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ABSTRACT. The paper is a report on the problem of stabilizing the 
trace formula. The goal is the construction and analysis of a stable trace 
formula that can be used to compare automorphic representations on 
different groups. 
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1. It is an important problem to place the automorphic representation theory 
of classical groups on an equal footing with that of GL(n). Thirty years after 
the study of GL(2) by Jacquet-Langlands [12], the theory for GL(n) is now in 
pretty good shape. It includes an understanding of the relevant L-functions [13], a 
classification of the discrete spectrum [21] and cyclic base change [lo]. One would 
like to establish similar things for orthogonal, symplectic and unitary groups. A 
satisfactory solution would have many applications to number theory, the extent 
of which is hard to even guess at  present. 

A general strategy has been known for some time. One would like to com- 
pare trace formulas for classical groups with a twisted trace formula for GL(n). 
There is now a trace formula that applies to any group [4]. However, it contains 
terms that are complicated, and are hard to compare with similar terms for other 
groups. The general comparison problem has first to  be formulated more pre- 
cisely, as that of stabilizing the trace formula [18]. In this form, the problem is to 
construct a stable trace formula, a refined trace formula whose individual terms 
are stable distributions. It includes also the further analysis required to establish 
identities between terms in the original trace formula and their stable counter- 
parts on other groups. This would allow a cancellation of all the geometric and 
residual terms from the relevant trace formulas, leaving only terms that describe 
automorphic spectra. The resulting identity given by these remaining terms would 
lead to reciprocity laws for automorphic spectra on different groups. In the case of 
classical groups, such identities would provide the means for attacking the original 
classification problem. 

The purpose of this report is to discuss the construction and deeper analysis 
of a stable trace formula. I can say nothing about the fundamental lemma (or 
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its analogue for weighted orbital integrals), which is one of the key problems to 
be solved. The reader can consult [ll] and [25] for some special cases that have 
been resolved. Furthermore, I shall stick to the ordinary trace formula, since the 
twisted trace formula presents extra difficulties [16]. With these caveats, I believe 
that the general problem has been essentially solved. Since there are still a number 
of things to be written out, I shall organize the report conservatively as a series 
of stabilization problems for the various constituents of the trace formula. The 
solutions, all being well, will appear in the papers [8] and [9]. 

2. Let G be a connected, reductive algebraic group over a number field F .  To 
simplify the discussion, we shall actually assume that G is semisimple and simply 
connected. If V is a finite set of valuations of F, 'H(G(Fv)) will denote the Hecke 
algebra of functions on G(Fy),  the product over v E V of the groups G(Fy). We 
shall usually take V to be a large finite set outside of which G is unramified. A 
function in 'H(G(Fv)) can then be identified with the function on the adkle group 
G(A) obtained by taking its product with the characteristic function of a maximal 
compact subgroup K~ of G(Av). The trace formula is to be regarded as two 
different expansions of a certain linear form I on 'H (G(Fv)).  

The first expansion 

is in terms of geometric data. As usual, L = LG denotes the set of Levi subgroups 
(over F )  that contain a fixed minimal one, and W: is the restricted Weyl group of 
G. For any M E L, F(M, V) is a set of conjugacy classes in M(Fv).  The coefficient 
aM(7) depends only on M ,  and is really a global object. It is constructed from 
rational conjugacy classes in M ( F )  that project onto 7 ,  and are integral outside of 
V. The linear form IM('J, f )  on the other hand is a local object. It is an invariant 
distribution constructed from the weighted orbital integral of f over the induced 
conjugacy class of 7 in G(Fy). 

The second expansion 

is in terms of spectral data, and is entirely parallel to  the first one. For any 
M L, n ( M ,  V) is a certain set of equivalence classes of irreducible unitary 
representations of M(Fv),  equipped with a natural measure d7r. The coefficient 
aM(7r) is again a global object that depends only on M .  It is constructed from 
automorphic representations of M(A) that project onto 7r, and are integral outside 
of V. Similarly, the linear form I M ( r ,  f )  is a local object. It is an invariant 
distribution obtained from residues of weighted characters of f at unramified twists 
TT\ of TT. The integral over II(M, V) is actually only known to be conditionally 
convergent. However, this is sufficient for present purposes, and in any case, could 
probably be strengthened with the results of Muller [22]. 
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The trace formula is thus the identity obtained by equating the right hand 
sides of (1) and (2). It is perhaps difficult for a general reader to get a feeling for the 
situation, since we have not defined the various terms precisely. We would simply 
like to stress the general structure of the two expansions, and to note that it is the 
term with M = G in the second expansion that contains the basic information on 
the automorphic discrete spectrum. For example, if G is anisotropic, this term is 
just the trace of the right convolution of f on L2 (G(F) \G(A) / K v  ) . The term is 
more complicated for general G, but it includes a discrete part 

that comes from the discrete spectrum of L2 (G(F)\G(A)/KV) as well as induced 
discrete spectra of proper Levi subgroups [4, (4.3), (4.4)]. The ultimate goal for 
the trace formula is to deduce information about the multiplicities ~ $ ( T T ) .  In 
particular, the other terms - those with M # G in the spectral expansion and 
those with any M in the geometric expansion - are to be regarded as objects one 
would analyze in some fashion to gain information about the discrete part Idisc(f) 
of the first term. 

We have actually reformulated somewhat the trace formula from [4]. The 
invariant distributions k ( ' J , f )  and IM(x, f )  here are defined in terms of the 
weighted characters of [6], and are independent of the choice of normalizing factors 
for intertwining operators implicit in [4]. On the geometric side, this modification 
has the effect of including values of weighted orbital integrals of the characteristic 
function of K v  n M(Av) in the global coefficients of [2, (8.1)]. On the spectral 
side, the effect is to replace the complete automorphic L-functions in the global 
coefficients of [4, $41 with partial, unramified L-functions. 

3. It is hard to extract arithmetic information from the trace formula for G 
by studying it in isolation. One should try instead to compare it with trace 
formulas for certain other groups. The groups in question are the endoscopic 
groups for G, a family of quasisplit groups over F attached to G that includes 
the quasisplit inner form of G. One actually has to work with endoscopic data, 
which are endoscopic groups with extra structure [18], [19]. We write C ~ ~ ( G ,  V) 
for the set of isomorphism classes of elliptic endoscopic data for G over F that are 
unramified outside of V. 

Suppose that GI E Gfell(G, V) and that v belongs to V. In [19], Langlands and 
Shelstad define a map from functions f u  E U(G(Fu))  to functions fy = f:' on 
the strongly G-regular stable conjugacy classes 6' of G1(FU). We recall that stable 
conjugacy is the equivalence relation on the strongly regular elements in G1(FU) 
defined by conjugacy over an algebraic closure of Fu. The map is defined by 

where yU ranges over the ordinary conjugacy classes in G(Fy), A G ( & , x )  is the 
transfer factor defined in [19], and fu,G(.^v) = J G ( ~ u ,  fv) is the invariant orbital 
integral of f u  over the conjugacy class yU. 
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The Langlands-Shelstad transfer conjecture asserts that for any f v ,  there is a 
function hu G U (G1(FU)), not necessarily unique, whose stable orbital integral at 
any 6' equals f'(6'). The fundamental lemma is a supplementary conjecture. It 
asserts that if G and GI are unramified at  v,  and f u  is the characteristic function 
of a hyperspecial maximal compact subgroup of G(Fu), then hu can be chosen 
to be the characteristic function of a hyperspecial maximal compact subgroup 
of G1(Fu). Waldspurger [26] has shown, roughly speaking, that the fundamental 
lemma implies the transfer conjecture. We shall assume from now on that they 
both hold. A linear form S' = sG' on U(G1(FV)) is said to be stable if its value 
at  any h G U(G1(FV)) depends only on the stable orbital integrals of h. If this is 

so, there is a linear form 5" on the space of stable orbital integrals of functions in 
U (G1(Fv)) such that S1(h) equals S1(h'). In particular, we obtain a linear form 

f + 5"(f1) in f G U(G(FV)).  
We can now begin to describe the basic problem. The ultimate goal would be 

to stabilize the distribution Idisc in (3). 

PROBLEM 1: Construct a stable linear form S& on U(G(Fv)) ,  for G quasisplit 
over F, such that for any G at all, Idisc(f) equals the endoscopic expression 

Here L(G, GI) is a coefficient, introduced by Langlands [Id], that can be defined by 
the formula of [14, Theorem 8.3.11. 

The problem has a general structure that is common to many stabilization 
questions. If we take G to be quasisplit, the required formula amounts to an 
inductive definition of Sgsc. Since G belongs to Eeu(G, V) in this case, and is the 
endoscopic group of greatest dimension, we can assume inductively that the linear 
form S' = sG' is defined and stable for any G1 G Gd(G, V) not equal to G. We 
can therefore set 

The problem then has two parts. If G is quasisplit, one has to show that S g  is 
stable. This is needed to complete the inductive definition. If G is not quasisplit, 
the summands in the expression ~ : , ~ ~ ( f )  are all defined inductively in terms of 
groups GI distinct from G. In this case, it is the identity itself that has to be 
proved. 

The problem has been solved completely only for SL(2) and U(3) (and related 
groups) [17], [23]. A general solution of Problem 1 would be a milestone. It 
would relate fundamental global data on different groups by means of a transfer 
map f Ã‘> f '  defined in purely local terms. The resulting information would be 
particularly powerful if it could be combined with a property of strong multiplicity 
one, either for individual representations, or for packets of representations. For 
example, a twisted form of the identity in Problem 1 would relate many classical 
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groups G to GL(n). Together with the identity for G itself, this would provide a 
powerful tool for dealing with the classification problem discussed earlier. 

However, Problem 1 is unlikely to be solved directly. The strategy should be to 
consider similar problems for the various other terms in the trace formula. Towards 
this end, we first pose a parallel problem for the entire geometric expansion. 

PROBLEM 2: Construct  a stable linear form SG o n  U (G(Fv)), for G quasisplit 
over F ,  such that  for any  G, I ( f )  equals the endoscopic expression 

4. To deal with Problem 2, we would have to set up a series of stabilization 
problems for the various terms in the geometric expansion (1). Such problems 
have been solved for some terms in [18] and [15]. 

If v is a place of F, we write T(Gu) for the set of conjugacy classes in G(Fu). 
Assuming that each such class has been equipped with an invariant measure, we 
identify r ( G U )  with a set of invariant distributions on G(Fu). In the case of 
archimedean v, examples of Assem [ l ,  $1.101 suggest that elements in r ( G u )  do 
not always behave well under endoscopic transfer. We are forced to consider a 
larger family of distributions. Let us define D(Gu) to be the space spanned by 
invariant distributions on G(Fu) of the form 

where c is a semisimple element in G(Fy), Gc is the centralizer of c in G, Ic is 
an invariant distribution on Gc(Fu) that is supported on the unipotent set, and 
ft (y) = fu(x^cyx), for y G Gc(.Fy). We then let I'+(Gu) be a fixed basis of D(Gu) 
that contains T(Gu). If v is p-adic, T(Gu) actually equals T+(Gu), but T(Gu) is a 
proper subset of T+(Gu) if Gu is archimedean. We also fix a basis S + ( G g  of the 
stable distributions in D ( G 3 ,  for each endoscopic datum G b f  G over Fu. Among 
various compatability conditions, we assume that S + ( G 3  contains the set of stable 
strongly G-regular orbital integrals on G1(FU). Extending the earlier notation, we 
write A(<) for the pairing obtained from elements f u  G W G U )  and 6' G S+(G". 
Then we can write A(<) as a finite linear combination of distributions fUG(,7v) in 
T+(Gu), with coefficients A(dh, yU) that reduce to the Langlands-Shelstad transfer 
factors in the special case that 6' is strongly G-regular. 

If V is a finite set of valuations as before, we define r (Gv) ,  T+(Gv) etc., by 
the appropriate products. Thus, if My = Y[ M'y is a product of local endoscopic 
data for a Levi subgroup M of G, and 6' = Y[G belongs to S+(My) ,  A ~ ( 6 ' , 7 )  
equals the product over v G V of the factors AM^,  yU), for each 7 = Y[ % 
in T+(MV). We shall take My to be the image of a global endoscopic datum 
M' Gl1(M, V) in what follows. 

Consider first the local terms IM('J, f )  in the geometric expansion. They are 
defined at this point only for 7 G T(MV). However, we shall assume that we can 
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construct I M ( 7 ,  f )  for any 7 in the larger set r + ( M V ) ,  by some variant of the 
techniques in [3, $3-51. 

PROBLEM 3: Construct stable linear forms S g ( 6 )  on % ( G ( F v ) ) ,  for G quasisplit 
over F and 8 Â S+(Mv) ,  such that for any G ,  M ,  MI and 8, the linear form 

equals the endoscopic expression 

Here, EM! (G)  is a set of global endoscopic data for G and LM' (G ,  GI) is a simple 
coefficient, both defined as in [7, $31. 

Consider now the global coefficients aM(-y). We define aM on the larger set 
I'+(Mv) by setting aM ('y) = 0 for any 'y in the complement of I '(M, V) in I'+(Mv). 

PROBLEM 4: Construct coefficients bM(6),  for M quasisplit over F and 6 E 
^ + ( M y ) ,  such that for any M and 7 ,  a M ( 7 )  equals the endoscopic coefficient 

We now sketch how to solve Problem 2 in terms of Problems 3 and 4. If G is 
quasisplit, let us define 

According to Problem 3, this is a stable linear form on % ( G ( F v ) ) ,  and so satisfies 
the requirement of Problem 2. It remains to show that with this definition, the 
endoscopic identity of Problem 2 holds. 

Suppose that G is arbitrary. The endoscopic expression of Problem 2 equals 

where SRf (G1)  is the sum over d E S + ( R b )  of bR'(d)?g,'(a1, f l ) .  By a variant of 
7 ,  Lemma 9.21, this in turn equals 
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where G* is a quasisplit inner form of G, and IW, f )  is defined as in Problem 
3, but with (G, M, M', 6') replaced by (G*, R, R', a'). A global analogue of the 
vanishing property [7, Theorem 8.31 asserts that 1j?(cr1, f )  vanishes unless R comes 
from G. If we identify L with a subset of p*, this means that I;(cr', f )  vanishes 
unless R is WY-conjugate to a group M G L. In case R is conjugate to M ,  there 
are elements M' G Â£ell(M,V and S' G S+(Mk) such that I;(crt, f )  equals the 
endoscopic expression I& ( 8 ,  f )  of Problem 3. Since we also have bR' (cr') = bM' (5') 
and L(R, R') = L(M, M') in this case, the expression for I E ( f )  can be written 

x ~wfllw:l-l x L(M, M') x b"' (5')1&(5', f ) .  

But the identities of Problems 3 and 4 imply that 

We can therefore conclude that Is (f )  equals 

which is just I ( f ) .  This is the required identity of Problem 2. 

5. Problems 3 and 4 thus imply Problem 2. To relate Problem 2 to the basic 
Problem 1, we would need to solve spectral analogues of Problems 3 and 4. 

Suppose that v is a place of F. We write II(Gu) for the set of equivalence 
classes of irreducible representations of G(&). If G>s a local endoscopic datum 
for G, we shall write a ( G 3  for a fixed basis of the space of all stable distributions 
on G'[Fv) spanned by irreducible characters. If v is archimedean, we take the 
elements in $(G> to be analytic continuations (in the appropriate unramified 
spectral variable) of the stable tempered characters in [24]. In this case, elements 
in a ( G 3  correspond to Langlands parameters 0: W p  Ã‘ LGL. If v is p-adic, we 
have to take a ( G 3  to be an abstract basis, obtained by analytic continuation from 
elements in the basis of tempered stable distributions chosen in [5, Proposition 5.1 
and (5.1)]. Extending earlier notation, we write fL((t>L) for the pairing obtained 
from elements f u  G 'H(Gu) and (f); G $(G>. By results in [24] and [5], we can 
write A(&,) as a finite linear combination of characters fvG(xu),  with coefficients 
AG(&, G) that are spectral analogues of the original transfer factors. 

We also extend notation we used earlier for the finite set V of valuations. 
Thus, if My = Y[ ML is a product of local endoscopic data for a Levi subgroup M 
of G, and 4>' = Y[ 4 > '  belongs to $(My) = n @(ML), AM(#, 7) equals the product 
over v G V of the factors AM(&,yU), for each TT = nu in II(Mv) = r[ II(Mu). 
As before, we shall take My to be the image of a global endoscopic datum M' E 

Â£el (M, V). 
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PROBLEM 5: Construct stable linear forms s^{($) on U (G(Fv)),  for G quasisplit 
over F and <t> E @(My), such that for any G, M ,  M' and d>', the linear form 

equals the endoscopic expression 

PROBLEM 6: Construct coefficients bM(4), for M quasisplit over F and 4> ? 
@(My), such that for any M and TT, a M ( r )  equals the endoscopic coefficient 

f ^ -H(G(Fv)). 

II(Gv), this is just the term Since IG(TT, f )  = tr(7r(f)) = ~ G ( T T ) ,  for any TT E , , 

with M = G in the spectral expansion of I ( f ) .  It can be regardedas the purely 
automorphic part of the trace formula. The discrete part of Iaut(f),  regarded as 
a distribution on II(G, V), is just the distribution Idisc(f) of Problem 1. 

If M = G, Problem 5 simply reduces to the expansion of fl((f) ' )  above. How- 
ever, Problem 6 is serious in this case, being closely related to Problem l. It is 
really the other cases of Problems 5 and 6, those with M # G, that would be 
our immediate concern. Assume that these cases have been solved. It is then not 
hard to show from Problem 6 that if M is quasisplit, bM is supported on a subset 
@(M, V) of @(My) that has a natural measure d4. Assuming that Problem 2 has 
also been solved, we set 

for any quasisplit group G and any f E U(G(Fv)) .  According to Problems 2 and 
5, this is a stable linear form on U(G(Fv)) .  If G is arbitrary, we consider the 
endoscopic expression 

Substituting for L t ( f l )  in this expression, we obtain a term to which Problem 2 
applies, and a spectral expansion that can be treated by the argument we applied 

DOCUMENTA MATHEMATICA . EXTRA VOLUME ICM 1998 . I1 . 507-517 



in $4 to the geometric expansion of Is-(f).  We arrive in the end at a formula that 
identifies Ifut (f ) with Iaut (f ) . 

We have just sketched a solution of what would be Problem 1 if Idisc, S& 
and I&  were replaced by Iaut, S& and Ifut. But -/disc is just the discrete part 
of Taut. Using a well known argument that separates a suitable distribution into 
its continuous and discrete parts, one could obtain a solution of Problem 1 from 
what we have established. 

6. We have not really proved anything. We have tried only to argue that Problems 
3-6 are at  the heart of stabilizing the trace formula. We shall conclude with a few 
words on the strategy for attacking these problems. 

One begins by fixing G, and assuming inductively that all the problems can 
be solved if G is replaced by a proper subgroup. Since the coefficients aM(7) 
and aM(r )  depend only on M ,  this takes care of the global Problems 4 and 6, 
except for the case M = G. As for Problem 5, the residual distributions IM(TT, f )  
are not independent of the distributions I M ( ~ ,  f )  of Problem 3. The proof of [lo, 
Theorem 11.10.21 can likely be generalized to show that Problem 3 implies Problem 
5. Now, the representations TT G II(M, V) that occur in the the spectral expansion 
(2) are unitary. In this case, there are descent and splitting formulas that express 
IM(TT, f )  in terms of related distributions on proper Levi subgroups M .  Therefore, 
a solution of Problem 5 for the local terms in the spectral expansion would also 
follow from our induction assumption. (See [lo, p. 1451.) 

It is Problem 3, then, that becomes the main concern. One has first to state 
the problem in a more elaborate form, one that generalizes the conjectures in [6, 
$41 and [7, $31, and clearly separates the inductive definitions from what is to be 
proved. This entails introducing adjoint transfer factors AM(7, dl), that depend 
only on the image of 8' in a certain set S ~ M " )  attached to M .  We cannot go 
into any detail, but the construction is a generalization of the discussion of [5, $21 
and [7, 521 for strongly regular conjugacy classes. To have adjoint relations, and 
for that matter, the global vanishing theorem mentioned in 54, one has actually 
to take G to be a certain disjoint union of connected groups - a global K-group, 
in language suggested in [7]. At any rate, once we have the factor  AM(^, d'), we 
can set 

1h(7,/)= E A M ( y , ( W ( ^ , f ) ,  7 r+("~) ,  
S'â‚¬RC(M 

as in [7, (5.5)]. The required identity of Problem 3 becomes the assertion that 
Ih(7, f )  equals IM (7, f 1. 

The terms in the endoscopic expression Is-(/) of Problem 2 can be defined 
inductively. An elaboration of the argument sketched in 54, and which is the 
global analogue [7, Theorem 9.1 (a)], then leads to a geometric expansion for I&( f )  
that is parallel to  the expansion (1) for I ( f ) .  The general strategy is to compare 
these two expansions. In particular, one obtains an explicit geometric expansion 
for the difference Is-(/) - I ( f ) .  On the other hand, similar considerations lead to 
a spectral expansion of Is-(f) - I:(/). The cases of Problems 5 and 6 implied by 
the induction hypothesis actually identify the terms in this latter expansion with 
corresponding terms in the original spectral expansion for I ( f )  - Iaut(f).  The 

DOCUMENTA MATHEMATICA . EXTRA VOLUME ICM 1998 . I1 . 507-517 



result is a formula 

To be able to exploit the last formula, one has to extend most of the techniques 
of Chapter I1 of [lo], (as well as add a few new ones, based on the local trace 
formula). We mention just one, the problem of descent for the global coefficients. 
There is a simple descent formula for the coefficients aG(7) at  arbitrary 7 in terms 
of coefficients evaluated at  unipotent elements [2, (8.1)]. Using the main theorem 
of [20], one can establish a parallel descent formula for u ~ > & ( ~ ) .  Together with the 
fundamental lemma, which takes care of the spherical weighted orbital integrals 
we have built into the definition of these coefficients, this reduces the identity of 
Problem 4 (with M = G) to the case of unipotent 7.  It allows one to collapse the 
terms with M = G in the geometric expansion of the left hand side of (4) to a 
sum over unipotent elements. Similarly, there is a descent formula for coefficients 
aG(x) at  arbitrary TT in terms of discrete parts a g s c ( ~ )  and unramified partial 
L-functions. Using simple combinatorial arguments, one can establish a parallel 
descent formula for aG>&(x). This reduces the identity of Problem 6 (with M = G) 
to the case of the coefficients a&(r) ,  and allows one to replace the right hand 
side of (4) with the distribution ~ & ~ ( f )  - Idisc (f) .  It is this revised form of (4) 
that should eventually yield the required identities of the various problems. 

If G is quasisplit, a global analogue of [7, Theorem 9.1(b)] gives a geometric 
expansion of the distribution SG( f )  of Problem 2. One has to carry out an analysis 
of this expansion that is largely parallel to the discussion above. Similar techniques 
should eventually yield the required stability assertions of the various problems. 
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