A TRUNCATION PROCESS FOR REDUCTIVE GROUPS

BY JAMES ARTHUR¹

Communicated by J. A. Wolf, January 26, 1977

Let G be a reductive group defined over Q. Index the parabolic subgroups defined over Q, which are standard with respect to a minimal ${}^{(0)}P$, by a partially ordered set §. Let 0 and 1 denote the least and greatest elements of § respectively, so that ${}^{(1)}P$ is G itself. Given $u \in \emptyset$, we let ${}^{(u)}N$ be the unipotent radical of ${}^{(u)}P$, ${}^{(u)}M$ a fixed Levi component, and ${}^{(u)}A$ the split component of the center of ${}^{(u)}M$. Following [1, p. 328], we define a map ${}^{(u)}H$ from ${}^{(u)}M(A)$ to ${}^{(u)}a = \text{Hom}(X({}^{(u)}M)_{\Omega}, R)$ by

$$e^{\langle \chi, (u) H(m) \rangle} = |\chi(m)|, \qquad \chi \in X((u)M)_{\Omega}, \ m \in (u)M(A).$$

If K is a maximal compact subgroup of $G(\mathbf{A})$, defined as in [1, p. 328], we extend the definition of ${}^{(u)}H$ to $G(\mathbf{A})$ by setting

$${}^{(u)}H(nmk) = {}^{(u)}H(m), \quad n \in {}^{(u)}N(A), m \in {}^{(u)}M(A), k \in K.$$

Identify ⁽⁰⁾**a** with its dual space via a fixed positive definite form \langle , \rangle on ⁽⁰⁾**a** which is invariant under the restricted Weyl group Ω . This embeds any ^(u)**a** into ⁽⁰⁾**a** and allows us to regard ^(u) Φ , the simple roots of ^(u)P, ^(u)A), as vectors in ⁽⁰⁾**a**. If $v \leq u$, ^(v) $P \cap {}^{(u)}M$ is a parabolic subgroup of ^(u)M, which we denote by ${}^{(v)}_{u}P$ and we use this notation for all the various objects associated with ${}^{(v)}_{u}P$. For example, ${}^{(v)}_{u}$ **a** is the orthogonal complement of ^(u)**a** and ^(v)**a** and ^(v)_u Φ is the set of elements $\alpha \in {}^{(v)}\Phi$ which vanish on ^(u)**a**.

Let R be the regular representation of $G(\mathbf{A})$ on $L^2(ZG(\mathbf{Q})\backslash G(\mathbf{A}))$, where we write Z for ${}^{(1)}A(\mathbf{R})^0$, the identity component of ${}^{(1)}A(\mathbf{R})$. Let f be a fixed K-conjugation invariant function in $C_c^{\infty}(Z\backslash G(\mathbf{A}))$. Then R(f) is an integral operator whose kernel is

$$K(x, y) = \sum_{\gamma \in G(Q)} f(x^{-1}\gamma y).$$

If u < 1 and $\lambda \in {}^{(u)}\mathbf{a} \otimes \mathbf{C}$, let $\rho(\lambda)$ be the representation of $G(\mathbf{A})$ obtained by inducing the representation

$$(n, a, m) \rightarrow {}_{(u)}R_{disc}(m) \cdot e^{(\lambda, (u)H(m))}$$

from ${}^{(u)}P(\mathbf{A})$ to $G(\mathbf{A})$. Here ${}_{(u)}R_{disc}$ is the subrepresentation of the representation

AMS (MOS) subject classifications (1970). Primary 22E55; Secondary 32N10. ¹Sloan Fellow.

of ${}^{(u)}M(\mathbf{A})$ on $L^2({}^{(u)}A(\mathbf{R})^0 \cdot {}^{(u)}M(\mathbf{Q}) \setminus {}^{(u)}M(\mathbf{A}))$ which decomposes discretely. We can arrange that $\rho(\lambda)$ acts on a fixed Hilbert space ${}^{(u)}H$ of functions on ${}^{(u)}N(\mathbf{A}) \cdot {}^{(u)}A(\mathbf{R})^0 \cdot {}^{(u)}M(\mathbf{Q}) \setminus G(\mathbf{A})$. If u = 1, we take ${}^{(1)}H$ to be the orthogonal complement of the cusp forms in the subspace of $L^2(ZG(\mathbf{Q})\setminus G(\mathbf{A}))$ which decomposes discretely.

THEOREM 1. There exist orthonormal bases ^(u) \mathfrak{B} of ^(u) \mathfrak{H} , $u \in \mathfrak{g}$, such that

$$K_{E}(x, y) = \sum_{u \in \mathfrak{f}} \int_{i \{ \mathfrak{u} \} \mathfrak{a}} \sum_{\phi, \phi' \in (\mathfrak{u}) \mathfrak{F}} (\rho(\lambda, f) \phi', \phi) E(\phi, \lambda, x) \overline{E(\phi', \lambda, y)} d|\lambda|$$

converges uniformly for x and y in compact subsets of $ZG(\mathbf{Q})\setminus G(\mathbf{A})$. (Here $E(\phi, \cdot, \cdot)$ is the Eisenstein series associated with ϕ as in [3, Appendix II].) Moreover, $R_{cusp}(f)$, the restriction of the operator R(f) to the space of cusp forms, is of trace class, and if the Haar measures $d|\lambda|$ on $i_{11}^{(u)}\mathbf{a}$ are suitably normalized,

$$\operatorname{tr} R_{\operatorname{cusp}}(f) = \int_{ZG(\mathbf{Q})\backslash G(\mathbf{A})} (K(x, x) - K_E(x, x)) \, dx. \quad \Box$$

For any $u \in \mathfrak{g}$, let ${}^{(u)}\hat{\Phi}$ be the basis of ${}^{(u)}_{(1)}\mathfrak{a}$ which is dual to ${}^{(u)}\Phi$. We write |u| for the number of elements in ${}^{(u)}\Phi$ or ${}^{(u)}\hat{\Phi}$. Let ${}^{(u)}\hat{\chi}$ be the characteristic function of $\{H \in {}^{(u)}\mathfrak{a} : \langle \mu, H \rangle > 0, \mu \in {}^{(u)}\hat{\Phi}\}$. Fix a point $T \in {}^{(0)}\mathfrak{a}$ such that $\langle \alpha, T \rangle$ is suitably large for each $\alpha \in {}^{(0)}\Phi$. Motivated by the results of [2, §9], we define

$$(\Lambda\phi)(x) = \sum_{u \in \mathfrak{g}} (-1)^{|u|} \sum_{\delta \in (u)_{P(\mathbb{Q}) \setminus G(\mathbb{Q})}} \int_{(u)_{N(\mathbb{Q}) \setminus (u)_{N(\mathbb{A})}} \phi(n\delta x) \, dn$$
$$\cdot {}^{(u)}\hat{\chi}({}^{(u)}H(\delta x) - T)$$

for any continuous function ϕ on $ZG(\mathbf{Q})\backslash G(\mathbf{A})$. Let $\widetilde{k}^T(x)$ and $\widetilde{k}_E^T(x)$ be the functions obtained by applying Λ to each variable in K(x, y) and $K_E(x, y)$ separately, and then setting x = y. If ϕ is a cusp form, $\Lambda \phi = \phi$. From this it follows that

$$\widetilde{k}^{T}(x) - \widetilde{k}^{T}_{E}(x) = K(x, x) - K_{E}(x, x).$$

THEOREM 2. The functions $\tilde{k}^T(x)$ and $\tilde{k}^T_E(x)$ are both integrable over $ZG(\mathbf{Q})\backslash G(\mathbf{A})$, and the integral of $\tilde{k}^T_E(x)$ equals

$$\sum_{u \in \mathfrak{s}} \int_{i_{(1)}^{(u)} a} \sum_{\phi, \phi' \in (u)_{\mathfrak{g}}} (\rho(\lambda, f)\phi', \phi)$$
$$\int_{ZG(Q) \setminus G(A)} \Lambda E(\phi, \lambda, x) \cdot \overline{\Lambda E(\phi', \lambda, x)} dx d|\lambda|. \quad \Box$$

It should eventually be possible to calculate the integrals in Theorem 2 by extending the methods of [2, §9]. On the other hand, $\tilde{k}^T(x)$ is not a natural truncation of K(x, x). This defect is remedied by the following

THEOREM 3. The function

$$k^{T}(x) = \sum_{u \in \mathfrak{g}} (-1)^{|u|} \sum_{\delta \, \epsilon^{(u)} P(Q) \setminus G(Q)} \int_{(u)_{N(\mathbf{A})}} \sum_{\mu \in (u)_{M(\mathbf{Q})}} f(x^{-1} \delta^{-1} \mu n \delta x) \, dn$$

 $\cdot (u)\hat{\chi}(u)H(\delta x) - T)$

is integrable over $ZG(G)\setminus G(A)$. For sufficiently large T, the integrals over $ZG(Q)\setminus G(A)$ of $k^{T}(x)$ and $\tilde{k}^{T}(x)$ are equal. \Box

The proofs will appear elsewhere.

REFERENCES

1. James Arthur, The Selberg trace formula for groups of F-rank one, Ann. of Math. (2) 100 (1974), 326-385. MR 50 #12920.

2. R. P. Langlands, Eisenstein series, Algebraic Groups and Discontinuous Subgroups, (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R. I., 1966, 235-252. MR 40 #2784.

3. ——, On the functional equations satisfied by Eisenstein series, Lecture Notes in Math., vol. 544, Springer-Verlag, Berlin and New York, 1976.

DEPARTMENT OF MATHEMATICS, DUKE UNIVERSITY, DURHAM, NORTH CAROLINA 27706

Current address: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540