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The Trace Paley Wiener Theorem for Schwartz Functions

James Arthur

Suppose that G is a connected reductive algebraic group over a local field
F of characteristic 0. If f is a function in the Schwartz space C(G(F)), and
ir E Htemp (G(F)) is an irreducible tempered representation of G(F), the operator

fG(r) = hj f (x)(x)dx
G(F)

is of trace class. We can therefore map f to the function

fG(7r) = tr(Tr(f))
on 11temp (G(F)) . The object of this note is to characterize the image of the map.

Results of this nature are well known. The case of the Hecke algebra on G(F),
which is in fact more difficult, was established in [3] and [5]. A variant of the
problem for the smooth functions of compact support on a real group was solved
in [4]. For the Schwartz space, one has a choice of several possible approaches. We
shall use the characterization of the operator valued Fourier transform

f (f), f EC(G(F)),
which was solved separately for real and p-adic groups [2], [9, Part B]. (See also [6,
Lemma 5.2].)

Irreducible tempered representations occur as constituents of induced repre-
sentations

Zp(a) : G(F) End(7-p(a)), I EII2(M(F)).
Here M belongs to the finite subset C of Levi subgroups of G which contain a
fixed minimal Levi subgroup, P belongs to the set P(M) of parabolic subgroups
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with Levi component M, and fI2(M(F)) is the set of (equivalence classes of)
irreducible unitary representations of M(F) which are square integrable modulo
the center. The irreducible constituents of Zp(a) in general are determined by
projective representations of the R-group Ra of a [7], [8]. To convert projective
representations to ordinary representations, one takes a finite central extension

1 - Za -R R -* 1

of the R -group. The usual intertwining operators then give rise to a representation

r R(r, a) , rE Ra ,

of Ra = RG on Hp(a) which commutes with Zp(a). (See [1, §2].) The process
singles out a character X, of Za; following [1], we write H(Ra, Xv) for the set of
irreducible representations of Ra whose central character on Z. equals X . Then
there is a bijection p -. irp from H(Ra, Xa) onto the set of irreducible constituents
of Ip(a), with the properties that

(1) tr(R(r,a)Zp(, f)) = E tr (pv(r))tr(irp(f))
pEn(Ra ,xa)

and

(2) tr(7rp(f)) = Ik,|-1 Z tr(p(r))tr(R(r,a)p(a,f))
rER,

for any function f e C(G(F)). (We are writing pv for the contragredient of p.)
Consider the set T(G) of triplets

r=(M,7a,r), ME, aE n2(M(F)), rE Ra,

which are essential in the sense of [1, §3]. (This means that the subgroup of elements
z E Z, for which zr is conjugate to r lies in the kernel of X .) The restricted
Weyl group WoG of G acts on T(G), and we write T(G) for the set Wo -orbits
in T(G). Set

(3) fG(r) = tr(R(r,a)Zp(a,f)), f C(G(F)).
Then fG(r) depends only on the WG -orbit of r, and is therefore a function on

T(G). There is also a symmetry condition

fG(zr) = Xr(z)-fG(T), E Z,

in which we have written Zr = Z,, Xr = X, and zr = (M,a, zr). Observe
that (1) and (2) represent isomorphisms between the two maps f fG(1r) and
f -- fG(r). It will therefore be enough for us to characterize the image of the
second map.
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Before discussing the image, we should recall [1, §3] that T(G) is a disjoint
union over all L E L of spaces Tell(L). By definition, Tell(L) is the set of triplets

(M, , r), MCL, r ERL,reg
in which M is contained in L and where the null space of r, as a linear transfor-
mation on the real vector space

aM = X(M)F R ,

is the subspace aL . There is an action

T ->r = (M, 0TA,r), E ia ,

of the real vector space iaL on Tell(L). This makes T(G) into a disjoint union
of compact tori if F is p-adic, and a disjoint union of Euclidean spaces if F is
Archimedean.

We can now define I(G(F)) to be the set of complex valued functions 0 on
T(G) which satisfy the symmetry condition

q(Zr) = X,(Z)-(T), Z E Z , E T(G),

and which lie in the appropriate space of WG -invariant functions on T(G). That
is, b must be in C{(T(G)) if F is p-adic, and in S(T(G)) if F is Archimedean.
In the Archimedean case, we can assume that F = R. Then any representation in
H2 (M(R)) can be written uniquely in the formo, , where A lies in iaM and a E

[H2(M(R)) is invariant under the split component AM(R)O of the center of M(R).
In this case we write p/x for the linear form that determines the infinitesimal
character of ax . Thus, /,, is a Weyl orbit of elements in the dual of a complex
Cartan subalgebra, which we assume is equipped with suitable Hermitian norm
II II, such that

llLo, 11 = 11i + All = lall'l+ AII11
By definition, S(T(G)) is the space of smooth functions 0 on T(G) such that for
each L E 1, each integer n, and each invariant differential operator D = Dx on
ia , transferred in the obvious way

DR)(r) = lirn DAb(rx), r E Tell(L),

to Tell(L), the semi-norm

IkllL£,D,n = sup (IDTr(T)l(1 + IIrl)n)
rETell(L)

is finite. (We are writing pr = p for r = (M, a, r) .) In both the real and p-adic
cases, I(G(F)) has a natural topology.
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THEOREM. The map
TG :f - fc,

defined by (3), is an open, continuous and surjective linear transformation from
C(G(F)) onto Z(G(F)).
PROOF. As we have already noted, we shall use the characterization [2], [9, Part
B] of the operator valued Fourier transform

G : C(G(F)) C-(G(F))
on the Schwartz space. (The discussion of the map TG for p-adic groups in [9,
Part C, §VI] is incomplete.) The space C'(G(F)) consists of smooth operator valued
functions

·: (P,a) -> (p(a) e End(ip(a)), P E P(M) . a e n2(M(F)) , M E ,

which satisfy a symmetry condition and a growth condition. To describe the sym-
metry condition, we suppose that M' E C, P' E P(M'), and that w belongs to
the set W(aM, aM') of isomorphisms from aM onto aM, obtained by restricting
elements in WG to aM . Set

Rp,1p(w,a) = A(wj)RW-ip/lp(7).
where Rw-lplp(a) is the normalized intertwining operator from )Hp(a) to
'I,-1p,(a), w is a representative of w in a fixed maximal compact subgroup
K, and A(w) is the canonical map from ,,-lp (a) to -,p'(wia). Then D must
satisfy

(4) p,'(wa) = Rp,lp(w, Ga)4p(a)Rp,1p(w, ()-l
for all such (M', P', w). As for the growth condition, observe that the domain of
D can be identified with a disjoint union of compact tori if F is p-adic. In this
case we require simply that ·1 have compact support. If F is Archimedean, we
require that the semi-norms

sup IDa,(rF,2p(a)rF, )I(1 + Il||~al)n(1 + 11/16 Il)m'(1 + Ili62 1)M2
P,a,61,62

determined by integers n, ml, m2, and differential operators D , be finite. The
elements 61 and 62 here range over irreducible K-types, and Fr stands for the
K-invariant projection of X-p(a) onto the 6 isotypical subspace Hp(ar),. As
above, Da is assumed to come from an invariant differential operator on iaM . In
each case, C(G(F)) becomes a topological vector space, and the Fourier transform

FCG : f (Gf)P(a) = Ip(, f)

is a topological isomorphism from C(G(F)) onto C(G(F)).
We define a trace map

TG: C(G(F)) - Z(G(F))
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by setting
(TcG)(T) = tr(R(r,c)>p(a))

for any triplet r = (M, , r) in T(G). Our original map TG is then the compo-
sition of FG with TG . We observe directly from this construction that TG maps
C(G(F)) continuously into I(G(F)). Moreover, to prove the remaining assertions
that TG is open and surjective, it suffices to construct a continuous section

hG: Z(G(F)) - C(G(F))
for TG.

Suppose first that F = R. Then we shall write the representations in
Hi2(M(R)) in the form

:a , aE Il2(M(R)/AM(R)) , A Eia ,
as above. In this case, Ra is a product of groups Z/2Z [8]. Moreover, the cocycle
which defines Rk splits [8, Theorem 7.1], so we may take Ra = R,. For any A,
R,, is the subgroup of elements in Ra which fix A.

We shall use Vogan's theory of minimal K-types [10], [11], [5, §2.3]. Given
a E Il2(M(R)/AM(R)°), let A(a) denote the set of minimal K-types for the
representation Zp(a). If r belongs to R , we shall write

R(r, O)min = E R(r, a)6,
6EA(a)

where R(r,a)s denotes the restriction of R(r, a) to the 6-isotypical subspace
JHp(ar)6. Then there is a bijection p -+ 6p from the set H(Ra) of (abelian)
characters of R, onto A(a) with the property that

tr(R(r,a)minTP(a, k)) = E pV(r)tr(6p(k))
pEn(R )

for each r E Ra and k E K. This follows from the fact that each 6 occurs
in lp(a) with multiplicity 1, and that moreover any irreducible constituent of
Ip(a) contains exactly one element in A(a). In particular, if 6 = 6p, the operator
R(r,a)6 is simply equal to the scalar pV(r) on Hp(a)6. This suggests that we
define operators

Sp(r,a) = deg(6)-1R(r,a)6, r E R,
6EA(a)

on

Hp(a)min = 'P(').
6EA(a)

Then

tr(R(rl,a)Sp(r-1 a)) = n pV(l-1) = I, otiferi=r,
pen(R) otherwise,
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for any elements rl,r E R . Suppose that w belongs to W(aM,aM,), and that
A lies in iaM. Then the linear transformation Rplp(w,ax) in (4) intertwines
the action of K on the various spaces tp(acr) and ?-p,(wa) . Consequently, the
operator

(5) Rpilp(w, a)-1Rp,1p(?w, ax)
acts as a scalar on each of the spaces '7p(a)6, and therefore commutes with
Sp(r, a) . It follows easily that

Rp,Ip(, rrA)Sp(r, c7)Rp,)lp(w, aX)-1
= Rp, Ip(w, a)Sp(r, a)Rp, p(w, a)-
= Sp'(wrw-1,wi)

for any r E R .

In order to construct the section hG, we choose a function /3 E Cc(ia*/iac)
for each pair of Levi subgroups M C L in L, such that /L (0) = 1, and such that

3wL(wA) = L (A) A e ia,

for any w E WG . Suppose that 4 belongs to I(G(F)). The domain of ) can be
represented as the set of W -orbits of triplets

{r = (M,axL,r) : M C L. a E n2(M(R)/AM(R)°), AL E ia, r E Rareg}

We define hG(q) to be the operator valued function

,p(a,) = IRal-1 E L/(A)(MAL,r)Sp(r-1,),
LEL(M) rERLreg

where AL denotes the projection onto iaL of the variable A E ia . We shall show
that this function lies in C(G(R)), and that its image under TG is /.

Take any w E W(aM,aM') as in the symmetry condition (4). Since fL4 ¢
and Sp each satisfy their own symmetry conditions, we see that

Rp' Ip(, ax,)>p(ax,)Rp(,IP(W, \)-1
= IRK-1 E E wL(wA)(wM, w(a, wrw-l)Sp'(wr-lw-1wa)

LEC(M) rERL,reg
= P/(W(TA) -

Therefore the symmetry condition (4) holds. To establish the required growth
condition, we use the fact that the infinitesimal character of any of the K -types in

A(a) may be bounded linearly in terms of the infinitesimal character of a; there
is a constant c such that

11,611 < c(1 + l1 11)
for every a E H2(M(R)/AM(R)°) and 6 E A(a). The growth condition for X as

an element of I(G(F)) then implies the growth condition of C(G(F)) for 4p(car) .

It follows that the function

(b: (PTa') -4p((ax)
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belongs to Ci(G(F)). In fact the estimates imply that hG: q -(q is a continuous
linear map from I(G(F)) into C(G(F)).

Finally, to evaluate TG4 , choose any triplet

T = (M, a, rl), r E Ra, rlA = A,

in T(G). Then

(TG~)(T) = tr(R(rl,oax)qp(erA))
-= IRa1 >1 Z /3f(A)O)(MxA,r)tr(R(rl, ax)Sp(r-l,o))

LEL(M) rERL,reg

The operator R(rl, rX) = Rpip (rl, c) here depends implicitly on the group P E
P(M). However, the trace inside the sum does not, so we are free to choose P
so that R(rl,ax) equals R(rl,a) . Then as we have seen above, a summand will
vanish unless r equals rl, in which case it equals

(AM()(M, ,rL )|IR

If L1 E L(M) is the group for which r1 lies in RLeg, then A lies in ia*.
Therefore AL1 = A and fL1 (A) = /L1(0) = 1. We obtain

(TG()(T) = 0(M,rA,rl) = +(4T)
We have verified that he: q --, ( is the required section for TG, thereby estab-
lishing the theorem in the case that F = R.

Now suppose that F is a p-adic field. One could use Schwartz-multipliers to
establish the theorem, in the spirit of the corresponding result [3] for Hecke alge-
bras. We shall instead follow an argument which is closer to the discussion above.
An element 0 E Z(G(F)) is supported on finitely many connected components
in T(G). Using an WO -invariant partition of unity, we can assume that 0 is
supported on a small neighbourhood of some fixed point in T(G). More precisely,
we assume that 0(r) vanishes unless T is of the form (M, x, r), where (M, r)
belongs to a fixed orbit of WG and A lies in a small neighbourhood /M of 0 in
iaM . One reason for localizing around a is to ensure that for any A E JAM , RaX
is the subgroup of elements in Ra which fix A . We shall impose a second condition
on the size of ANM presently.

Choose an open compact subgroup Ko of G(F), and let R(r,a)Ko denote
the restriction of R(r, a) to the subspace lp(aU)Ko of Ko -fixed vectors in H-p(a).
The representation

r - R(r,a)Ko r E Ra ,

of Ra on 'Hp(a)Ko is equivalent to a direct sum

() dim(7rp,Ko)P ,
pen(Ra, X.)
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where Trp,Ko denotes the C(G(F)//Ko)-module of K0-fixed vectors in the rep-
resentation 7rp. We take Ko to be so small that 7rp,Ko is nonzero for each p.
Writing R(r,a)p,Ko for the restriction of R(r,a) to the subspace of H-p(a)Ko
corresponding to p, we define operators

Sp(r,a) = y deg(p)dim(7rp,Ko)-R(r,a)p,Ko , r E Ra,
peln(Ri,xO )

on -p(aO)Ko . For any pair of elements rl, r E Ra, we have

tr((rl, a)Sp(r-1, a))
-R,IX,(z), if r rlZ, z E Z,,

= Z deg(p)tr(pv(rlr-)) = { X f rrz z e
pen(R, ,X)

Unlike in the Archimedean case, however, the operator (5) does not generally
commute with Sp(r, a). To deal with this complication, we define a function

Qp(oA) = z pRp1Pp(wi,'X)~-lRPllp(W1'o)
M1 E wlEW(aM,aM1) P1E.P(M1)

of A e iaM. If w and P' are as in (4), we have

Rp, Ip(w, a,)Qp(a, X)Rplp(w, a)-1
Z Rplp(W, ax)RplIp(wl, ax)-1Rpl p(Wl, a)Rplp(wi, a)-

Mi ,w1 ,P1

= Z Rp1Ip,(wilwJ wa)lRpIp,(wlw-l,wry) ,
Ml,wl,P1

by the multiplicative properties of the intertwining operators. Changing variables
in the sum over w1 , we see that

Rp'lp(w, a)Qp(a, A) = Qp' (w, wA)Rplp(w, a)

Observe that if A = 0, Qp(a, A) is a positive multiple of the identity operator. We
assume that the neighbourhood AM is so small that the restriction of Qp(a, A) to

J'ip(a)KO is invertible for every A E NM . We can then define

Sp(r, a, A) = Qp(u, A)Sp(r, a)Qp((a)-,)r E R,

It follows easily that

Rp, p(w, aT)Sp(r, a, AX)Rp,lp(w, aTx)-
= Qp,(wa,, wX)Rp, p(w, ()Sp(r, a)Rp, p(w, o)-lQp' (wr, wA)-
= Qp,(wa, wA)Spl(wrw-1, wa)Qp,(war, wA)-1
= Sp,(wrw-1, Wa, WA)
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Notice also that if r A = A for an element r1 E Rs, and if P is chosen so
that R(rl,ax) equals R(rl,a), the operators R(rl,a) and Qp(a,A) commute.
Therefore

tr (R(rl Icr)Sp(r-l a, A)) ={IX(), if rrz, z E Z,,

This modification allows us to construct the section hG as we did in the case
F = R. We choose the functions /3L e C~°(ia4 /iaL) as above, with the further
stipulation that they each be supported on a small neighbourhood of 0. Given f,
we define hc(O) to be the operator valued function

4p(OA) =-R-/-1 E E L (A))(MaLrr)Sp(rT-1, A)
LEL(M) TERL,eg

Our support conditions on (3L and 0 imply that the right hand side vanishes
unless A belongs to AMm, and therefore that Sp(r-l,a,A) is well defined. The
symmetry condition (4) follows from the remarks above, as in the Archimedean
case. The required growth condition is trivial. Consequently, the function

·: (P, a,) p(at,)
belongs to C(G(F)), and Xq hG(c) = 4 is a continuous linear map from
I(G(F)) into C(G(F)). Finally, suppose that r is any element in T(G). Then
(TcG)(T) vanishes unless r is of the form

(M, a, rl), A EJM , rl E Ra, rlA = A,

in which case we deduce that

(TG4)(r) = tr(R(rl,oA7)Dp(CrA)) = q(r),

again as in the Archimedean case. Therefore, the map hG: q -* q is the required
section for TG . We have established the theorem for arbitrary F. I
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