Lemma 4.4A]. It equals the

restriction to Z(R) of a character on T (R) that is defined by the Langlands correspondence

for tori. That is, η̃′ is dual to a 1-cocycle of WR in Ẑ which is the composition of a 1-cocycle

a of WR in T̂ with the projection T̂ → Ẑ. The latter is defined in [L-S, (3.5)]. It is given

by

a(w) = ξ′
(
ξ′T (w)

)
ξT (w)−1 , w ∈WR,

for certain L-embeddings ξ′T : LT → LG′ and ξT : LT → LG. The L-embeddings are such

that they have the same image under the projections of LG′ and LG onto LZ. Thus, a(w)

and ξ′(w) have the same image in Ẑ, and η̃′ is dual to the 1-cocycle of WR in Ẑ obtained

from ξ′. The lemma then follows easily from the Langlands correspondence for Z. �

A differential operator ∂ on Treg(R) can of course be identified with its symbol. This

is a function

∂(γ) : λ −→ ∂(γ, λ) , γ ∈ Treg(R), λ ∈ t∗(C),

on Treg(R), with values in the algebra of polynomials on the dual space t∗(C) of t(C). More

generally, let t∗(C,−dζ) be the affine subspace of elements in t∗(C) whose projections onto

the Lie algebra of Ẑ equal −dζ. The symbol of a differential operator ∂ on C∞
(
Treg(R), ζ

)
is
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then a function ∂(γ, ξ) on Treg(R)/Z(R) with values in the algebra of polynomial functions

on the affine space t∗(C,−dζ). Now the dual (t′)∗ of the Lie algebra of T ′ is contained in

the dual (̃t′)∗ of the Lie algebra of T̃ ′. We can certainly identify the vector µ′ above with

an element in (̃t′)∗(C). It is an easy consequence of Lemma 2.1 that

λ′ −→ λ
′

= λ′ + µ′

is an isomorphism from the affine space (̃t′)∗(C,−dζ̃ ′) onto the affine space (t′)∗(C,−dζ).

It follows that there is a canonical map ∂
′
→ ∂′, from the space of differential operators

on C∞
(
T ′

reg(R), ζ
)

to the space of differential operators on C∞
(
T̃ ′

G-reg(R), ζ̃ ′
)
, such that

(2.3) ∂′(σ′, λ′) = ∂
′
(σ′, λ

′
) , λ′ ∈ (̃t′)∗(C,−dζ̃ ′).

Here, σ′ denotes a point in T̃ ′
G-reg(R) with image σ′ in T ′

G-reg(R). In particular, the

composition

∂ −→ ∂
′
−→ ∂′

provides a map from the space of ΩR-invariant differential operators on C∞
(
Treg(R), ζ

)
to

the space of differential operators on C∞
(
T̃ ′

G-reg(R), ζ̃ ′
)
.

The following lemma, which is more or less implicit in the work of Shelstad, justifies

the construction.

Lemma 2.2. If ∂ is a ΩR-invariant differential operator on C∞
(
Treg(R), ζ

)
, we have

(∂aG)′ = ∂′a′ , aG ∈ C∞
(
Treg(R), ζ

)
.

Proof. As in Lemma 2.1, it is easy to reduce the proof to a special case. It follows

from the definition of ∂′, the formula (2.1), and the reduction in [L-S, (4.4)], that the

required identity,

(2.4)
∑

γ

∆G(σ′, γ)(∂aG)(γ) = ∂′
( ∑

γ

∆G(σ′, γ)aG(γ)
)
,
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holds for G if it can be established for a z-extension G̃ of G. We may therefore assume

that G̃′ = G′, G′ = LG′, and ξ̃′ = 1. In particular, we can use the basic construction of

the transfer factor in [L-S, §3].

Let C be a small open set in Treg(R), and let C be a fixed image [L-S, (1.3)] of C in

T ′
G-reg(R). Then for any σ′ ∈ C ′, there is a unique point γ′ ∈ C such that ∆G(σ′, γ′) 6= 0.

The sums in (2.4) are over orbits γ of Ω0
R

in Treg(R). They can each be replaced by a

product of |Ω0
R
|−1 with the corresponding sum over the points γ in {ωγ ′ : ω ∈ ΩR}. It is

not hard to see from the definitions in [L-S, (3.4)] that the functions

σ′ −→ ∆G(σ′, ωγ′)∆G(σ′, γ′)−1 , σ′ ∈ C ′, ω ∈ ΩR,

are constant. (See for example [K-S, Theorem 5.1.D].) Since ∂ is ΩR-invariant, we see that

(2.4) would follow if we could prove the identity

∆G(σ′, γ′) ◦ ∂ = ∂′ ◦ ∆G(σ′, γ′) , σ′ ∈ C ′.

Now ∆G(σ′, γ′) is a product of four terms, which depend individually on a fixed admissible

embedding i: T ′ → T ∗ of T ′ into G∗ (as well as auxiliary a- and χ-data). (The fifth term

∆IV(σ′, γ′) from [L-S, (3.6)] does not occur, since we have included the factor |D(γ)|
1
2 in

the definition of orbital integral.) The terms ∆II(σ
′, γ′) and ∆2(σ

′, γ′) in the product are

defined explicitly as functions of the image σ∗ of σ′ in T ∗
reg(R) [L-S, (3.3), (3.5)]. The other

two terms are independent of (σ′, γ′). Identifying ∂ and ∂′ with differential operators on

T ∗
reg(R), we conclude that (2.4) would be valid if we could establish the identity

(2.5)
(
∆II(σ

∗)∆2(σ
∗)

)
◦ ∂ = ∂′ ◦

(
∆II(σ

∗)∆2(σ
∗)

)
.

The proof of (2.5) is not difficult, but would entail a recapitulation of a number of

other notions from [L-S]. Rather than take the paper too far from its original focus, we

shall leave the details to the reader. It is instructive to compare the definitions in [L-S,

(3.3), (3.5)] with the earlier constructions of Shelstad [S.4, (3.1)-(3.3)] for real groups.
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Shelstad is actually planning a paper that would relate the results of [S.1]–[S.4] with the

general definitions of [L-S]. �

We have two examples in mind. The first is the standard case of a ΩR-invariant

differential operator ∂ on C∞
(
Treg(R), ζ

)
of constant coefficients. The symbol of ∂ is

then an ΩR-invariant polynomial on t∗(C,−dζ). In other words, ∂ equals ∂
(
hT (z)

)
, for

a differential operator z in the algebra Z(G, ζ) defined at the end of §1. The symbol

of ∂
(
hT (z)

)′
is a polynomial on (t′)∗(C,−dζ) that is Ω(G′, T ′)-invariant. The symbol of

∂
(
hT (z)

)′
is a polynomial on (̃t′)∗(C,−dζ̃ ′) that is easily seen to be invariant under the

Weyl group Ω(G̃′, T̃ ′). We obtain injective homomorphisms z → z′ and z → z′ from

Z(G, ζ) to Z(G′, ζ) and Z(G̃′, ζ̃ ′) respectively, such that

∂
(
hT (z)

)′
= ∂

(
hT ′(z′)

)

and

(2.6) ∂
(
hT (z)

)′
= ∂

(
h

T̃ ′(z
′)

)
.

The other example comes from the differential equations (1.7). As we remarked at

the end of §1, these equations hold if f is a function in C
(
G(R), ζ

)
and z is an operator in

Z(G, ζ). Recall that M is a Levi subgroup of G that contains T . Then

∂G
M (z) = ∂G

M (γ, z) , γ ∈ Treg(R),

is a differential operator on C∞
(
Treg(R), ζ

)
. (As in §1, we shall usually include γ in the

notation to keep track of the variable of differentiation.)

Lemma 2.3. For any z ∈ Z(G, ζ), the differential operator ∂G
M (z) is ΩR(M,T )-invariant.

Proof. The lemma is a consequence of the construction in [A3, §12], the point of

which was to compute the operators ∂L
M (zL) = ∂L

M (γ, zL) from the nonstandard terms in

Harish-Chandra’s radial decomposition [HC1]. Suppose that a given element ω ∈ ΩR(M,T )
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is induced from the adjoint action of an element m ∈M(C). Then Ad(m) maps z to itself.

Therefore Ad(m) also maps the right hand side of the equation [A3, (12.1)] to itself.

Combining this property with the various definitions from [A3, §12], one sees without

difficulty that ∂G
M (z) is invariant under ω. (See the remarks on p. 286 of [A3].) �

We can therefore apply the earlier discussion (with G replaced by M) to the operator

∂G
M (z). It follows from Lemma 2.3 that ∂

G

M (z)′ and ∂G
M (z)′ are well defined differential

operators on C∞
(
T ′

G-reg(R), ζ
)

and C∞(T̃ ′
G-reg(R), ζ̃ ′

)
respectively. To match the notation

of §1, we shall generally write

∂
G

M (z)′ = ∂G
M (σ′, z) , σ′ ∈ T ′

G-reg(R),

and

(2.7) ∂G
M (z)′ = ∂G

M (σ′, z) , σ′ ∈ T̃ ′
G-reg(R).

3. The stabilization. We shall now stabilize the differential operators that occur

in the equation (1.7). Lemma 2.2, or rather its analogue for M , provides a stabilization

of sorts for these differential operators. However, we are looking for something more. We

would like to stabilize the operators ∂G
M (γ, z) as functions of z, as well as of γ. We shall

apply a construction that is suggested by the conjectural stabilization of weighted orbital

integrals in [A5] and [A6].

We begin by allowing M to play the role of G in the general discussion of §2. In

particular, we let M ′ denote a fixed endoscopic datum (M ′,M′, s′M , ξ′M) for M . We

assume that M ′ is elliptic [A4, §2], and that T ′ ⊂ M ′ is a fixed maximal torus over R

that is an image of T (relative to M). We also fix a central extension M̃ ′ of M by an

induced torus C̃ ′, and an L-embedding ξ̃′M : M′ → LM̃ ′. We then obtain objects Z̃ ′, η̃′

and ζ̃ ′, relative to M . There is no loss of generality in assuming that M′ is actually an

L-subgroup of LM and that ξ′M is the identity embedding of M′ into LM . This allows us
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to introduce the family EM ′(G) of endoscopic data (G′,G′, s′, ξ′) for G that was defined in

[A6]. The objects in EM ′(G) are taken only modulo translation of s′ by Z(Ĝ)Γ, the group

of invariants in Z(Ĝ) under Γ = Gal(C/R). They are parametrized by Z(M̂)Γ/Z(Ĝ)Γ, and

are constructed in a simple way from M ′. The choices of M̃ ′ and ξ̃′M for M determine a

central extension G̃′ of any G′ in EM ′(G) by C̃ ′, and an L-embedding G′ → LG̃′. (See [A6,

§3].) The set EM ′(G) is infinite if M 6= G. However, there are only finitely many elements

G′ in EM ′(G) that are elliptic, or equivalently, such that the coefficient

ιM ′(G,G′) = |Z(M̂ ′)Γ/Z(M̂)Γ| |Z(Ĝ′)Γ/Z(Ĝ)Γ|−1

is nonzero.

The stabilization of ∂G
M (γ, z) is an example of a general construction that includes

both a definition and an identity that has to be proved. We shall state it as a theorem.

Since the construction is inductive, we shall formulate it so that the objects (G, T,M, ζ)

and (M ′, T ′) (together with (M̃ ′, ξ̃′M )) above are allowed to vary.

Theorem 3.1. For any (G, T,M, ζ), with G quasisplit, there are differential operators

δG
M (σ, z) , σ ∈ Treg(R), z ∈ Z(G, ζ),

on C∞
(
Treg(R), ζ

)
with the following property. For any (G, T,M, ζ) at all, and any

(M ′, T ′), the identity

(3.1) ∂G
M (σ′, z) =

∑

G′∈EM′ (G)

ιM ′(G,G′)δG̃′

M̃ ′
(σ′, z′) σ′ ∈ T̃ ′

G-reg(R),

is valid for every operator z ∈ Z(G, ζ).

The proof of the theorem will take up the rest of the section. There will be two

ingredients. One is the construction of the differential operators ∂G
M (γ, z) [A3, §12] that

was based on Harish-Chandra’s radial decomposition [HC1]. The other, which will come

later, is a stable descent formula like those of [A6, §7].
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We shall first observe that ∂G
M (γ, z) comes from a (G,M)-family. Following notation

from [A3, §12], we set

(3.2) ∂P (Λ, γ, z) =

r∑

i=1

〈
µP (Xi),Λ

〉
∂i(γ, z) ,

for any P ∈ P(M) and Λ ∈ ia∗M . For each i, ∂i(γ, z) can be taken to be a differential

operator on C∞
(
Treg(R), ζ

)
, and µP (Xi) is an element in the symmetric algebra S

(
aM (C)

)
.

It follows from the definition of µP (Xi) on p. 283 of [A3] that

〈
µP (Xi),Λ

〉
, P ∈ P(M),

is a (G,M)-family. Therefore

∂P (Λ, γ, z) , P ∈ P(M),

is a (G,M)-family of functions of Λ, with values in the space of differential operators on

C∞
(
Treg(R), ζ

)
. It is then an easy consequence of Lemma 12.1 of [A3] that

∂G
M (γ, z) = lim

Λ→0

∑

P∈P(M)

∂P (Λ, γ, z)θP (Λ)−1 .

The next step will be to reduce Theorem 3.1 to a statement about the complex group

G(C). For this, we shall assume that ζ equals 1 (the trivial character on the trivial torus

Z = 1). The terms ∂i(γ, z) in (3.2) are real analytic differential operators on Treg(R). One

of the points of the construction is that these operators do not really depend on the real

form g(R) of g(C). They are the restrictions of complex analytic differential operators

obtained by applying the construction to the complex group G(C). We have been working

strictly with real groups, so we shall write H1 = ResC/R(HC), for any group H over R.

Then M1 is a Levi subgroup of G1, and aM comes with a linear isometric embedding into

the real vector space aM1
(relative to suitable metrics on the two spaces). In fact, the

triplet (R, G1,M1) satisfies the conditions in [A6, §4] for being a satellite of (R, G,M).
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Let z1 ∈ Z(G1) be the biinvariant complex analytic differential operator on G1(R) =

G(C) corresponding to a given z ∈ Z(G). We could certainly apply the definition (3.2)

to (G1,M1, T1, z1). We can equally well apply it to (G1, T1, T1, z1), since T1 is also a Levi

subgroup of G1. Taking the latter course, we obtain a (G1, T1)-family of functions

∂P1
(Λ1, γ1, z1) , P1 ∈ P(T1),

of Λ1 ∈ ia∗T1
, with values in the space of complex analytic differential operators on

T1,reg(R) = Treg(C). Now in each of these functions, we can restrict Λ1 to the linear

subspace ia∗M of ia∗T1
, and we also can restrict γ1 to the real submanifold Treg(R) of

Treg(C). The first operation is an example of a general procedure in [A6, §4]. It provides

a (G,M)-family of functions

∂P (Λ, γ1, z1) = ∂P1
(Λ, γ1, z1) , P ∈ P(M),

of Λ ∈ ia∗M , where P1 ∈ P(M1) is any group whose closed chamber in aT1
contains the

chamber of P in aM . The second operation, the restriction of γ1, then gives a (G,M)-family

of functions

∂P (Λ, γ, z1) , P ∈ P(M),

with values in the space of real analytic differential operators on Treg(R). It follows easily

from the construction of [A3] that this last (G,M)-family is the same as the first family

(3.2). We conclude that the original differential operator ∂G
M (γ, z) equals the restriction

to Treg(R) of the complex analytic differential operator

∂G
M (γ1, z1) = lim

Λ→0

∑

P∈P(M)

∂P (Λ, γ1, z1)θP (Λ)−1

on T1,reg(R).

Suppose that (M ′, T ′) is an in Theorem 3.1. Then M ′
1 represents an endoscopic datum

for M1, and T ′
1 is a maximal torus in M ′

1 over R. Since M ′
1 amounts to an endoscopic

16



datum for a complex group, we can take M ′
1 itself for the extension of §2. We will have

no need of the group M̃ ′
1 obtained from M̃ ′. By the conventions of §2, we can form the

complex analytic differential operator

∂G
M (σ′

1, z1) = lim
Λ→0

∑

P∈P(M)

∂P (Λ, σ′
1, z1)θP (Λ)−1

on T ′
1,G-reg(R). It is clear that ∂G

M (σ′
1, z) = ∂G

M (σ′
1, z1), in the notation at the end of §2,

and that the restriction of this complex analytic differential operator to T ′
G-reg(R) equals

∂G
M (σ′, z) = lim

Λ→0

∑

P∈P(M)

∂P (Λ, σ′, z)θP (Λ)−1 .

Let us summarize the discussion so far. Given objects (G, T,M), (M ′, T ′) and z ∈

Z(G) as in the theorem, we obtain a real analytic differential operator ∂G
M (σ′, z) on

T ′
G-reg(R) that comes from a (G,M)-family. The original objects also determine a sec-

ond set of objects (G1, T1,M1), (M ′
1, T

′
1) and z1 ∈ Z(G1). From these, we construct

a complex analytic differential operator ∂G
M (σ′

1, z1) on T ′
1,G-reg(R), that comes from the

(G,M)-image of a (G1, T1)-family. The restriction of this second differential operator to

the real submanifold T ′
G-reg(R) of T ′

1,G-reg(R) is then equal to the original one.

We can now state a lemma that is essentially a reformulation of the theorem in terms

of G1.

Lemma 3.2. For any (G, T,M), with G quasisplit, there are complex analytic differential

operators

δG
M (σ1, z1) , σ1 ∈ T1,reg(R), z ∈ Z(G),

on T1,reg(R) such that for any (G, T,M) at all, and any (M ′, T ′), the identity

(3.3) ∂G
M (σ′

1, z1) =
∑

G′∈EM′ (G)

ιM ′(G,G′)δG′

M ′(σ′
1, z

′
1) , σ′

1 ∈ T ′
1,G-reg(R),

17



is valid for every z ∈ Z(G).

Proof. The operators δG
M (σ1, z1) are uniquely determined by the special case of the

identity (3.3) in which G is quasisplit, and (M ′, T ′) = (M,T ). In this case, we define

(3.4) δG
M (σ1, z1) = ∂G

M (σ1, z1) −
∑

G′∈E0
M

(G)

ιM (G,G′)δG′

M (σ1, z
′
1) ,

where E0
M (G) denotes the set of elements G′ ∈ EM (G) with G′ 6= G. Since the coefficient

ιM (G,G′) vanishes unless G′ is elliptic, the sum can be taken over a finite set. Once having

defined the operators δG
M (σ1, z1), we must then establish the identity (3.3) in general. We

have to show that for any M ′ and T ′, the endoscopic differential operator

∂G,E
M (σ′

1, z1) =
∑

G′∈EM′ (G)

ιM ′(G,G′)δG′

M ′(σ′
1, z

′
1) , σ′

1 ∈ T ′
1,G-reg(R),

equals ∂G
M (σ′

1, z1). We reiterate that if (M ′, T ′) is isomorphic to (M,T ), there is nothing

to prove. The identity in this case is just the definition of δG
M (σ1, z1) above.

This is the stage that we apply the descent formulas. The operator ∂G
M (σ′

1, z1) is

defined in terms of the (G,M)-family
{
∂P (Λ, σ′

1, z1)
}
. However, this (G,M)-family is

obtained by the restriction process of [A6, §4] from a (G1, T1)-family
{
∂P1

(Λ1, σ
′
1, z1)

}
.

This was of course our reason for going to the complex group. One sees easily from [3,

§12] that the construction of the operators ∂P1
(Λ1, σ

′
1, z1) for z1 is compatible with the

construction of the corresponding operators for zL1
= z1,L1

. It follows from [A6, Lemma

4.1] that

(3.5) ∂G
M (σ′

1, z1) =
∑

L1∈L(T1)

dG
T1

(M,L1)∂
L1

T1
(σ′

1, zL1
) .

Here dG
T1

(M,L1) is the familiar Jacobian of a linear map

aM
T1

⊕ a
L1

T1
−→ aG

T1
,

described for example in the preamble to [A6, Lemma 4.1]. Notice that for any L1,

∂L1

T1
(σ′

1, zL1
) equals ∂L1,E

T1
(σ′

1, zL1
) by definition, since the torus T ′

1 is isomorphic to T1.

To complete the proof of Lemma 3.2, then, we have only to show that ∂G,E
M (σ′

1, z1) satisfies

a descent formula that is parallel to (3.5).

18



Lemma 3.3. (a) Suppose that (G, T,M) and (M ′, T ′) are as in (3.3). Then

(3.6) ∂G,E
M (σ′

1, z1) =
∑

L1∈L(T1)

dG
T1

(M,L1)∂
L1,E
T1

(σ′
1, zL1

) .

(b) Suppose that (G,M, T ) is given, with G quasisplit. Then

(3.7) δG
M (σ1, z1) =

∑

L1∈L(T1)

eG
T1

(M,L1)δ
L1

T1
(σ1, zL1

) ,

where

eG
T1

(M,L1) = dG
T1

(M,L1)
∣∣Z(M̂)Γ ∩ Z(L̂1)

Γ/Z(Ĝ)Γ
∣∣−1

.

(According to the conventions of [A6], Z(M̂) and Z(L̂1) are both embedded subgroups of

a fixed dual torus T̂1 of T1 in Ĝ1.)

Proof. The lemma is an example of a general descent formula of the kind proved in

[A6, §7]. However, it is not, strictly speaking, a special case of [A6, Theorem 7.1]. To spare

the reader the task of relating the abstract framework of [A6] to the present situation, we

shall give a direct proof.

We assume inductively that the formula (3.7) holds if G is replaced by any element

G′ in E0
M ′(G). Given the data of part (a), we set ε(M,M ′) equal to 1 or 0, according to

whether M ′ is isomorphic to M or not. In particular, if ε(M,M ′) equals 1, G is quasisplit.

In this case we shall assume that M ′ = M , T ′ = T , and σ′
1 = σ1, in order to match the

notation of (b). It follows from the definition (3.4) that the difference

(3.8) ∂G,E
M (σ′

1, z1) − ε(M,M ′)δG
M (σ1, z1)

equals
∑

G′∈E0
M′ (G)

ιM ′(G,G′)δG′

M ′(σ′
1, z

′
1) .

According to our induction assumption, we have

δG′

M ′(σ′
1, z

′
1) =

∑

L′
1∈L

G′
1 (T ′

1)

eG′

T ′
1
(M ′, L′

1)δ
L′

1

T ′
1
(σ′

1, z
L′

1
1 ) ,
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for any G′ ∈ E0
M ′(G). Since

E0
M ′(G) =

{
EM ′(G), if ε(M,M ′) = 0,
EM ′(G) − {G}, if ε(M,M ′) = 1,

we see that (3.8) equals the difference between

(3.9)
∑

G′∈EM′ (G)

ιM ′(G,G′)
∑

L′
1∈L

G′
1(T ′

1)

eG′

T ′
1
(M ′, L′

1)δ
L′

1

T ′
1
(σ′

1, z
L′

1
1 )

and

(3.10) ε(M,M ′)
∑

L1∈L(T1)

eG
T1

(M,L1)δ
L1

T1
(σ1, zL1

) .

Consider a term in (3.9) corresponding to G′ and L′
1. We can assume that the dual

group T̂ ′
1 has been identified with the torus T̂1 in Ĝ1. Then both Z(Ĝ′) and Z(L̂′

1) are

subgroups of T̂1. The group L′
1 therefore determines a Levi subgroup L1 ∈ L(T1) of G1,

with
(
Z(L̂1)

Γ
)0

=
(
Z(L̂′

1)
Γ
)0

. The product of coefficients

ιM ′(G,G′)eG′

T ′
1
(M ′, L′

1)

from (3.9) is equal to

∣∣Z(M̂ ′)Γ/Z(M̂)Γ
∣∣ ∣∣Z(Ĝ′)Γ/Z(Ĝ)Γ

∣∣−1∣∣Z(M̂ ′)Γ ∩ Z(L̂′
1)

Γ/Z(Ĝ′)Γ
∣∣−1

dG′

T ′
1
(M ′, L′

1) .

This in turn can be written as

∣∣Z(M̂ ′)Γ/Z(M̂)Γ
∣∣ ∣∣Z(M̂ ′)Γ ∩ Z(L̂′

1)
Γ/Z(Ĝ)Γ

∣∣−1
dG

T1
(M,L1) ,

since the ellipticity of M ′ in M implies that dG
T ′
1
(M ′, L′

1) = dG
T1

(M,L1). In particular, the

term in (3.9) is independent of G′. On the other hand, if we are given L1 instead of L′
1, we

can recover L′
1 from L1 and G′ as the element in ET ′

1
(L1) such that s′L1

is the projection

of the point s′ in s′MZ(M̂)Γ/Z(Ĝ)Γ onto
(
T̂Γ

1 /Z(L̂1)
)Γ

. (The reader may want to recall

again the definition of the sets EM ′(G) and ET ′
1
(L1) from [A6, §3].)
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We need only consider terms in (3.9) that contain nonvanishing coefficients. Given the

formula for the product above, we may therefore assume that
(
Z(T̂1)

Γ
)0

equals
(
Z(L̂1)

Γ
)0(

Z(M̂)Γ
)0

, and that the group Z(M̂)Γ ∩ Z(L̂1)
Γ/Z(Ĝ)Γ is finite. It follows

that the map G′ → L′
1 from EM ′(G) to ET ′

1
(L1) is surjective, and has finite fibres that are

in bijection with Z(M̂)Γ ∩ Z(L̂1)
Γ/Z(Ĝ)Γ. Since its terms are independent of G′

1, we can

rewrite the expression (3.9) as the sum over L1 ∈ L(T1) and L′
1 ∈ ET ′

1
(L1) of the product

of the differential operator

dG
T1

(M,L1)δ
L′

1

T ′
1
(σ′

1, z
L′

1
1 )

with the coefficient

∣∣Z(M̂ ′)Γ/Z(M̂)Γ
∣∣ ∣∣Z(M̂ ′)Γ ∩ Z(L̂′

1)
Γ/Z(Ĝ)Γ

∣∣−1∣∣Z(M̂)Γ ∩ Z(L̂1)
Γ/Z(Ĝ)Γ

∣∣ .

The coefficient is easily seen to reduce to

∣∣Z(M̂ ′)Γ/Z(M̂)Γ
∣∣ ∣∣Z(M̂ ′)Γ ∩ Z(L̂′

1)
Γ/Z(M̂)Γ ∩ Z(L̂)Γ

∣∣−1

=
∣∣Z(L̂′

1)
Γ/Z(L̂1)

Γ
∣∣−1

= ιT ′
1
(L1, L

′
1) .

The expression (3.9) becomes

∑

L1∈L(T1)

dG
T1

(M,L1)
∑

L′
1∈E

T ′
1
(L1)

ιT ′
1
(L1, L

′
1)δ

L′
1

T ′
1
(σ′

1, z
L′

1
1 ) .

Recalling the definition of the endoscopic differential operators, we conclude that (3.9) is

equal to

(3.11)
∑

L1∈L(T1)

dG
T1

(M,L1)∂
L1,E
T1

(σ′
1, zL1

) .

We can now complete the proof. If ε(M,M ′) = 0, (3.8) reduces to ∂G,E
M (σ′

1, z1), while

(3.10) vanishes. The identity (3.6) then follows from the fact that (3.8) equals (3.11). If

ε(M,M ′) = 1, ∂G,E
M (σ′

1, z1) equals ∂G
M (σ′

1, z1) by definition. Since ∂L1,E
T1

(σ′
1, zL1

) is always
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equal to ∂L1

T1
(σ′

1, zL1
), the required identity (3.6) in this case reduces to (3.5). In particular,

the term ∂G,E
M (σ′

1, z1) in (3.8) equals (3.11). The other term δG
M (σ1, z1) in (3.8) therefore

equals (3.10). This gives us the required identity (3.7) of part (b). �

With the parallel descent formulas (3.5) and (3.6) established, we have completed the

proof of Lemma 3.2. To prove the theorem, we have only to restrict the complex analytic

differential operators of Lemma 3.2 to the real submanifold Treg(R). We obtain differential

operators

δG
M (σ, z) , σ ∈ Treg(R), z ∈ Z(G),

in the case that G is quasisplit, such that

(3.12) ∂G
M (σ′, z) =

∑

G′∈E
M′ (G)

ιM ′(G,G′)δG′

M ′(σ′, z′) , σ′ ∈ T ′
G-reg(R), z ∈ Z(G),

in general. This follows inductively from Lemma 3.2 and the discussion preceding the state-

ment of the lemma. To treat the more general case that Z and ζ are nontrivial, we note

that the differential operators ∂G
M (σ′, z) are invariant under translation of T ′

G-reg(R) by the

central subgroup Z(R). This follows easily from either the definition (1.4) or the construc-

tion in [A3, §12]. The same property for the operators δG
M (σ, z) then follows inductively

from the case that M ′ = M of (3.12). The differential operators ∂G
M (σ′, z) and δG′

M ′(σ′, z′)

on T ′
reg(R) can therefore be projected to differential operators on C∞

(
T ′

reg(R), ζ
)
, that

depend only on the image of z in Z(G, ζ), and for which the identity (3.12) continues to

hold. The last step is to apply the construction of §2. From the differential operators

∂G
M (σ′, z) and δG′

M ′(σ′, z′) on C∞
(
T ′

reg(R), ζ
)

that occur in (3.12), we obtain the required

differential operators ∂G
M (σ′, z) and δG̃′

M̃ ′
(σ′, z′) on C∞

(
T̃ ′

reg(R), ζ̃ ′
)
. The process obviously

converts (3.12) to the required identity (3.1) of the theorem. With this discussion, our

proof of Theorem 3.1 is complete. �

4. Application to weighted orbital integrals. The transfer factors were in-

troduced to stabilize invariant orbital integrals. In general terms, the point is to solve
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certain problems for orbital integrals that arise from the comparison of trace formulas.

For the Archimedean case under consideration, Shelstad solved these problems (and more)

in [S1]-[S4].

If G, T , G′ and T ′ are as in §2, the map

(4.1) f −→ f ′(σ′) =
∑

γ

∆G(σ′, γ)fG(γ) , σ′ ∈ T̃ ′
G-reg(R),

sends functions f ∈ C
(
G(R), ζ

)
to functions f ′ = fG′

in C∞
(
T̃ ′

G-reg(R), ζ̃ ′
)
. The value

f ′(σ′) depends only on the stable conjugacy class of σ′ in G̃′(R). If T and T ′ are allowed

to vary, f ′ can be identified with a function on the strongly G-regular stable conjugacy

classes in G̃′(R). One of Shelstad’s main results is that f ′ can also be regarded as a family

of stable orbital integrals from G̃′(R). More precisely, there is a function h in C
(
G̃′(R), ζ̃ ′

)

whose stable orbital integral h′(σ′) = hG̃′

(σ′) equals f ′(σ′), for every G-regular, stable

conjugacy class σ′ in G̃′(R). We recall that a tempered, ζ̃ ′-equivariant distribution S ′ on

G̃′(R) is said to be stable if its value at any function h ∈ C
(
G̃′(R), ζ̃ ′

)
depends only on h′.

In this case, we can write

S′(h) = Ŝ′(h′) ,

for a unique continuous linear form Ŝ′ on the stably invariant Schwartz space

SI
(
G̃′(R), ζ̃ ′

)
=

{
h′ : h ∈ C

(
G̃′(R), ζ̃ ′

)}
.

The point of Shelstad’s theorem is that f → Ŝ′(f ′) is then a well defined linear form on

C
(
G(R), ζ

)
.

One would also like to stabilize weighted orbital integrals, or rather, the associated

invariant distributions IM (γ, f). At first glance, it might not be clear even how to formulate

such a problem. We can certainly set

(4.2) IM (σ′, f) =
∑

γ

∆M (σ′, γ)IM(γ, f) , σ′ ∈ T̃ ′
G-reg(R),
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for (M ′, T ′) as in the last section, and γ summed over the Ω
(
M(R), T (R)

)
-orbits in Treg(R).

In the special case that M = G, this matches the definition (4.1). The problem in general

is to relate IM (σ′, f) with stable distributions on the groups G̃′(R). Considerations from

the trace formula suggest a conjectural solution [A5, §4], [A6, §3]. Stated in a form that

is parallel to Theorem 3.1, the conjecture is as follows. For every (G, T,M, ζ), with G

quasisplit, there are stable, tempered, ζ-equivariant distributions

SG
M (σ, f) , σ ∈ Treg(R), f ∈ C

(
G(R), ζ

)
,

such that for any (G, T,M, ζ) at all, and any (M ′, T ′), the identity

(4.3) IM (σ′, f) =
∑

G′∈EM′ (G)

ιM ′(G,G′)ŜG̃′

M̃ ′
(σ′, f ′) , σ′ ∈ T̃ ′

G-reg(R),

holds.

The conjecture we have just stated is essentially the archimedean case of [A5, Conjec-

ture 4.1]. As in the case of the slightly more general conjecture in [A6], it is convenient to

separate what amounts to an inductive definition from what has to be proved. We assume

inductively that for any G′ ∈ E0
M ′(G), the distributions SG̃′

M̃ ′
(σ′) are defined and stable. If

ε(G) =

{
1, if G is quasisplit,
0, otherwise,

we then define distributions IEM (σ′, f), and also SG
M (M ′, σ′, f) in case G is quasisplit, by

setting

(4.4) IEM (σ′, f) =
∑

G′∈E0
M′ (G)

ιM ′(G,G′)ŜG̃′

M̃ ′
(σ′, f ′) + ε(G)SG

M (M ′, σ′, f)

in general, and

IEM (σ′, f) = IM (σ′, f)

for G quasisplit. Suppose first that G is quasisplit. In the special case that M ′ = M , the

conjecture asserts that the distributions

SG
M (σ, f) = SG

M (M,σ, f) , σ ∈ Treg(R),
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are stable. In case M ′ 6= M , the conjecture asserts that the distributions SG
M (M ′, σ′, f)

all vanish. If G is not quasisplit, the conjecture is just the assertion that IEM (σ′, f) equals

IM (σ′, f).

Theorem 3.1 can be regarded as the first step towards a proof of the conjecture.

Roughly speaking, it asserts that the conjecture is compatible with the differential equa-

tions (1.7). To state this more precisely, we fix (G, T,M, ζ) and (M ′, T ′). According to

Lemmas 2.2 and 2.3, the equations (1.7) can be written in the form

(4.5) IM (σ′, zf) =
∑

L∈L(M)

∂L
M (σ′, zL)IL(σ′, f) , σ′ ∈ T̃ ′

G-reg(R),

for any z ∈ Z(G, ζ). We assume that the distributions SG̃′

L̃′
(σ′) are defined and stable for

any G′ ∈ E0
M ′(G) and L′ ∈ LG′

(M ′). In the case that G is quasisplit and M ′ 6= M , we

also carry what can be regarded as a second induction assumption, that the distributions

SG′

M (M ′, σ′) vanish for any G′ ∈ E0
M (G). Theorem 3.1 then has the following corollary,

that applies to operators z ∈ Z(G, ζ) and functions f ∈ C
(
G(R), ζ

)
.

Corollary 4.1. (a) Suppose that G is arbitrary. Then

(4.6) IEM (σ′, zf) =
∑

L∈L(M)

∂L
M (σ′, zL)IEL(σ′, f) , σ′ ∈ T̃ ′

G-reg(R).

(b) Suppose that G is quasisplit. Then

(4.7) SG
M (σ, zf) =

∑

L∈L(M)

δL
M (σ, zL)SG

L (σ, f) , σ ∈ Treg(R).

(b′) Suppose that G is quasisplit, and that M ′ 6= M . Then

(4.8) SG
M (M ′, σ′, zf) = ∂

(
hT (z)

)′
SG

M (M ′, σ′, f) , σ′ ∈ T̃ ′
G-reg(R).

Proof. The proof is a variant of the argument used to establish Lemma 3.3. Assume

inductively that the obvious analogue of (4.7) is valid for (G̃′, M̃ ′), if G′ is any element in

E0
M ′(G). The difference

(4.9) IEM (σ′, zf) − ε(G)SG
M (M ′, σ′, zf)
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can then be written as

∑

G′∈E0
M′ (G)

ιM ′(G,G′)ŜG̃′

M̃ ′

(
σ′, (zf)′

)

=
∑

G′

ιM ′(G,G′)ŜG̃′

M̃ ′
(σ′, z′f ′)

=
∑

G′

∑

L̃′∈L(M̃ ′)

ιM ′(G,G′)δL̃′

M̃ ′
(σ′, z′

L̃′
)ŜG̃′

L̃′
(σ′, f ′) ,

by (4.4), the definition of z′, and our induction assumption.

Consider an element L̃′ ∈ L(M̃ ′). Then L̃′ comes from a unique Levi subgroup

L′ ∈ L(M ′) of G′, and this in turn determines a Levi subgroup L ∈ L(M) with
(
Z(L̂)Γ

)0
=

(
Z(L̂′)Γ

)0
. It follows easily that L′ belongs to EM ′(L) and that G′ belongs to E0

L′(G). It

is also clear that

ιM ′(G,G′) = ιM ′(L,L′)ιL′(G,G′)

and

z′
L̃′

= (zG′

)
L̃′ = (zL)L′

= z′L .

Replacing the last double sum over G′ and L̃′ by a triple sum over L ∈ L(M), L′ ∈ EM ′(L)

and G′ ∈ E0
L′(G), we see that (4.9) equals

∑

L

∑

L′

ιM ′(L,L′)δL̃′

M̃ ′
(σ′, z′L)

∑

G′∈E0
L′ (G)

ιL′(G,G′)ŜG̃′

L̃′
(σ′, f ′) .

It then follows from the definition (4.4) that (4.9) is equal to the difference between

(4.10)
∑

L∈L(M)

∑

L′∈EM′(L)

ιM ′(L,L′)δL̃′

M̃ ′
(σ′, z′L)IEL(σ′, f)

and

(4.11) ε(G)
∑

L∈L(M)

∑

L′∈EM′ (L)

ιM ′(L,L′)δL̃′

M̃ ′
(σ′, z′L)SG

L (L′, σ′, f) .
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Consider the expression (4.10). It follows from Theorem 3.1 that

∑

L′∈EM′ (L)

ιM ′(L,L′)δL̃′

M̃ ′
(σ′, z′L) = ∂L

M (σ′, zL) .

Consequently, (4.10) is just equal to the right hand side of (4.6). To deal with (4.11), we

assume that G is quasisplit. Suppose that L 6= M and that L′ 6= L. The stable descent

formulas of [A6, §7] then imply that SG
L (L′, σ′, f) = 0. (This is essentially the vanishing

assertion of [A6, Theorem 7.1(b′)]. Rather than trying to compare the conditions here with

the more formal Assumption 5.1 of [A6], we simply note that the proof in [A6, §7] provides

an implicit expansion of SG
L (L′, σ′, f) in terms of distributions ŜL1

M (M ′, σ′, fL1), for Levi

subgroups L1 ∈ L(M) with L1 6= G. Since any such L1 belongs to E0
M (G), ŜL1

M (M ′, σ′, fL1)

vanishes by assumption.) If L = M , on the other hand, L′ = M ′ is the only element in

EM ′(L). It follows from this discussion that (4.11) reduces to the right hand side of (4.7)

in the case that M ′ = M and σ′ = σ. In case M ′ 6= M , the set EM ′(L) does not contain

L. The summands in (4.11) then all vanish, except when L = M and L′ = M ′. Since

δM̃ ′

M̃ ′
(σ′, z′M ) = ∂M̃ ′

M̃ ′
(σ′, z′M ) = ∂

(
h

T̃ ′(z
′)

)
= ∂

(
hT (z)

)′
,

(4.11) reduces to the right hand side of (4.8) in this case.

Suppose that G is not quasisplit. Copying the last part of the proof of Lemma 3.3,

we note that (4.9) reduces to IEM (σ′, zf), while (4.11) vanishes. The identity (4.6) then

follows from the fact that (4.9) equals (4.10). IfG is quasisplit, IEM (σ′, zf) equals IM (σ′, zf)

by definition. The required identity (4.6) in this case reduces to the original differential

equation (4.5). In particular, the term IEM (σ′, zf) in (4.9) equals (4.10). The other term

SG
M (M ′, σ′, zf) in (4.9) therefore equals (4.11). The required identities (4.7) and (4.8) then

follow separately, according to whether M ′ equals M or not. �

It is obvious that every aspect of this paper is fundamentally dependent on the work

of Harish-Chandra. The debt is implicit as well as explicit. Suppose for example that G
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is not quasisplit. The conjecture in this case is that IEM (σ′, f) equals IM (σ′, f). Corollary

4.1 establishes that the two distributions satisfy the same differential equations. The next

step would be to show that they also satisfy the same jump conditions, for σ′ near a G-

semiregular element in T̃ ′(R). Weighted orbital integrals actually combine the two kinds

of jump conditions discovered by Harish-Chandra. We recall that these are the conditions

satisfied by invariant orbital integrals about a noncompact imaginary root [HC7, Theorem

9.1], and the conditions satisfied by invariant eigendistributions about a real root [HC4].

One would like to establish a stabilization of the second kind of jump conditions that could

be combined with Shelstad’s stabilization [S1], [S2] of the first. It would then be possible

to use Harish-Chandra’s powerful analytic techniques [HC3] to study the singularities of

the difference

IEM (σ′, f) − IM (σ′, f) , σ′ ∈ T̃ ′
G-reg(R).

The goal would be to show inductively that the difference lies in SI
(
M̃ ′(F ), ζ̃ ′

)
, or in

other words, is given by the stable orbital integrals of a function in C
(
M̃ ′(R), ζ̃ ′

)
. For

inner forms of GL(n), the process was carried out in [A-C, §2.14]. Global methods then

eventually lead to a proof of the conjecture in this special case.
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