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§1. Introduction

Suppose that G is a connected reductive algebraic group over a local field F of characteristic 0. If π ∈ Πunit(G)

is any irreducible unitary representation of G(F ), the character

f −→ fG(π) = tr
(
π(f)

)
, f ∈ H(G),

is an invariant linear form on the Hecke algebra H(G) of G(F ). Among the irreducible characters, there is a

special place for the induced characters

fM (π) = fG(πG) = tr
(
IP (π, f)

)
, π ∈ Πunit(M).

Here M is a Levi subgroup of G, that will remain fixed throughout the paper, P ∈ P(M) is a parabolic subgroup

of G over F with Levi component M , and πG = IP (π) is the corresponding induced representation of G(F ).

As the notation suggests, fM (π) is independent of P . Another elementary property is that fM (πλ) is an analytic

function of a real variable λ in the vector space

ia∗M = i Hom
(
X(M)F , R

)

that parametrizes the unramified unitary twists of π. (We are following standard notation here and below; the

reader can consult [5, §12] for more explanation.)

Induced characters are really too easy. They are hardly worthy companions of the more fundamental discrete

series. There is a related family of objects, however, that are just as interesting (and difficult) as noninduced

characters. They are the weighted characters

JP
M (π, f) = tr

(
JM (π, P )IP (π, f)

)
,

in which JM (π, P ) is a nonscalar operator on the space of IP (π), constructed from the basic intertwining

operators

JQ|P (π) : IP (π) −→ IQ(π) , Q ∈ P(M).

The use of unnormalized intertwining operators in the construction has the effect of leaving JP
M (π, f) dependent

on the choice of P . Moreover, JP
M (πλ, f) can have poles at some of the point λ ∈ ia∗M . One can sidestep these

problems by using normalized intertwining operators. Such a construction was used in [1], [2], [3], [5], and other
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papers on the trace formula. Given our present knowledge, however, there is no canonical way to normalize the

intertwining operators in general. The corresponding weighted characters will therefore depend on a choice of

normalizing factors. This is likely to complicate the problem of relating automorphic representations on different

groups.

One purpose of this paper is to normalize the weighted characters in a different way. Roughly speaking, the role

of normalizing factors for intertwining operators will be played by Plancherel densities. In §2, we shall define a

weighted character

JM (π, f) = Jµ
M (π, f) = tr

(
MM (π, P )IP (π, f)

)
,

in which MM (π, P ) is an operator constructed in a certain way from the unnormalized intertwining operators

JQ|P (π) and HarishChandra’s µfunctions. On the one hand, JM (π, f) is independent of any arbitrary choice

of normalizing factors. On the other hand, we shall show that it is independent of P (Corollary 2.2) and that

JM (πλ, f) is an analytic function of λ ∈ ia∗M (Proposition 2.3). The distribution JM (π, f) is thus closer to being

a canonical object. It is a natural generalization of the induced character fM (π).

The geometric analogues of irreducible characters are the invariant orbital integrals

fG(γ) = |D(γ)|
1
2

∫

Gγ(F )\G(F )

f(x−1γx)dx ,

that are defined for conjugacy classes γ in G(F ). If γ is a Gregular conjugacy class in M(F ), we can also form

the weighted orbital integral

JM (γ, f) = |D(γ)|
1
2

∫

Gγ(F )\G(F )

f(x−1γx)vM (x)dx ,

with a weight factor vM (x) that plays the role of the operator MM (π, P ). Neither of the distributions JM (π)

or JM (γ) is invariant under conjugation by G(F ). However, one can use the weighted characters as correction

terms to build an invariant distribution out of JM (γ). This process was carried out originally in [1, §10], and gave

invariant distributions that were implicitly dependent on a choice of normalizing factors. In §3 we shall apply

the same construction to the new weighted characters we have defined. We shall obtain invariant distributions

IM (γ, f) = Iµ
M (γ, f)

that are independent of any choice of normalizing factors. We shall also check that the distributions are indepen

dent of any choice of maximal compact subgroup, and behave well under automorphisms.

As canonical objects on G(F ), the invariant distributions IM (γ) should be related to their counterparts on the

endoscopic groups of G. We recall that the theory of endoscopy, still largely conjectural, is a general framework

of Langlands [8] for comparing trace formulas and automorphic representations on different groups. A second

purpose of this paper is to state a conjecture that attempts to summarize the role of the distributions in this theory.

The conjecture includes an identity that describes an interplay between the distributions on various groups, and

the LanglandsShelstad transfer mappings among these groups.

The conjecture appears to be quite deep. It depends intrinsically on the invariance of the distributions IM (γ),

whereas the distributions themselves can be described explicitly only in terms of their noninvariant components

JM (γ) and JM (π). A proof will probably have to await the construction and deeper analysis of a stable trace

formula. The conjectural identity is in fact likely to be an essential part of such an analysis.
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§2. Weighted characters

We have fixed the Levi subgroup M of G. Suppose that π belongs to the set Π(M) of equivalence classes of

irreducible representations of M(F ), and that λ lies in the complex vector space

a
∗
M,C = a

∗
M ⊗R C = Hom

(
X(M)F , C

)
.

Then we have the unnormalized operators

JQ|P (πλ) : HP (π) −→HQ(π) , P, Q ∈ P(M),

which intertwine the actions of the induced representations IP (πλ) and IQ(πλ). Recall that JQ|P (πλ) is defined

by an absolutely convergent integral over NQ(F ) ∩ NP (F )\NQ(F ) when the real part of λ lies in a certain

chamber, and can be analytically continued to a meromorphic function of λ ∈ a
∗
M,C.

Suppose that π is in general position, in the sense that the operators JQ|P (πλ) are all analytic at λ = 0. For fixed

P , we set

JQ(ζ, π, P ) = JQ|P (π)−1JQ|P (πζ) , Q ∈ P(M),

for ζ ∈ ia∗M near 0. We claim that {JQ(ζ, π, P )} is a (G, M)family of operator valued functions, in the sense

of [1, §6]. According to the definition [1, p. 36], we must show that if Q and Q′ are adjacent groups in P(M),

and if ζ belongs to the hyperplane spanned by the common wall of the chambers of Q and Q′, then JQ′(ζ, π, P )

equals JQ(ζ, π, P ). Since they have not been normalized, the operators JQ|P (π) are not multiplicative in Q and

P . However, it is easily seen that

(2.1) JQ′|P (πζ) = µα(πζ)
εJQ′|Q(πζ)JQ|P (πζ) ,

where ε equals 0 or 1 according to whether the number of singular hyperplanes which separate the chambers of

Q′ and P is greater than or less than the corresponding number for Q and P , α ∈ ∆Q is the simple root of Q that

defines the hyperplane in question, and µα(πζ) is a function that depends only on ζ(α∨). We are assuming that

ζ(α∨) = 0. This implies that µα(πζ) = µα(π), and also that JQ′|Q(πζ) = JQ′|Q(π). It follows that JQ′(ζ, π, P )

equals JQ(ζ, π, P ). The claim is therefore valid. According to [1, Lemma 6.2], we can take the limit

JM (π, P ) = lim
ζ→0

∑

Q∈P(M)

JQ(ζ, π, P )θQ(ζ)−1 ,

for

θQ(ζ) = vol
(
a

G
M/Z(∆∨

Q)
)−1 ∏

α∈∆Q

ζ(α∨) ,

in the notation of [1].

The operator JM (π, P ) on HP (π) plays the role of a weight factor. We can use it to define an (unnormalized)

weighted character

(2.2) JP
M (π, f) = tr

(
JM (π, P )IP (π, f)

)
,

for any f ∈ H(G). However this object has the disadvantage of being dependent on the group P ∈ P(M), as one

oberves easily from the formula (2.1). More seriously, it has singularities at any points π where the intertwining

operators have poles. We would like an object that is defined at least for all π is the subset Πtemp(M) of tempered
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representations in Π(M). It was for these reasons that weighted characters were defined in terms of normalized

intertwining operators in [1, §8] (and in other papers on the trace formula).

Recall that the normalized intertwining operators

RQ|P (πλ) = rQ|P (πλ)−1JQ|P (πλ)

are constructed from meromorphic scalar valued functions rQ|P (πλ) of λ. Langlands [7, Appendix II] conjectured

that the normalizing factors rQ|P (πλ) could be defined canonically in terms of local Lfunctions and εfactors.

However, the existence of these objects depends on the local Langlands classification, which in the case of padic

groups is a long way away. As a substitute, one can simply prove the existence of a general family

r = {rQ|P (πλ)}

of normalizing factors that satisfy a list of natural conditions [5, (r.1)–(r.8)], and for which the corresponding

operators RQ|P (πλ) also satisfy certain conditions [5, (R.2)–(R.7)]. Among the latter is the property that if π is

unitary, RQ|P (πλ) is analytic for all λ ∈ ia∗M . If π is any representation for which the normalized operators are

all analytic at λ = 0, we form the (G, M)family

RQ(ζ, π, P ) = RQ|P (π)−1RQ|P (πζ) , Q ∈ P(M),

of operator valued functions of ζ ∈ ia∗M (near 0), and the corresponding limit

RM (π, P ) = lim
ζ→0

∑

Q∈P(M)

RQ(ζ, π, P )θQ(ζ)−1 .

We then set

(2.3) Jr
M (π, f) = tr

(
RM (π, P )IP (π, f)

)
,

for any f ∈ H(G). This is the weighted character that was used in earlier papers, where it was denoted simply

by JM (π, f). It is well defined whenever π is unitary, and in particular, if π is any tempered representation.

Moreover, one sees easily that Jr
M (π, f) is independent of P . (See [1, p. 44].)

Thus, Jr
M (π, f) does not have the two disadvantages of the unnormalized weighted characters JP

M (π, f). How

ever, it does depend on the choice of the family r. One would eventually like to compare weighted characters,

or rather invariant distributions constructed from weighted characters, on different groups. Since it is not clear

how to compare abstract normalizing factors on different groups, the dependence of Jr
M (π, f) on r is a problem

we would like to avoid. We shall do so by defining a normalized weighted character that is independent of r.

Instead of the normalizing factors, we shall use HarishChandra’s canonical family

µ = {µQ|P (πλ)}

of µfunctions. Recall that

µQ|P (πλ) =
(
JQ|P (πλ)JP |Q(πλ)

)−1
=

(
rQ|P (πλ)rP |Q(πλ)

)−1
.

Also,

µQ|P (πλ) =
∏

α∈Σr
Q
∩Σr

P

µα(πλ) ,
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where Σr
Q stands for the set of reduced roots of (Q, AM ), and µα(πλ) is a µfunction of rank 1 that depends

only on λ(α∨) (as in (2.1)). Suppose that π is in general enough position that the µfunctions µQ|P (πλ) and the

unnormalized operators JQ|P (πλ) are all analytic at λ = 0. If P is fixed, we define a family of scalar valued

functions

µQ(ζ, π, P ) = µQ|P (π)−1µQ|P (π 1
2 ζ) , Q ∈ P(M),

of ζ ∈ ia∗M (near 0). Arguing as we did for the operator valued functions JQ(ζ, π, P ), we see directly that this is

a (G, M)family. (Notice, however, that 1
2ζ appears here instead of ζ .) Therefore the product

MQ(ζ, π, P ) = µQ(ζ, π, P )JQ(ζ, π, P )

is also a (G, M)family, and we can form the limit

MM (π, P ) = lim
ζ→0

∑

Q∈P(M)

MQ(ζ, π, P )θQ(ζ)−1 .

We then define

(2.4) Jµ
M (π, f) = tr

(
MM (π, P )IP (π, f)

)
,

for any f ∈ H(G).

The distributions Jµ
M (π, f) are the normalized weighted characters of the title. They seem to be natural objects,

having been defined without recourse to the family r. We must still show that they have the good properties

of the earlier weighted characters Jr
M (π, f). To do so, we shall establish a simple relationship between the two

families of distributions.

Like the µfunctions, the abstract normalizing factors satisfy a product formula

rQ|P (πλ) =
∏

α∈Σr
Q
∩Σr

P

rα(πλ) = rP |Q(πλ) ,

where rα(πλ) is a meromorphic function that depends only on λ(α∨) [5, (r.2)]. It follows that the functions

rQ(ζ, π) = rQ|Q(π)−1rQ|Q(π 1
2 ζ) , Q ∈ P(M),

of ζ ∈ ia∗M form a (G, M)family (assuming of course that π is in general position). If L belongs to L(M), the set

of Levi subgroups of G which contain M , and QL belongs to P(L), the limit

(2.5) rL
M (π) = lim

ζ→0

∑

Q∈P(M)
Q⊂QL

rQ(ζ, π)θQ∩L(ζ)−1

exists, and is independent of QL. The first assertion here is a general property of (G, M)families, while the

second is a consequence of the product formula above.
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Lemma 2.1. We have

(2.6) Jµ
M (π, f) =

∑

L∈L(M)

rL
M (π)Jr

L(πL, f) ,

for π ∈ Π(M) in general position.

Proof. The right hand side of (2.6) is the kind of expression that comes from a product of (G, M)families.

According to the product decomposition [1, Corollary 6.5], the expression equals

tr
(
NM (π, P )IP (π, f) ,

where

NM (π, P ) = lim
ζ→0

∑

Q∈P(M)

rQ(ζ, π)RQ(ζ, π, P )θQ(ζ)−1 .

Looking back at the definition (2.4), we see that it will be enough to prove that the operators MM (π, P ) and

NM (π, P ) are equal.

We can also write

NM (π, P ) = lim
ζ→0

∑

Q∈P(M)

νQ(ζ, π, P )JQ(ζ, π, P )θQ(ζ)−1 ,

for a scalar valued (G, M)family

νQ(ζ, π, P ) = rQ(ζ, π)
(
rQ|P (π)−1rQ|P (πζ)

)−1
, Q ∈ P(M),

of functions of ζ ∈ ia∗M . We apply the product decomposition [1, Corollary 6.5] to this expression, and also to the

parallel expression

MM (π, P ) = lim
ζ→0

∑

Q∈P(M)

µQ(ζ, π, P )JQ(ζ, π, P )θQ(ζ)−1 .

The comparison of the operators MM (π, P ) and NM (π, P ) reduces to a comparison of the (G, M)families {µQ}

and {γQ}. We see that it will suffice to prove that the numbers µL
M (π, P ) and νL

M (π, P ), defined for any L ∈ L(M)

by the analogues of (2.5), are equal.

Let us write

νQ(ζ, π, P ) = cQ(ζ, π, P )νQ(ζ, π, P ) ,

where

cQ(ζ, π, P ) =
(
rQ|P (π)−1rQ|P (πζ)

)−1(
rQ|P (π)−1rQ|P (π 1

2 ζ)
)2

.

Once again we have a product of (G, M)families. The product decomposition again gives us a formula

νL
M (π, P ) =

∑

L1∈L(M)
L1⊂L

cL1

L (π, P )νL
L1

(π, P ) .

Now

cQ(ζ, π, P ) =
∏

α∈Σr
Q
∩Σr

P

cα

(
ζ(α∨)

)
,

where

cα

(
ζ(α∨)

)
=

(
rα(π)−1rα(πζ)

)−1(
rα(π)−1rα(π 1

2 ζ)
)2

.
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As a product of functions of one variable, cQ(ζ, π, P ) gives a (G, M)family of the special sort considered in [2,

§7]. According to [2, Lemma 7.1], each limit cL1

M (π, P ) can be expressed as a linear combination of products of

derivatives c′α(0). But

cα(t) =
(
dα(0)−1dα(t)

)−1(
dα(0)−1dα( 1

2 t)
)2

, t ∈ R,

for the function dα

(
ζ(α∨)

)
= rα(πζ). It follows that c′α(0) = 0. Therefore the terms with L1 6= M in the

decomposition above vanish. We are left simply with the identity

νL
M (π, P ) = νL

M (π, P ) .

Now we have
νQ(ζ, π, P ) = rQ(ζ, π)

(
rQ|P (π)−1rQ|P (π 1

2 ζ)
)−2

= rQ|Q(π)−1rQ|Q(π 1
2 ζ)rQ|P (π)2rQ|P (π 1

2 ζ)
−2 .

Since

rQ|Q(π) = rQ|P (π)rP |Q(π) = rQ|P (π)rQ|P (π)

by [5, (r.1)], we can write νQ(ζ, π, P ) as

rQ|P (π)−1rQ|P (π 1
2 ζ)rQ|P (π)rQ|P (π 1

2 ζ)
−1 .

Applying the same formula to rP |P , we then write νQ(ζ, π, P ) as the product of

rP |P (π)−1rP |P (π 1
2 ζ)

and

rP |Q(π)rP |Q(π 1
2 ζ)

−1rQ|P (π)rQ|P (π 1
2 ζ)

−1 .

The first of these functions is independent of Q and is equal to 1 at ζ = 0. The second function equals

µQ|P (π)−1µQ|P (π 1
2 ζ) = µQ(ζ, π, P ) .

It follows that
νL

M (π, P ) = lim
ζ→0

∑

Q⊂QL

νQ(ζ, π, P )θQ∩L(ζ)−1

= lim
ζ→0

(
rP |P (π)−1rP |P (π 1

2 ζ

) ∑

Q

µQ(ζ, π, P )θQ∩L(ζ)−1

= µL
M (π, P ) .

We have now established that

µL
M (π, P ) = νL

M (π, P ) = νL
M (π, P ) ,

for any L ∈ L(M). Therefore the operators MM (π, P ) and NM (π, P ) are equal, and the identity (2.6) holds. �

Corollary 2.2. The distribution J µ
M (π, f) is independent of the fixed group P ∈ P(M).

Proof. We have already noted that J r
L(πL, f) is independent of any fixed parabolic subgroup. Since the definition

of rL
M (π) is independent of P , the corollary follows from the lemma. �

We can now establish the basic regularity property.
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Proposition 2.3. Suppose that π belongs to the subset Πunit(M) of unitary representations in Π(M). Then if

f ∈ H(G), Jµ
M (πλ, f) is an analytic function of λ ∈ ia∗M .

Proof. It is a consequence of the definition that Jµ
M (πλ, f) is a meromorphic function of λ ∈ a

∗
M,C. We have to

show that the function has no poles on ia∗M . Since πλ remains unitary for λ ∈ ia∗M , it is enough to show that

Jµ
M (πλ, f) has no pole at λ = 0. We shall combine Lemma 2.1 with an argument that was used in the local trace

formula. (See [4, Lemma 12.1].)

The functions Jr
L(πL

λ , f) which occur in the expansion (2.6) for Jµ
M (πλ, f) are analytic at λ = 0. This follows from

the fact that the normalized intertwining operators are analytic at any π that is unitary. It remains only to deal

with the functions rL
M (πλ) in the expansion.

If P ∈ P(M) is fixed, we can write

rQ|Q(πλ) =
∏

α∈Σr
Q

rα(πλ)

=
∏

α∈Σr
P

rα(πλ)
∏

α∈Σr
Q
∩Σr

P

rα(πλ)
∏

α∈Σr

Q
∩Σr

P

rα(πλ)−1

= rP |P (πλ)
∏

α∈Σr
Q
∩Σr

P

(
rα(πλ)r−α(πλ)−1

)
.

Now for any root α, we have

r−α(πλ) = rα(π−λ) ,

by [5, (r.4)]. It follows that quotient

rα(πλ)r−α(πλ)−1

is analytic at λ = 0. To exploit this, we write the function

rQ(ζ, πλ) = rQ|Q(πλ)−1rQ|Q(πλ+ 1
2 ζ)

as the product of

rP |P (πλ)−1rP |P (πλ+ 1
2 ζ)

and ∏

α∈Σr
Q
∩Σr

P

(
rα(πλ)r−α(πλ)−1

)−1(
rα(πλ+ 1

2 ζ)r−α(πλ+ 1
2 ζ)

−1
)
.

The first of these functions is independent of Q, and equals 1 at ζ = 0. The second, which we will denote by

dQ(ζ, πλ, P ), is an analytic function of the two variables ζ and λ in a neighbourhood of 0 in ia∗M . It follows that

rL
M (πλ) = lim

ζ→0

∑

Q⊂QL

rQ(ζ, πλ)θQ∩L(ζ)−1

= lim
ζ→0

∑

Q⊂QL

dQ(ζ, πλ, P )θQ∩L(ζ)−1 .

This last sum is a smooth function of λ and ζ in ia∗M [1, Lemma 6.2]. Therefore rL
M (πλ) is analytic at λ = 0. It

follows from Lemma 2.1 that Jµ
M (πλ, f) is analytic at λ = 0. �
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Corollary 2.4. Suppose that π ∈ Πunit(M) and that L lies in L(M). Then rL
M (πλ) is an analytic function of

λ ∈ ia∗M .

Proof. We established that rL
M (πλ) is analytic at λ = 0 during the proof of the proposition. If we replace π by a

fixed ia∗M translate, we obtain the general assertion. �

The construction of Jµ
M (π, f) was for any π in general position. However, if π is unitary, we can define Jµ

M (π, f)

to be the value at λ = 0 of Jµ
M (πλ, f). Similarly, we define rL

M (π) to be the value at λ = 0 if rL
M (πλ). The formula

of Lemma 2.1 is then valid for π.

§3. Canonical invariant distributions

One of the purposes of weighted characters is to build invariant distributions out of weighted orbital integrals.

When the weighted characters Jr
M (π, f) are used, as in earlier papers, the resulting invariant distributions depend

on the family r of normalizing factors. We shall recall the construction, with a view to replacing Jr
M (π, f) by

Jµ
M (π, f). This will lead to invariant distributions that are independent of r.

The construction relies on the interpretation of a weighted character as a transform, which sends functions on

G(F ) to functions on Π(M). One actually restricts attention to the subset Πtemp(M) of tempered representations

in Π(M). Tempered representations are unitary, so Jr
M (π, f) and Jµ

M (π, f) are both defined for π ∈ Πtemp(M).

As long as we are considering only tempered representations, it is natural to take f to be in the larger space

C(G) = C
(
G(F )

)
of Schwartz functions on G(F ), rather than the Hecke algebra H(G). If π lies in Πtemp(M),

Jr
M (π, f) is defined by (2.3) for any f in C(G). (See [5, p. 175].) The normalized weighted Jµ

M (π, f) can also be

defined, by applying (2.4) to C(G). In fact, all the definitions and constructions of §2 hold for any f ∈ C(G), as

long as π belongs to Πtemp(M).

Given f ∈ C(G), we define φr
M (f) to be the function on Πtemp(M) whose value at π equals Jr

M (π, f). Then φr
M (f)

lies in the Schwartz space I(M) = I
(
M(F )

)
of functions on Πtemp(M), defined (somewhat more generally) in

[1, §5]. According to [1, Corollary 9.2], φr
M is a continuous linear map from C(G) to I(M). (The proof of this fact

relies on an estimate [1, (7.6)], which was later proved in [5, Lemma 2.1].) However, φr
M depends on r. To obtain

a map which is independent of r, we define φµ
M (f) to be the function on Πtemp(M) whose value at π equals

Jµ
M (π, f). Then

(3.1) φµ
M (f, π) =

∑

L∈L(M)

rL
M (π)φr

L(f, πL) , π ∈ Πtemp(M),

by Lemma 2.1. (The induced representation πL here could be reducible, but the function φr
L(f, πL) is to be

interpreted obviously as the sum of the values of φr
L(f) at the irreducible constituents of πL.)

Lemma 3.1. The transform φµ
M is a continuous linear map from C(G) to I(M).

Proof. If L ∈ L(M), the map which sends any h ∈ I(L) to the function

π −→ h(πL) , π ∈ Πtemp(M),

sends I(L) continuously to I(M). Since φr
L maps C(G) continuously to I(L), the transform

(f, π) −→ φr
L(f, πL) ,
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maps C(G) continuously to I(M). On the other hand, the function rL
M (π) is a smooth function on Πtemp(M).

More precisely, suppose that M1 is a Levi subgroup of M , and that π1 ∈ Πtemp(M1). Then rL
M (πM

1,Λ) is a

smooth function of Λ ∈ ia∗M1
. This follows from Corollary 2.4, if we apply the descent formula [3, Corollary

7.2] to rL
M (πM

1,Λ). The lemma will follow from (3.1) if we can show that any derivative in Λ of rL
M (πM

1,Λ) is a

slowly increasing function of the infinitesimal character of πM
1,Λ. In the padic case, the definition of the Schwartz

space makes this a vacuous condition, and the lemma follows immediately. In the archimedean case, we use [2,

Corollary 7.4] to express rL
M (πM

1,Λ) as a linear combination of products of logarithmic derivatives

rα(πM
1,Λ)−1r′α(πM

1,Λ) ,

taken with respect to the real variable Λ(α∨). The fact that derivatives of rL
M (πM

1,Λ) are slowly increasing can then

be inferred from the inequality [5, (r.8)]. �

Remark. The presence of reducible induced tempered representations complicates the description of I(M). It

is actually better to identify I(M) with a space of functions on a certain basis Ttemp(M) of virtual tempered

characters, as in [5, §23]. However, we have no need of this refinement here, since we shall only be dealing with

formal properties of the maps φr
M and φµ

M .

We now consider weighted orbital integrals. Recall that the weighted orbital integral

JM (γ) = JG
M (γ)

is a tempered distribution on G(F ) that depends on M and on a conjugacy class γ in M(F ). We shall take γ to

lie in the set ΓG(M) = ΓGreg
(
M(F )

)
of strongly Gregular conjugacy classes in M(F ). Then

JM (γ, f) = |D(γ)|
1
2

∫

Gγ(F )\G(F )

f(x−1γx)vM (x)dx , f ∈ C(G),

where

D(γ) = det
(
1 − Ad(γ)

)
g/gγ

is the Weyl discriminant, Gγ is the centralizer of γ in G, and

vM (x) = lim
ζ→0

∑

P∈P(M)

vP (ζ, x)θP (ζ)−1

is a weight factor on M(F )\G(F ) obtained from the (G, M)family

vP (ζ, x) = e−ζ(HP (x)) , P ∈ P(M),

of functions of ζ ∈ ia∗M . (See [1, §8] and [5, §1].) As a distribution in G(F ), JM (γ) is not invariant. More precisely,

if

fy(x) = f(yxy−1) , x, y ∈ G(F ),

then

(3.2) JM (γ, fy) =
∑

Q∈F(M)

J
MQ

M (γ, fQ,y) ,
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where F(M) denotes the set of parabolic subgroups of G over F that contain M , and

fQ,y : m −→ δQ(m)
1
2

∫

K

∫

NQ(F )

f(k−1mnk)u′
Q(k, y)dn dk

is the function in C(MQ) defined in [1, (3.3)]. (See [1, Lemma 8.2].)

The maps φr
M are used to build an invariant distribution out of JM (γ). What makes this possible is the fact that

the distribution J r
M (π) behaves in the same way under conjugation as JM (γ). That is,

Jr
M (π, fy) =

∑

Q∈F(M)

J
r,MQ

M (π, fQ,y)

[1, Lemma 8.3]. Therefore

(3.3) φr
M (fy) =

∑

Q∈F(M)

φ
r,MQ

M (fQ,y) .

This allows us to define an invariant tempered distribution

Ir
M (γ) = Ir,G

M (γ)

on G(F ) inductively by

(3.4) Ir
M (γ, f) = JM (γ, f) −

∑

L∈L0(M)

Îr,L
M

(
γ, φr

L(f)
)
,

where L0(M) = L(M) − {G} denotes the set of Levi subgroups of G distinct from G. The invariance of Ir
M (γ)

follows by induction and the two formulas (3.2) and (3.3). To complete the inductive definition, one has still

to show that Ir
M (γ) vanishes on the kernel of the surjective trace map f → fG from C(G) to I(G), or in the

terminology of [5], that Ir
M (γ) is supported on I(G). This permits one to write

Ir
M (γ, f) = Îr

M (γ, fG) ,

for a unique continuous linear form Îr
M (γ) on I(G), and justifies the inductive use of the symbol Îr,L

M (γ) in (3.4).

The required property was established in [5, Corollary 5.2].

To construct an invariant distribution that is independent of r, we carry out the same process with φr
M replaced

by φµ
M . If we combine (3.3) with (3.1), we obtain the analogous formula

(3.5) φµ
M (fy) =

∑

Q∈F(M)

φ
µ,MQ

M (fQ,y)

for φµ
M . This allows us to define an invariant tempered distribution

Iµ
M (γ) = Iµ,G

M (γ)

on G(F ) inductively by

(3.6) Iµ
M (γ, f) = JM (γ, f) −

∑

L∈L0(M)

Îµ,L
M

(
γ, φµ

L(f)
)
.

The invariance of Iµ
M (γ) again follows from the two relevant covariance formulas, in this case (3.2) and (3.5). To

show that Iµ
M (γ) is supported on I(G), we introduce another transform from C(G) to I(M). If f ∈ C(G), let

ρM (f) be the function whose value at π ∈ Πtemp(M) equals

rG
M (π)fG(πG) = rG

M (π)fM (π) .

Arguing as in the proof of Lemma 3.1, we see that ρM is a continuous map from C(G) to I(M).
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Lemma 3.2. We have

Iµ
M (γ, f) = Ir

M (γ, f) −
∑

L∈L0(M)

Îµ,L
M

(
γ, ρL(f)

)
.

Therefore, Iµ
M (γ) is supported on I(G), and

(3.7) Ir
M (γ, f) =

∑

L∈L(M)

Îµ,L
M

(
γ, ρL(f)

)
.

Proof. Comparing the definitions (3.4) and (3.6), and noting the cancellation of JM (γ, f) from each formula, we

write

Iµ
M (γ, f) − Ir

M (γ, f)

as the sum of

−
∑

L∈L0(M)

Îµ,L
M

(
γ, φµ

L(f)
)

and ∑

L1∈L0(M)

Îr,L1

M

(
γ, φr

L1
(f)

)
.

We assume inductively that (3.7) holds if G is replaced by any L1 ∈ L0(M). The second expression in the sum

can then be written as ∑

L∈L(M)

Îµ,L
M

(
γ,

∑

L1∈L0(L)

ρ̂L1

L

(
φr

L1
(f)

))
.

By definition, ∑

L1∈L0(L)

ρ̂L1

L

(
φr

L1
(f)

)

is the function in I(L) whose value at π ∈ Πtemp(L) equals

∑

L1∈L0(L)

rL1

L (π)φr
L1

(f, πL1) ,

an expression which in turn can be written

∑

L1∈L(L)

rL1

L (π)φr
L1

(f, πL1) − rG
L (π)φr

G(f, πG) = φµ
L(f, π) − rG

L (π)fG(πG) ,

by (3.1). The function is therefore equal to φµ
L(f) − ρL(f). Since this vanishes if L = G, we may as well assume

that L ∈ L0(M). The second expression in the original sum becomes

∑

L∈L0(M)

Îµ,L
M

(
γ, φµ

L(f)
)
−

∑

L∈L0(M)

Îµ,L
M

(
γ, ρL(f)

)
.

The first part of this expression cancels the first expression in the original sum. What remains leads immediately

to the identity

Iµ
M (γ, f) − Ir

M (γ, f) = −
∑

L∈L0(M)

Îµ,L
M

(
γ, ρL(f)

)

asserted in the lemma. The second assertion of the lemma follows by induction and the fact that Ir
M (γ) is

supported on I(G). �
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We have now constructed invariant distributions Iµ
M (γ) which do not depend on a choice of normalizing factors.

In recognition of their intrinsic nature, we shall allow ourselves to suppress the superscript µ. From now on, we

shall write JM (γ, f) = Jµ
M (γ, f), φM (f) = φµ

M (f), and JM (π, f) = Jµ
M (π, f). This notation differs from that

of [1], [3], and [5]. In the earlier papers, it was only the objects Ir
M (γ, f), φr

M (f) and Jr
M (γ, f) that were being

considered, and these were denoted without the superscript r. We hope that the change in notation will not cause

confusion.

The distributions behave in a simple way under isomorphism. Suppose that

θ : x −→ θx , x ∈ G,

is an isomorphism from G onto another group G1 which is defined over F . We obtain a bijection L → θL between

the corresponding sets of Levi subgroups. If f is a Schwartz function on G(F ), the function

(θf)(x1) = f(θ−1x1) , x1 ∈ G1(F ),

belongs to the Schwartz space on G1(F ).

Lemma 3.3. IθM (θγ, θf) = IM (γ, f).

The lemma will be easy to establish, but we should first clear up another point. The noninvariant distributions

JM (γ, f) and JM (π, f) that make up IM (γ, f) depend on the choice of a suitable maximal compact subgroup K

of G(F ). (The condition on K is that it be admissible relative to M , in the sense of [1, p. 9].) As further evidence

of the instrinsic nature of IM (γ), we have

Lemma 3.4. The invariant distribution IM (γ) is independent of K .

Proof. If F is archimedean, all maximal compact subgroups are conjugate under G(F ), and the lemma is an easy

consequencxe of the invariance of IM (γ). We cannot use quite the same argument in general. We shall instead

simply copy the original proofs [1, Lemmas 8.2 and 8.3] of the identities (3.2) and (3.3) which imply the invariance

of IM (γ).

Let K1 be another maximal compact subgroup of G(F ) which is admissible relative to M . We shall use the

subscript K1 to denote objects taken with respect to K1 instead of K . Then

JM,K1(γ, f) = |D(γ)|
1
2

∫

Gγ(F )\G(F )

f(x−1γx)vM,K1(x)dx ,

where

vM,K1(x) = lim
ζ→0

∑

P∈P(M)

vP,K1(ζ, x)θP (ζ)−1 .

Following the proof of [1, Lemma 8.2], we write

vP,K1(ζ, x) = e−ζ(HP,K1 (x))

= e−ζ(HP (x))e−ζ(HP,K1 (KP (x)))

= vP (ζ, x)uP (ζ, x, K1) ,

where KP (x) is the component of x in K relative to the decomposition G(F ) = P (F )K , and

uP (ζ, x, K1) = e−ζ(HP,K1 (KP (x))) , P ∈ P(M),
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is a (G, M)family of functions of ζ ∈ ia∗M . We can then write

vM,K1(x) =
∑

Q∈F(M)

vQ
M (x)u′

Q(x, K1) ,

in the notation of the formula [1, Lemma 6.3]. If we substitute this into the original integral, we obtain a

decomposition

JM,K1(γ, f) =
∑

Q∈F(M)

J
MQ

M (γ, fQ,K1) ,

in which fQ,K1 denotes the Schwartz function

m −→ δQ(m)
1
2

∫

K

∫

NQ(F )

f(k−1mnk)u′
Q(k, K1)dn dk

on MQ(F ). Similar modifications of the proof of [1, Lemma 8.3], which we leave to the reader, lead to a parallel

decomposition

JM,K1(π, f) =
∑

Q∈F(M)

J
MQ

M (π, fQ,K1)

for weighted characters. This in turn implies that

φL,K1(f) =
∑

Q∈F(L)

φ
MQ

L (fQ,K1)

for any L ∈ L(M). It follows inductively from the definitions of the invariant distributions that

IM,K1(γ, f) = IM (γ, f) . �

Proof of Lemma 3.3. Let K be a fixed maximal compact subgroup of G(F ) which is admissible relative to M .

Then K1 = θK is a maximal compact subgroup of G1(F ) which is admissible relative to θM . Having established

Lemma 3.4, we are free to use K1 as the “base point” for constructing the constituents of IθM (θγ, θf). The lemma

is then a consequence of the various definitions.

Consider, for example, the weighted orbital integral JM (γ, f). To describe the effect of θ on the weight factor

vM (x), we use the fact that for any P ∈ P(M), θ is compatible with the decompositions G(F ) = P (F )K and

G1(F ) = (θP )(F )K1. It follows that there is a linear isomorphism θ: aM → aθM such that θHP (x) = HθP (θx),

which leads to the identity vM (x) = vθM (θx). We may therefore write

JM (γ, f) = |D(γ)|
1
2

∫

Gγ(F )\G(F )

(θf)
(
(θx)−1θγ(θx)

)
vθM (θx)dx .

Since D(γ) = D(θγ), and since x → θx is a measure preserving diffeomorphism from Gγ(F )\G(F ) onto

G1,θγ(F )\G1(F ), we can conclude that

JθM (θγ, θf) = JM (γ, f) .

A similar argument for the weighted characters leads to the identity

JθM (θπ, θf) = JM (π, f) , π ∈ Πtemp(M).
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Therefore, θ
(
φL(f)

)
= φθL(θf) for any L ∈ L(M). The lemma then follows from the inductive definitions of

IθM (θγ, θf) and IM (γ, f). �

§4. A conjectural transfer identity

It is important to understand how the distributions IM (γ, f) behave under endoscopic transfer. We shall state a

conjecture which seems to lie at the heart of the problem of comparing general trace formulas on different groups.

Let Eell(G) be the finite set of equivalence classes of elliptic endoscopic data for G over F ([8], [9]). Following the

usual convention, we denote an element in Eell(G) by a symbol G′, even though G′ is only the first component of

a representative (G′,G′, s′, ξ′) of an isomorphism class. (See [6, §2] for a description of the objects G′, s′ and ξ′.)

Then G′ is a quasisplit group over F , which shares some of its maximal tori with G. We assume for simplicity

that we can fix an Lisomorphism from G′ onto the Lgroup LG′. Then ξ′ can be identified with an Lembedding
LG′ → LG of Lgroups. Langlands and Shelstad [9] define a transfer map

f −→ f ′(δ′) =
∑

γ∈ΓG(G)

∆G(δ′, γ)fG(γ)

from functions f on G(F ) to functions f ′ = fG′

on the set ΣG(G′) = ΣGreg
(
G′(F )

)
of G(strongly) regular

stable conjugacy classes in G′(F ). The transfer factor ∆G(δ′, γ) is an explicit, complexvalued function on

ΣG(G′) × ΓG(G) that vanishes unless δ′ is an image of γ (in the language of [9, (1.3)]). The LanglandsShelstad

transfer conjecture in this context asserts that if f lies in C(G), there is a function in C(G′) whose stable orbital

integrals are given by the values of f ′.

If G is quasisplit, G itself is an element in Eell(G). Then fG(δ) equals the stable orbital integral of f at δ ∈ ΣG(G),

at least up to a constant multiple. An invariant tempered distribution S on G(F ) is said to be stable if it vanishes

on the kernel of the map f → fG. If this is so, there is a tempered distribution Ŝ on ΣG(G) (a notion that is not

hard to make precise) such that

Ŝ(fG) = S(f) , f ∈ C(G).

Returning to the general case, we assume in what follows that the LanglandsShelstad transfer conjecture holds

for any G′ ∈ Eell(G). If S′ is a stable tempered distribution on G′(F ), Ŝ′(f ′) is then defined for any f ∈ C(G).

The conjectural transfer properties of IM (γ, f) are best stated in terms of adjoint transfer factors. We assume

that for each G′ ∈ Eell(G), we have been able to identify ξ′ with an Lembedding LG′ → LG. This is possible,

for example, if the derived group of G is simply connected. The same property then holds for each of the

endoscopic data M ′ ∈ Eell(M). We shall also discuss only the case that γ lies in the subset ΓG,ell(M) of M elliptic

conjugacy classes in ΓG(M). Parallel to ΓG,ell(M), we have the “endoscopic” set ΓE
G,ell(M), which consists of

the M isomorphism classes of pairs

(M ′, δ′) M ′ ∈ Eell(M), δ′ ∈ ΣG,ell(M
′).

We can also identify ΓE
G,ell(M) with a disjoint union of orbits

∐

M ′∈Eell(M)

(
ΣG,ell(M

′) / OutM (M ′)
)
,

where as in [6, §2], OutM (M ′) is the group of outer automorphisms of the endoscopic datum M ′. Since ∆M (δ′, γ)

is invariant under the action of OutM (M ′) on δ′, the transfer factors for M can be combined into a function on

ΓE
G,ell(M) × ΓG,ell(M). We then introduce the adjoint transfer factor

∆M (γ, δ′) = |Kγ |
−1∆M (δ′, γ)
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on ΓG,ell(M) × ΓE
G,ell(M) as in [6, (2.3)].

We shall attach a family of endoscopic data for G to an endoscopic datum for M . Consider an element M ′ ∈

Eell(M). We choose a representative (M ′,M′, s′M , ξ′M ) within the given equivalence class so thatM′ is a subgroup

of LM , and so that the embedding ξ′M is the identity. Then s′M is a semisimple element in M̂ which stabilizes M′.

Suppose that s′ is an element in the set s′MZ(M̂)Γ, where Z(M̂)Γ denotes the subgroup of elements in the center

of M̂ that are invariant under Γ = Gal(F/F ). Let Ĝ′ be the connected centralizer of s′ in Ĝ. Then G′ = Ĝ′M′

is a subgroup of LG, and is a split extension of WF by Ĝ′. Taking ξ′ to be the identity embedding of G ′ into LG,

we obtain an endoscopic datum (G′,G′, s′, ξ′) for G. We shall write EM ′(G) for the set of such s′, taken modulo

the subgroup Z(Ĝ)Γ of Z(M̂)Γ, for which the corresponding endoscopic datum for G is elliptic. Following the

earlier convention, we shall represent a given element in EM ′(G) by its endoscopic group G′. We are not actually

taking isomorphism classes of endoscopic data here, so different elements in EM ′(G) could give the same element

in Eell(G). However, the ellipticity condition we have imposed means at least that there are only finitely many

elements in EM ′(G). We can identify M ′ with a Levi subgroup of any given G′ ∈ EM ′(G). For each such G′, we

define a coefficient

ιM ′(G, G′) = |Z(M̂ ′)Γ/Z(M̂)Γ||Z(Ĝ′)Γ/Z(Ĝ)Γ|−1 .

The quasisplit case plays a special role in the conjecture we are about to state. If one of the groups G or M is

quasisplit, so is the other, in which case we shall say that (G, M) is quasisplit.

Conjecture 4.1. There are stable distributions

SG
M (δ, f) , f ∈ C(G),

defined for quasisplit pairs (G, M) and elements δ ∈ ΣG,ell(M), such that for any (G, M) and any element

γ ∈ ΓG,ell(M), the endoscopic expression

(4.1) IE
M (γ, f) =

∑

(M ′,δ′)∈ΓE

ell
(M)

∆M (γ, δ′)
∑

G′∈EM′(G)

ιM ′(G, G′)ŜG′

M ′ (δ′, f ′)

equals IM (γ, f).

Remarks. 1. The conjecture includes the existence of new distributions SG
M (δ, f) and IEM (γ, f). These objects are

to be regarded as stable and endoscopic analogues of the invariant distributions IM (γ, f).

2. Implicit in the assertion is that the outer summands in (4.1) depend only on the image of (M ′, δ′) in ΓE
ell(M).

It is not hard to show inductively from Lemma 3.3 that this actually holds for each of the terms ŜG′

M ′(δ′, f ′).

3. We have been assuming the existence of an Lisomorphism G ′ → LG′ for each G′. This is only for simplicity.

In general, one must choose a central extension G̃′ → G′ for each G′ by a suitable torus Z̃ ′, as in [9, (4.4)]. (See

also [6, §2].) One can then choose an Linjection ξ̃′: G′ → LG̃′ that plays the role of the Lisomorphism above.

The definitions and conjecture are easily modified to include the general case.

4. If F is padic, the transfer factors ∆M (γ, δ′) and ∆M (δ′, γ) satisfy adjoint relations [6, Lemma 2.2] that provide

an inversion of the formula (4.1). In the quasisplit case, this inversion gives an inductive definition of SG
M (δ, f) in

terms of the distributions IM (γ, f). If F is archimedean, however, the adjoint relations fail, essentially because

the set ΓG,ell(M) is too small. It is possible to place the archimedean case on an equal footing with the padic case

by embedding ΓG,ell(M) in a larger set. A natural extension of the conjecture asserts that IEM (γ, f) vanishes if γ

lies in the complement of ΓG,ell(M).

5. We have assumed that γ lies in the subset ΓG,ell(M) of ΓG(M). Again, this was just for simplicity. Parallel to

ΓG(M), one can introduce the endoscopic set ΓE
G(M) as in [6, §2]. The conjecture can then be stated for γ and δ′ in
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the larger sets ΓG(M) and ΓE
G(M). Unlike the special case of ΓE

G,ell(M), however, an element δ′ ∈ ΓE
G(M) can lie

in the image of several of the sets ΣG(M ′). In particular, δ′ does not determine a unique element M ′ ∈ Eell(M).

To establish that the summands of (4.1) are independent of the choice of M ′, or more generally, that they depend

only on the image of (M ′, δ′) in ΓE
G(M), we would need to establish descent formulas for the new distributions

analogous to [3, Corollary 8.3].
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